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In this paper we consider the Finite Signal-to-Noise ratio model for linear stochastic
systems. It is assumed that the intensity of noise corrupting a signal is proportional to
the variance of the signal. Hence, the signal-to-noise ratio of each sensor and actuator is
finite — as opposed to the infinite signal-to-noise ratio assumed in LQG theory. Compu-
tational errors in the controller implementation are treated similarly. The objective is to
design a state feedback control law such that the closed loop system is mean square
asymptotically stable and the output variance is minimized. The main result is a con-
troller which achieves its maximal accuracy with finite control gains — as opposed to the
infinite controls required to achieve maximal accuracy in LQG controllers. Necessary
and sufficient conditions for optimality are derived. An optimal control law which
involves the positive definite solution of a Riccati-like equation is derived. An algorithm
for solving the Riccati-like equation is given and its convergence is guaranteed if a
solution exists.
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1 INTRODUCTION

In the LQG control theory the common model for noise signals is
additive noise, where the noise intensities are independent of the
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signals. In other words, the noise intensities are assumed to be con-
stant when the system is running. This is unrealistic in practice. For
instance, if a power supply is amplifying a signal which is corrupted
by an external noise, it also amplifies the noise. The same is true for
electromechanical devices. In aerospace engineering, spacecraft are
often rotated about their symmetry axis in order to enhance their
aerodynamic stability upon reentry. Subjecting the constant angular
rate of the symmetry axis to a perturbation results in a disturbance
that depends on the precession rates. Thus the assumption that the
noise intensities are independent of the energy of the signal leads to
several deficiencies in the practical applications of the LQG theory,
because the real sensor and actuator devices have noise sources that
are related to the strength of the signal part. In this paper we
consider the finite signal-to-noise ratio models for linear stochastic
systems, which was introduced in [1]. It is assumed that the intensity
of the noise is related to the signal covariance in proportion to the
noise-to-signal ratio. The same assumption is made concerning
computational errors in controller implementation, since large sig-
nals suffer larger computational errors. For detailed descriptions,
see [2—-4].

We seek to minimize the variance of the system output y,. Our new
model and controller are still linear, but with finite signal-to-noise
ratios in the hardware and software devices. The cost function is still
quadratic in the output. We will call the new model the finite signal-
to-noise (FSN) model of linear systems, the new controllers FSN
controllers.

In optimal control problems, we will demonstrate that these more
realistic noise assumptions will keep the control variance relatively
small, since a very large control variance comes at the price of very
large additive noise, which degrades performance. Hence, in the new
theory there is a self-correcting mechanism to keep the control finite
in the output variance minimization problem, as opposed to LQG
theory, where minimum output variance occurs at infinite control
gain. This can have a significant impact on robustness of the control-
ler, since larger control signals have a greater tendency to destabilize
unmodeled dynamics in the system, due to “control spillover”. Other
engineering benefits of the FSN model and the new controller will be
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discussed in the sequel.

o This allows the cost function to have physical significance.: Of course,
each of the two terms, i.e., the output and control variances, in the
cost function of LQG have physical significance, but their sum is
not a physical entity. Using a non-physical scalar cost function is an
artificial “device” used for design. Choosing the LQG weights is a
non-trivial task [5,6]. The new theory treats physically meaningful
cost functions (output variance). Weights on the output still must be
selected, but weights on control can be zero.

o The new theory accommodates the singular case: Setting control pen-
alties to zero in LQG complicates the theory since maximal accuracy
occurs at infinite gain (for continuous-time case). Singular solutions
are not obtained simply by setting weights to zero in the nominal
theory. The new theory accommodates the singular case without
modifications.

o Maximal accuracy occurs with a finite control: In LQG, the maximal
accuracy of the output variance occurs at infinite control effort.
Hence some weighting on control in the cost function is necessary
for practical implementation. The FSN problem yields a maximal
accuracy with finite control effort, hence no weighting on the con-
trol signals is required to make the optimization problem well posed.

o Finite precision controller: LQG controllers can perform poorly in a
finite precision implementation. In fact, the computational errors
can dominate the performance [7,8]. The FSN controller is opti-
mized with computational errors modeled as white noise with finite
signal-to-noise ratios.

All of the above “engineering” improvements over LQG are made
possible by the addition of signal dependent noise added to the system
model. This is the key difference with LQG. The price we must pay for
this improvement is a mild increase in computational complexity. The
separation theorem does not hold. The LQG theory is very complete,
given the standard modeling assumptions. It is our opinion, however,
that many of the practical deficiencies of LQG theory [9] can be traced
to the presumption that the signal-to-noise ratio is infinite in the
acuators, sensors, and controller computations.
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The control problems of FSN models were attacked in [2—4]. In
[2,4] the covariance control LMI approach was used. In [3] the u, mea-
sure was introduced and a D—K iteration approach was used. In this
paper, our attention is focused on the state feedback case. The objec-
tive is to design an optimal state feedback controller in the sense that
the closed loop system is mean square asymptotically (MSA) stable
and produces the minimum output variance. Based on a Riccati-like
equation, necessary and sufficient conditions for optimality are pro-
vided. An algorithm for solving the Riccati-like equation is suggested
and the convergence is guaranteed if the FSN system is MSA sta-
bilizable. It should be noticed that [10,11] used different model con-
cepts to get a similar optimal controller.

The remainder of the paper is organized as follows. In the next
section we introduce the FSN model for linear stochastic systems and
also formulate the minimum output variance control problem. The
minimum output variance control problem is solved in terms of a
Riccati-like equation in Section 3. Section 4 provides an algorithm for
solving the Riccati-like equation and the convergence property of the
algorithm. In Section 5, a numerical example is given to illustrate the
theory. Finally, conclusions are made in Section 6.

The notation used in this paper is fairly standard. Matrices are
denoted by italic letters. For a matrix 4, 4™ denotes its transpose. The
trace of a square matrix S is denoted tr S. For symmetric matrices P
and Q, P> 0 (P >0) denotes the fact that P is positive definite (posi-
tive semidefinite), P> Q (P> Q) denotes P— Q>0 (P—Q>0). The
notation || P|| denotes the spectral norm of the matrix P. For a vector
x, ||x|| denotes the usual Euclidean norm of x. £{-} denotes the expec-
tation operator and E,{-} denotes lim, ., E{-}. vec{-} denotes the
column-stacking operator. ® denotes the Kronecker product.

2 FSN MODEL AND PROBLEM FORMULATION

Consider the block diagram of a linear system depicted in Fig. 1. This
figure describes the structure of our model, which includes six zero-
mean white noise sources, w,, Wp, Wy, W,, W,,, and w,.. Three sources w,,
wp, W, are associated with the plant and its actuating-sensing hardware.
The sources w,, w. and w, are computational errors associated with
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FIGURE 1 State feedback control for FSN linear systems.

controller implementation. In a digital implementation, w, would be
quantization error in the A/D converter, w, would be the roundoff
errors in the controller gain multiplication, w, would be the quantiza-
tion error in the D/A converter. In the analog computations of
continuous-time systems w,, w. and w, are noise sources from the
operational amplifiers performing the calculations in the analog com-
puter. It is more realistic to assume that the intensity of each noise
increases with the size (variance) of the associated uncorrupted signal.
Consider the white noise w,. For our purposes, we let w,= w1 + wga,
where w,; and w,, are independent white noise sources, w,; is the
ambient noise, modeled by the traditional assumptions, and w,, is
related to the signal-to-noise ratio (SNR) of the actuator device,
defined as follows.

Exo{wa(t)} =0,

(2.1)
Eoo{Wa(t)WX (1)} = Wob(t — 7) = (War + Wa)d(t — 1),

where

Wa = constant, W, =C{Zu(t)}, L, =diag{---04---}, (2.2)
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where C{-} is a special operator denoting covariance of the signal part
of vector {-}, and a(;] is the SNR for the ith actuator. The inverse of
the SNR will be called the noise-to-signal ratio (NSR). All noises are
uncorrelated with the initial plant state x,(0), which is zero mean. The
NSR of all hardware and computational devices enters into the model
by relating the intensity of the noise source to the covariance of the
signal as in (2.2). For simplicity, we assume that, in one hardware
device, all of the channels have the same signal-to-noise ratio, e.g.,
Ya=o0,l
In Fig. 1, all of the signals are related by

Xp = ApXp + Bpup + Wy,

Yp = CpXps
Up = U+ Wy,
Xs = Xp + W, (23)

Xsz = X5 + Wz,
U= U+ Wy,

ue = Gxg; + we,

where x, € R is the plant state, u, € %" is the control signal to the
plant, y, € ®™ is the output to be regulated, x; € ™ is the measure-
ment of the states, x;, € R, ue R™, u. € R™ are the signals
indicated in Fig. 1, 4,, B, and C, are real constant matrices with
appropriate dimensions, G € ®™*"= is the controller gain to be
designed, and the noises

wp = Dpwp1 + wpa,
Wq = Wa1 + Wa2,
Ws = Ws1 + Wy
’ (2.4)
W, = Wz + wpn,
We = Wl + We2,

Wy = Wy1 + Wy

are zero-mean white noises. For k=p, a, s, z, ¢, u, the intensity of wy,
is Wy >0, the intensities of wy,, Wiy, will be given in the following. It
is assumed in the state feedback case of this paper that wy; =0, w,; =0.
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Now one can obtain the closed loop system from the Egs. in (2.3)

X, = (Ap + B,G)x, +w, (2.5)
Vp = Cpx,
where
wa B,(wa + wy + we + Gwg + Gw;) + wy,. 2.7

Suppose the state covariance of the closed loop system, X, 2
Exo{x(2)xT ()}, exists. Then using the operator C{-}, one can show that

W = C{oau(t)}
. afC{G(xp + ws + w,) + we + wy}

= 0,€{Gx,}
= 02GX,G". (2.8)
Similarly,
— _ 2 T

Wi = C{owuc(t)} = 0,GX,G",
Wi = C{opx,(1)} =
W = Clogxy(1)} = 2Xp, (2.9)
W = C{o.x5(t)} = 02X,

We = C{o.Gxy(t)} = 02GX,G".
Hence, the intensity of the white noise w in (2.5) is given by
W(X,,G) = 0*B,GX,G" B} + 02X, + B,WacB) + D,Wp D}, (2.10)
where
Wase = War + W + Wa, 0> 202+ 02 402+ 02 + 0.

The scalar Ip £ 572 is referred to as the INFORMATION QUALITY
of the FSN system. Consider the closed-loop system (2.3). It can be
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shown that the state covariance X, satisfies the following Lyapunov
equation

(4p + B,G) X, + Xp(4, + B,G)" + W(X,,G) = 0. (2.11)

This matrix equation is not the conventional Lyapunov equation since
W(X,, G) is a function of covariance X,. Substituting for W(X,, G) into
the Eq. (2.11) and collecting terms, we have a Lyapunov-like equation

L(X,,G) £ (4, + B,G)X,, + X,(4, + B,G)" + 0?B,GX,G" B}
+ ByWaueB) + D,W, D) =0, (2.12)

where 4, 2 A4, + %0‘31,,,,.

We shall make the following assumptions about the FSN model:
ASSUMPTION 2.1

(i) The pair (A, Bp) is controllable;
(i) The pair (C,, A,) is observable;
(iii) The input matrix B, has full column rank.

DEFINITION 2.1 The FSN closed loop system is MSA stable if its
steady state covariance X, exists and is positive definite.

DEFINITION 2.2 The FSN open loop system is MSA stabilizable if
there exists a gain G such that the FSN closed loop system is MSA
stable.

In this paper it is also assumed that a noisy measurement of the state
of the FSN system is available for feedback. We shall consider the
following problem.

MINIMUM OUTPUT VARIANCE CONTROL PROBLEM Consider the FSN
system (2.3). Find a MSA stabilizing state feedback controller such that
the output variance tr[C,X,C pT | is minimized subject to (2.12).

The following results will be used in the proof of theorems.

LEMMA 1 [12] Suppose the pair (A, B) is stabilizable and the Riccati
equation

ATX) 4+ X4 - X1BB"X, + 0, =0 (2.13)
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has a symmetric solution X;. Furthermore, suppose Q,> Q1. Then the
Riccati equation

ATX, + X24 — X2BB™X, + 0y =0 (2.14)

has a unique strong solution' X » > X.
LEMMA 2 [12] Suppose the Riccati equation

ATX + X1 A- X\ M1 X, +Q=0 (2.15)
has a symmetric solution X,. Furthermore, suppose M > M, >0 where
(4, M) is stabilizable. Then the Riccati equation

ATX) + X0A4 — Xo Mo X, + Q0 =0 (2.16)
has a unique strong solution X, > X1.

LEMMA 3 [13, pp. 186—199] Let {P;: i=1,2,...} be a sequence of
nxn symmetric matrices such that Py < P,<---. Suppose that there
exists a symmetric matrix P such that P;<P, i=1,2,... Then
P =lim;_,, P;exists and Po, < P.

The lemma is a special case of a result for positive operators in
Hilbert space. The result is also true for a monotone decreasing sequence
which is bounded below.

3 MINIMUM OUTPUT VARIANCE CONTROLLER DESIGN

In this section we shall solve the minimum output variance control
problem for the FSN systems and reveal some features of the optimal
controller.

ProOPOSITION 3.1  Consider the FSN system and let a controller gain G
be given. Then the following statements are equivalent:

(i) The FSN system is MSA stabilized by G;
(i1) The matrix

A1, ® (4, + B,G) + (4, + B,G) ® I, + *(B,G) & (B,G)
(3.1)

is stable;

' The matrix 4 — BB" X, has no eigenvalues in the open right half plane.



180 GUOJUN SHI et al.

(iii) The Lyapunov-like equation (2.12) has a solution X, >0,
(iv) The dual Lyapunov-like equation

(4, + B,G)" Y, + Yy(4, + B,G) + 0°G" B} Y,B,G + C, C, = 0
(3.2)

has a solution Y, > 0.

Proof The equivalence of (i) and (iii) follows from Definitions 2.1
and 2.2. For the equivalence of (ii), (iii) and (iv), see [10,14].

The following theorem is our main result, which provides the mini-
mum output variance optimal controller for the FSN systems.

THEOREM 1  The minimum output variance control problem has a solu-
tion if and only if the Riccati-like equation

1 .
A;Y) + Ypdo = — Y, B,(B; Y, B,) 'BY,+C C,=0  (3.3)

has a solution Y, >0, where A, = A, + %051,,‘,. In this case, the FSN
optimal controller is given by

G= —;17 (B Y,B,) "B} Y, (3.4)
the minimum output variance
Jy(Y,) = tt[Y,(ByWauc B, + DyWp1D,)], (3.5)
and the control effort
Ju(X,, G) = tr[GX,G"] (3.6)
where X, is the solution of the Lyapunov-like equation (2.12).
Proof Necessity Suppose that the minimum output variance control
problem has a solution. This implies that there exists a controller gain

G such that the closed loop system is MSA stable, i.e., the Lyapunov-
like equation (2.12) has a positive definite solution X, and the output
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variance tr[CpX, pCl;r ] is minimal. Then Proposition 3.1 suggests that
the matrix A is stable. We show the necessity by using the Lagrange
Multiplier method [15,16].

Let

J(Xp, G) £ tr[C,X,CJ] + tr[L(X,, G) Y, (3.7)
with Y, = Y; . We first verify the regularity conditions. Note that
Otr[L(Xp, G)Y))

X,

otr[L(X,, G)Y,)]

9G
 [(4o+ B,G)' Y, + Yy (4o + B,G) + 0GBy Y, B,G]
2(BYY, +0*B) Y,B,G)X,

(3.8)
has a unique solution Y, =0. Indeed, the first block is equivalent to
AvecY,=0
which implies that vec Y, =0, since A is nonsingular. Hence regularity

conditions are satisfied. We now apply the necessary conditions for
local optimum:

WX G) _ (4, 4 BG)TY, + Yy(4y + B,G)
9X,
+0>G"B, Y,B,G+C,C, =0 3.9)
9J(X,, G)
_82’;_ =2(B} Y, +0’B, Y,B,G)X, =0 (3.10)
0J(X,,G) _ L(X,,G) = 0. (3.11)
oY,

Since X, >0, the optimal controller (3.4) follows from (3.10). We
substitute this relation into Eq. (3.9) and get the Riccati-like
equation (3.3). By Proposition 3.1, this Riccati-like equation has a
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solution Y, > 0. Furthermore, the minimum output variance’

tr[CpoC;,r] = (vec Xp)Tvec(C:C,,)
= [A 'vec(B, WaucB; +D, WplD;)]Tvec(CPTCp)
= [vec(By Wawe B} + Dp Wy D))|" A "vec(C) C,)
= [vec(B, WaueB) + DpWp1 D))" vecY,
= tr[Yp(ByWauc B, + DpyWp1D,)]. (3.12)

It is straightforward to show that the control effort is given by (3.6).

Sufficiency Suppose that the Riccati-like equation (3.3) has a posi-
tive definite solution Y,,. Let G be given by (3.4). Then Eq. (3.3) can be
rewritten as (3.2). It follows from Proposition 3.1, that the Lyapunov-
like equation (2.12) has a positive definite solution X),. By definition,
therefore, the controller (3.4) is MSA stabilizing. Suppose G, is an
arbitrary MSA stabilizing controller. By Proposition 3.1, the Riccati-
like equation

(4, + ByGa)" Yo+ Yo(A, + B,Ga) + 0°G, B} YoB,Go+ C, C, =0
(3.13)

has a solution Y, > 0. Completing square leads to

1
o2

= —[Ga+072(B) YuB,) ' B} Y,]' (¢c*B) Y, B,)

Ay Yo+ Yod, — — YaBy(B) YoB,) ' Bl Yo+ CJC,  (3.14)
% [Ga+ 0 (B} Y,B,) ' B] Y, (3.15)

<0. (3.16)

It follows from Lemma 1 that 0 <Y, <Y, and hence J,(Y,) <J,(Yy).

Therefore, the controller (3.4) is the optimal solution of the minimum
output variance control problem.

* An alternative proof for this is to begin with (3.7).
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Remark 3.1 Suppose the minimum output variance control problem
has a solution. Then the nominal system matrix A, + B,G has a stabil-
ity margin o2. That is, all eigenvalues of 4, + B,G lie to the left of the
vertical line —3 07 + jw.

The Riccati-like equation is not the standard Riccati equation and
hence cannot be solved directly. In the next section, a successive
approximation algorithm will be provided.

4 SUCCESSIVE APPROXIMATION ALGORITHM

As can be seen from Theorem 1, the minimum output control problem
involves the positive solution Y, of the Riccati-like equation (3.3). For
solving this kind of Riccati-like equation with control penalty R #0,
an iteration algorithm was proposed in [17]. For the Riccati-like equa-
tion with control penalty R =0, we shall give a modified algorithm.

LEMMA 4 Suppose that the Riccati-like equation (3.3) has a solution
Y,>0. Then, for an arbitrary 0 <R < oo, the following Riccati-like
equation

AJS+SA, — SB,(R+ 0B} SB,)'B] S+ CC, =0 (4.1)

has a solution S > Y, >0.

Lemma 4 can be considered an extension of Lemma 2. To prove
Lemma 4, we recall the following algorithm [17]:

ALGORITHM 1 Let (Ap, By, Cp,0%,07) be given. Set index i=0 and
So=0. Choose a prescribed tolerance € >0, matrix R > 0, and the maxi-
mal iteration number Np,ax. For i >0, solve the Riccati equations

Ay Sic1 + Sii1do — Si1ByRT By S + CyC, =0 (4.2)
R;=R+0’B,SiB, (4.3)

to obtain a sequence of positive definite solutions {S;: i=1,2,...} until
“Si+1 - S,” < €ori> Npax.
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Suppose that S E lim;_,, S; > 0 exists. Then we propose the follow-
ing algorithm for solving the Riccati-like equation (3.3).

ALGORITHM II

Step 0 Solve Algorithm I to obtain S > 0.

Step 1 Set index i=0 and YI? = §. Choose a prescribed tolerance
€>0 and the maximal iteration number Npa.. For i>0, solve the
Riccati equations

. . . o 4
ATYI 4+ Y 4, - YV B, (0? By YB,) ' By YT+ CC =0 (4.4)
to obtain a sequence of positive definite solutions {¥;:i=1,2,...}

until | Y, = Y| < € or i > Npax.

Proof of Lemma 4 By the assumption that (4,, B,, C,) is controllable
and observable, one can show that (4,, B,, C,) is controllable and
observable [18]. Now suppose that there exists a solution ¥, >0 to the
Riccati-like equation (3.3). For arbitrary R >0, we first show by con-
struction that there exists a solution S >0 to the Eq. (4.1). Consider
Algorithm 1. Notice that {S;: i=1,2,...} is a monotonically non-
decreasing sequence. It suffices to show that this sequence is bounded
above.

Let G=(1/0)(BIY,B,) 'BlY,. Then the Eq. (3.3) can be
rewritten as

(4o + B,G)"Y, + Y,(4, + B,G) + 0>G" B Y,B,G + C, C, = 0.
(4.5)

The matrix 4,+ B,G is stable. It follows from Lyapunov theory that
the following equation

(4, + B,G)' S+ S(4, + B,G) + 0>G" B} SB,G + G'RG + C, C, = 0.
(4.6)

has a solution S > 0 for any R>0. On the other hand, the Riccati
equation (4.2) can be written as

(Ao + B,G)"Siy1 + Siv1(4, + B,G)
— (B} Siy1 + RG) R (B} Sis1 + RiG) + G'RG + C, C, = 0.
(4.7)
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Comparing the Eqgs. (4.6) and (4.7) yields S;,; < S for i>0. Hence it
follows from Lemma 3 that S = lim;_,, S; exists and is positive defi-
nite, which is the solution to the Riccati equation (4.1).

Using Lemma 2 to compare (3.3) and (4.1) we have Y, <S.

THEOREM 2 The minimum output variance control problem has a
solution if and only if Algorithm II converges.

Proof Sufficiency Suppose that Algorithm II converges to a limit
Y,=lim;_ Yzi > 0. Then according to Theorem 1, the minimum output
variance control problem has solution (3.4).

Necessity Suppose that the minimum output variance control
problem has a solution. It follows from Theorem 1 that Riccati-like
equation (3.3) has a solution Y, >0. From Lemma 4 we know there
exists a solution S>0 to Eq. (4.1). Hence Algorithm I converges to
lim;_,, S;=S. We now consider Algorithm II. Notice that the
{Y;: i=1,2,...} is monotonic nonincreasing sequence. It follows
from Lemma 3 that it suffices to show that this sequence is bounded
below. First, notice that YPO = S > Y, and hence it follows, by compar-
ing Eq. (3.3) with Eq. (4.4), that Yp1 > Y,. By induction, it is straight-
forward to show that YI; > Y, for all i>0. Using Lemma 3, we
conclude that lim;_, Ylﬁ = Y,.

5 NUMERICAL EXAMPLE

Consider the experimental setup in [19]. The system model is given by

A, =
T 0 0 0 0.0010 0 0
0 0 0 0 0.0010 0
0 0 0 0 0 0.0010
1.0e + 03,

—2.7945 1.6732 —0.3762 —0.0004 0.0001 —0.0001
1.6732 —3.0804 1.6561  0.0001 —0.0005 0.0000
L—0.3762 1.6561 —1.3593 —0.0001 0.0000 —0.0004 ]

B,=[0 0 0 —0.178 0 0]", C,=[ls 03],

D,=[0 0 0 —1 -1 —1]"
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In this paper, the intensity of ground acceleration is assumed to be
W1 =1. The intensity sum Woye= Wy + Wy + W, =0.1. The NSR of
the plant g7 = 0.1.

Then one can compute that the open loop output variance
Jopen = 0.0193.

FSN Controller Design

Let 02 = 02 4+ 0% + 02 + 02 + 02 = 0.02, i.e., the information quality
Ip=150. Set the numerical tolerance e= le — 5. To obtain the solution
of the Riccati-like equation (3.3), we ran Algorithm I (choose R= 1)
and Algorithm II. The first algorithm converges in 3 iterations and the
second one converges in 17 iterations. Finally, we get the minimum out-
put variance controller

G = 1.0e+03[7.0976 —0.5161 19501 0.2800 0.2785 0.3117],
(5.1)

the minimum output variance J, = 6.0681e — 04 and the control vari-
ance J,=3.0138¢ + 04.

Information Quality /, Study

When we design an optimal controller for a given system, we might be
interested in the relations among I, J, and J,, since the relations can
give us suggestions for choosing hardware devices. For the system
given above, we let Iy vary from 0.05 to 25. The relations are given in
Fig. 2. The solid line represents the 3-dimensional relation among the
three quantities. The dotted lines represent the three projections. To
design an optimal controller satisfying the specified performance, one
can easily obtain the corresponding information quality /,. Then one
should choose the hardware devices with appropriate quality.

6 CONCLUSIONS

The minimum output variance control problem is formulated and
solved for finite signal-to-noise ratio models. Specifically, the necessity
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FIGURE 2 Information quality study.

and sufficiency conditions for optimality are derived. An optimal con-
trol law which involves a positive definite solution of a Riccati-like
equation is derived. A numerical algorithm for solving the Riccati-like
equation is given and its convergence is guaranteed if the solution
exists. One special feature of the FSN optimal controller is that it
achieves the maximal accuracy with finite control effort. An optimal
relation among the information quality /o, the maximal accuracy J, and
the minimal control effort J, is obtained, which provides some sugges-
tions for choosing hardware devices.
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