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Adaptive control using a sliding mode in discrete time systems is proposed as a means of achieving robustness
with respect to parameter variations, fast tracking to a desired trajectory, and fast parameter convergence, without
increasing the chattering of the control inputs. We first prove the stability of a system in which the control inputs
consist of equivalent control driven by the adaptive control law and bounded discontinuous control. The
discontinuous control driven by the sliding control law is then obtained so that the output error quickly converges
to zero. Finally, the performance improvements obtained by adding the sliding mode control input are shown
through computer simulations.

Keyworps: Model-reference adaptive control (MRAC); variable-structure system (VSS); sliding-mode control,
variable-structure model-reference adaptive control (VS-MRAC); discrete-time adaptive control

1. INTRODUCTION

Recently many research reports on adaptive control using a sliding mode have been
appeared. Such control is also called variable-structure model-reference adaptive control
(VS-MRAC), or adaptive sliding-mode control. The methods described in early papers
were based on conventional variable-structure system (VSS) theory [1], and applied some
parameter adjustments to adapt to changes in the environment. Although VSS control is
known to be robust in the presence of disturbances and parameter variations of a plant, the
major concern of adaptive control using a sliding mode is the need for knowledge of the
full state vector for generating the sliding surface s [2], [3], [4], [5]. Since this difficulty
is not a serious problem in lower-order systems and the method is suitable for nonlinear
systems [6], Slotine et al. applied it to robot manipulator control and showed that its
tracking performance was good [7] when the parameters were varied. The difficulty in
obtaining knowledge of the full state vector in higher-order systems was first reduced by
using asymptotic observers [8]. However, the available results are based on strong
structural assumptions regarding the plant. Another method of overcoming the difficulty
is to use state variable filters [9—12]. These approaches are known to be extensions of
Model-Reference Adaptive Control (MRAC) in continuous-time systems [13-16].
Therefore, the robustness in the presence of bounded disturbances and the unmodeled
dynamics of adaptive control using a sliding mode are also improved by the same methods
as those developed for MRAC, such as o-modification [17,12,18,19], and the use of a
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normalizing signal [20,10,18,19]. Other methods for improvement use the continuous
VSC law [17] or adaptive upper bounds [21].

Although many methods have been devised to improve the performance, the structures
of the controllers are becoming more complicated. While such controllers are suitable for
implementation using digital controllers, their approaches are all in the continuous-time
domain. If we implement the controllers by transforming the methods from the
continuous-time domain to the discrete-time domain, we will have a problem, because this
transformation produces an unstable zero at high frequencies and the adaptive controller
has to be robust enough robust to withstand this. Currently digital controllers are used in
many applications, and appropriate algorithms are being developed. There have been
several descriptions of MRAC techniques in discrete-time systems [22-26] and sliding-
mode control techniques [27-29]. A discrete-time version of adaptive control using a
sliding mode is also desirable for practical implementation. The idea of a discrete version
using a self-tuning technique is presented by Furuta [30] and later extended to
servo-controllers [31].

In this paper we propose an alternative method of adaptive servo control using sliding
mode in discrete-time systems, and prove its stability. In Section 2 we prove the stability
of the adaptive system even when bounded discontinuous control is added to the input. In
Section 3 we develop a method of generating discontinuous control input that makes the
output error converge to zero, using the method described in Furuta [28]. In Section 4 the
performance improvements are compared by computer simulations to the case without
sliding-mode control input.

2. PROBLEM FORMULATION

The plant to be controlled is completely represented by a single-input and single-output
pair {u(k),y(k)}, and can be modeled as a linear time-invariant system described by the
following equation:

A(g Hy(k) = g~ B(g "Yuk), (1)

where A(g~") is a monic polynomial of degree n and B(g ') is a polynomial of degree m.
The polynomials are expressed as

Agh=1+aq '+ - -+ag™"

Bg )=by+bg '+ - -+bg ™

A reference model has a reference input r(k) that is uniformly bounded and an output
YmlK)-
The following assumptions are made for a plant and a reference model:

Al A(g ') and B(g" ") are coprime.

A2 The coefficients of A(g~") and B(g™") are unknown, but b, # 0 and its sign is
known.

A3 The degrees n and m are known.

A4 A time delay d is known and d = 1.

A5 B(q!) is a stable polynomial.
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A6 A model output at d steps ahead, y, (k + d), is available for a controller.
The control objective is to define a control input u(k) so that lim,_, ., e,(k) — 0, where

e,(k) & y(k) = y, (k). ()]

3. DISCRETE TIME ADAPTIVE CONTROL LAW
Theorem 1 [23,24] If the error equation of a controlled system is described by

(k) = ¢’ (WK — d), d = 0, €)
and the adaptive control law

(k) = bk — 1) — T'é(k — d)ey (k) C))

is chosen, then the system is stable, and

lim €,(k) — 0, and l{im o(k) — ¢*, o)

k—

where (k) and §(k) are a parameter vector and a regressor vector of degree n + m + d,
and €,(0) and &(0) are assumed to be bounded.
Proof—.[23,24] We assume the following positive definite function:

Vk) = &7 (T ™" d(k).
If we define AV(k) & V(k) — V(k — 1),then
AV(k) = =" (k — ATk — d)e (k) — 2€}(K)
=0.

Since V(0) = ¢7(—1)I'"'d(—1) is bounded, AV(k) is also bounded. Therefore,

V(@) — VO) = X k) + X & (k — DTEK — d)e, (k) < .
k=0 k=0
This implies (5).

Lemma 1—If a monic and stable polynomial C(q™") of degree n is introduced, then there
exist polynomials E(q~") and F(q~") that satisfy the Diophantine equation

Clq H =A@ HEQG@ ™M +qF@g™, (©)

where E(q™") and F(q™") are monic polynomials of degreed — 1 andn — 1, respectively.
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Proof. Refer to [24, 32]. By using Lemma 1 and by substituting (1) into (6), we obtain

C(@ y(k) = B(g"HE(@ "Yuk — d) + F(g" "y(k — d)
= 0*Tg(k — d), ©)

where £7(k) = [u(k), uk — 1),..., uk — m — d + 1), y(k),..., y(k — n + 1)], and 6*”
consists of the coefficients of B(g™'), E(g™"), and F(g~"). If we define a predicted error
€,(k) as

€,(k) & 0"(OEK — d) — Cg~ Hytk) = (87(k) — 8*N)E(k — d) = ¢'(R)Ek — d),  (8)

where ¢(k) & 6(k) — 6*, then the adaptive control law (4) in Theorem 1 gives (5) and
lim,_ ., ¢ (K)Ek — d) = lim,_, ., *&E(k — d) = 0; therefore, lim,_, ., d”(k)E(k) = 0 is also
guaranteed.

By substituting the relation of e;(k) & y(k) — y,(k) into (7), we obtain
C(g ek + d) = bau(k) + 0*"E(K) — C(g™ ",k + d), (&)

where 8*7 = [b;, 0*7] and £7(k) = [u(k),E7(k)]. Therefore if a control law

1 R
ull) = 7= [C(@ yuk + d) — 8*ER)]
0

is chosen, then C(g~ e, (k + d) = 0 is satisfied. Since C(g™") is assumed to be a stable
polynomial, lim,_,., e;(k) — O is also guaranteed, if the controller parameters 6(k) are
equal to the real ones 0*.

However, since the real parameters are unknown, if estimated parameters are used

instead and a discontinuous control input w(k) is added, then the control law is described
as

1 _ _
u(k) = —— [C(g yu(k + d) — 8" (R)EKR) — w(k)]. (10)
by(k)

The estimated parameters and the regressor vectors are expressed as & (k) = [u(k),
(W), E(0) = [ulk = 1),...,u(k — m — d + 1), y(k),..., y(k — n + 1)]. and 67(k) = [bo(k),
07(k)], and 67(k) consists of unknown coefficients of B(g~ '), E(g”"), and F(g~"). This
formulation means that the control input is possible to derive, because u(k) consists of
0k), utk — 1),..., utk — m — d + 1), y(k),..., y(k — n + 1), and w(k).

According to (7) and (10), we have C(g™ ")y(k + d) = 6*”£(k) and C(g™ )y, (k + d) =
07(k)&(k) + w(k + d). Substituting e, (k) & y(k) — y,,(k) into these, we obtain

Cg Me(k + d) = dT(RER) + w(k + d). (11)
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4. DISCRETE TIME SLIDING MODE CONTROL LAW

Theorem 2 [28]. Consider the system

C(g Ve (k) = w(k) (12)

where C(q™") is monic and stable polynomial. If the control law from e (k) to w(k) is
chosen as

w(k + 1) = fp(k)e(k), 13)

where fp(k) & [fi(k), f,(k),: - -, f (k)] and e(k) & [e,(k), e;(k — 1), - -, ek + 1 — nY,
then law

0if -8, < e(Rek+1—i)<3, (14)

fife ek +1—i) < -3,
fik) =
~foifei(®eyk +1 - i) >3,

makes limy_,., e;(k) = 0, where 3, is defined as

; =f50 ley(k + 1 — i) S ley(k+1=j)l, f,>0. as)

Proof. (12) can be expressed as

j=1

-1
e (k) = % wik + 1). (16)

Since C(q_l) is a monic polynomial in q'l, the transfer function from w(k + 1) to e;(k)
is described as

e(k + 1) = Ae(k) + bw(k + 1)
e, (k) = ce(k),

where
e(k) = [e,(k) e;(k — 1)- - -e;(k + 1 — n)]", a7
—d, —d,- - - —d, 1
1 0O ---0 0
A= - . . , b=c= . E (18)
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If we define the positive definite function V(k) & e'(k)Pe(k), then
AV(k) = " (k)(ATPA — P)e(k) + b"bw*(k + 1) + 2b"w(k + 1)e(k).

Since C(g ") is a stable polynomial, there exists a positive definite matrix 7 = Q > 0 that
satisfies

AV(k) = —€"(k)Qe(k) + bTbw(k + 1) + 2b™w(k + De(k). 19)

Substituting (18), (18), and (13) into (19), we obtain

AV(R) = —'()Qek) + | Sfek+1—i |2+2| S fek+1—1i) | e k).

i=0 i=0

(20)

If any one of the f;’s is chosen as f; or — f;, then AV(k) can be expressed by the sum of
the terms satisfying f; # 0 as

AV(k) = —€"(k)Qe(k) + 2 flek+1 =il |>-2 2 file,(k + 1 = i)le,(k)!

i=0 i=0
2D
According to (14), when le (k)e,(k + 1 — i)l > 8,, fk) = f,. Therefore
AV(R) = —e'(K)Qek) + | S fleyk+1 =i |2 =2 T 57 |. (22)

i=0 i=0

This implies that 8, in (15) makes AV(k) < 0. It has been proved that e,(k) — 0 as k —
oo, and therefore e(k) — 0 as k — o,

Remark. According to [28] the upper bound of f;, exists, so that the convergence of the
error is satisfied if the error is always inside the region of f(k) = 0, (i = 1,..., n). In our
case, however, the upper bound of f;, does not exist, because the controlled system itself
is stable and the output error converges to zero when the input is zero.

Corollary 1. In the system

C(@ Hey(k) = wik) + & k), (23)

the same control law (13) makes the system stable and lim,_, ., e,(k) = 0 if €,(k) is bounded
and lim_, €,(k) = 0.

Proof. Since C(q™") is stable and €, (k) is bounded, there exists a bounded €,(k) that
satisfies C(¢~")e, (k) = €, (k). Therefore the error equation can be modified as
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e(k + 1) = Ae(k) + bw(k + 1)
e,(k) = c"e(k) + &,(k).

Thus we have

AV(k) = —eT(k)Qe(k) + w?(k + 1) + 2w(k + 1)e (k) — 2w(k + 1) — &,(k). (24)

According to the proof of Theorem 2, w2k + 1) =< —2w(k + 1)e, (k) is always guaranteed.
The third term in the right-hand side of (24) is designed to be negative by the control law
(13)—(15), and, therefore, there exists an le,(k)| large enough to satisfy AV(k) < 0. Since
é,(k) is bounded and lim,_,., e,(k) = 0, lim,_,., e;(k) = 0 is proved.

If €,(k) defined in (8) is used for the input of the adaptive law (4), then Theorem 1
guarantees that €,(k) converges to zero no matter what the plant input u(k)(# 0) is. If the
continuous control input (10) is applied to the input of the plant, then the closed-loop
system from u(k) to y(k) converges to a stable transfer function. When the discontinuous
control input (13)—(15) is also applied to the input of the plant, Corollary 1 guarantees that
the plant output y(k) converges to the model output y,,(k). The sufficient conditions for the
boundness of the plant states &(k) are that the plant does not have unstable zeros as in the
assumption (A5) and that the discontinuous control input w(k) is bounded. It is possible
to make w(k) bounded by normalization, because the switching amplitude can be chosen
arbitrarily as in Theorem 2. Therefore, the discontinuous control input can be chosen as

_ £o®) .
1+ € (k- ek — d)

wk + 1) (k).

In this case, if £(k) is assumed to be unbounded, then this normalization makes w(k)
bounded. If the assumption (AS) is satisfied and w(k) and y,,(k) are bounded, then &(k) is
bounded, which contradicts the assumption. Therefore, the boundness of §&(k) is
guaranteed and the convergence of the output e(k) is maintained. Figure 1 shows the
structure of the overall system.

5. EXAMPLE

Consider the plant

Yo _q°B@h)_ ¢7'05+035"
uk) A@H  1-20q"'+036g 2

and the model output

Yu(k) = sin(2wk/10),
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C(g™") is set to
CgH=1+dgq "' +dyg%d =1,d,=05,d,=06.
The adaptive law is obtained from (4) as

8(k) = 8(k — 1) — T&(k — d)e,(k), (25)

and the predicted error is obtained by substituting this equation into (8).

07(k — )&k — d) — C(g ™ y(k)
1+ & k—-dlek—d)

€ (k) =

where(k) & [by(k), 8,(k), 8,k), 8;(K)], £k — d) & [u(k — 1), uk — 2), y(k — 1), y(k —
2)1" and T = 41 if f, is set to 0, the discontinuous control input is disabled and the system
is controlled only by the adaptive controller. Figure 2 shows the response signals in this
case. Next, f; is set to 3, that is, the discontinuous control input is enabled and the system
is controlled by the adaptive controller and the sliding-mode controller. Figure 3 shows the
response signals in this case. By comparing these two figures, we know that the
sliding-mode input makes the plant output converge to the model output faster and the
parameters of the adaptive controllers converge to constant values faster. Moreover, no
significant chattering was observed at the input u after the parameter convergence.

m(k+d) +Y+ l
e D)
A +Y &)
i H>
(k) | @ 5k) »| 77 lp] 6(6)

Figure 1 . Overall structure of the adaptive controller.
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Figure 3 . Response of the adaptive control using a sliding mode.
6. CONCLUSION

In this paper, a novel discrete-time controller has been proposed for achieving fast tracking
of output and fast convergence of controller parameters in situations where the plant
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parameters are uncertain. The controller is based on the sliding-mode control technique
without using a full-state vector. The equivalent control input is automatically adjusted by
the adaptive control method according to the parameter variation of the plant. The
chattering of the discontinuous control input is reduced by applying the switching region,
whereas in conventional methods it is caused by the sliding surface. The stability of the
overall system is proved by the extension of the conventional discrete-time adaptive
controller design. The results of computer simulations show that the tracking of the output
and the convergence of the controller parameters are faster than those of the conventional
adaptive controller, and that the chattering phenomenon, which is the cause of most
concern in sliding mode control, was to a tolerable level. The robustness in the presence
of bounded disturbances of the adaptive loop can be improved by existing methods
[26,33,34].
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