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The g-Markov COVariance Equivalent Realization (q-Markov Cover) method for
identification uses either pulse, white noise or PRBS (Pseudo-Random Binary Signal) as
test excitation. This paper extended the q-Markov Cover using PRBS to the weighted
multirate case, that is, the sample rate of the PRBS signal is different from the system
output one. Then, the multirate PRBS g-Markov Cover is applied to identify a diesel
engine model from the fuel command input to the engine speed output. The identified
engine model has order of two and approximates the pure fuel system time delay using
a first-order transfer function with a non-minimum phase numerator. Finally, the iden-
tified engine model was successfully used for designing engine idle speed governor and
obtained satisfactory performance in the first try.
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. INTRODUCTION

The g-Markov COVariance Equivalent Realization (g-Markov Cover)
theory was originally developed for model reduction. The reduced
order model obtained using q-Markov Cover preserves the first ¢
Markov and covariance parameters of the original system. The param-
eterization of all g-Markov Covers for both continuous and discrete
systems is addressed in Ref. [1]. The realization of all g-Markov
Covers from the input/output data of discrete systems is useful for
identification; see Ref. [2]. This algorithm generates all q-Markov
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Covers with only ¢ Markov parameters and g covariance parameters.
This data set requires both pulse experiments to obtain the Markov
parameters and white noise experiments to get the covariance param-
eters. The deterministic approach using only pulse experimental data
and the stochastic approach using only white noise experimental data
to generate the ¢ Markov parameters and covariance parameters are
described in Ref. [3]. Using the results in Ref. [3], a g-Markov Cover
of a linear discrete system can be found by using experimental data
from either pulse or white noise input. The g-Markov Cover identifica-
tion using experimental data from Pseudo-Random Binary Signal
(PRBS) (see Refs. [4,5]) is presented in Ref. [6] to replace the white
noise version algorithm due to the easy implementation of PRBS.
These signal can be generated using simple shift register circuits and it
is very practical for engineering applications.

The extension of the single rate g-Markov Cover to the multirate
case is motivated by its application to the diesel engine system to obtain
a linearized transfer function from commanded fueling (mm?/stroke)
to engine speed (RPM) at 100 Hz sample rate. For a six-cylinder four-
stroke diesel engine, the engine firing (or fuel injection) frequency is
30Hz at 600 RPM. The PRBS fuel excitation sampled at more than
30 Hz will not be executed by the fuel injectors, providing a badly iden-
tified model due to poor correlation between the fuel command input
and the engine speed output. To improve the system identification for
diesel engine applications using PRBS g-Markov Cover, it is necessary
to have a q-Markov Cover capable of using the input and output data
sampled at different frequencies. This paper provides a gq-Markov
Cover theory that allows the input PRBS sampled at a frequency
slower than the system output sample rate at which the linear model is
constructed.

A Matlab Graphic User Interface (GUI) has been written to make
the multirate PRBS g-Markov Cover system identification tool easy to
use. The system identification GUI displays the input PRBS and out-
put response, along with the model order selection plot. This makes it
convenient to study the relationship between identification error and
the model order selection.

The paper is organized as follows. In Section II, the PRBS signals
and its multirate sampling scheme are discussed. Section III extends
the single rate PRBS q-Markov Cover theory to a weighted multirate
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version. An application example to diesel engine identification is
provided in Section IV, and the last section adds some conclusions.

Il. PRBS AND ITS STOCHASTIC PROPERTIES

Il.A. PRBS Used for g-Markov Cover

The most commonly used PRBSs are based on maximum length
sequences (called m-sequences) for which the length of the PRBS
signals is m=2"—1, where n is an integer called the order of the
PRBS. Let z~ represent a delay operator, and define 5(z!) to be the
polynomials

13(2‘1) =gz " Vo . - daz'da, (II-1)
where g; is either a > 0 or —a, and for any number a @ a obeys,
ada=—-a=-ad—-a, ad—a=a=—-ada. (11-2)
The following table (Table I) provides the selection of coefficients a;
(i=1,2,...,n) that guarantees p(z!) to be a maximum sequence.
The coefficients of the maximum polynomials with order between
12 and 34 can be found in Ref. [4]. The PRBS with magnitude a can be
generated by the following formula:

aj(k +1)Tp) = p(z )k Tp), k=0,1,2,..., (I1-3)

TABLE I Coefficients for maximum sequences

Order of Period of the Non-negative
polynomial n sequence m coefficients a;
2 3 ay,a;
3 7 a,as
4 15 as,as
5 31 as,as
6 63 as, g
7 127 ag, a7
8 255 aj,as, Gy, ag
9 511 as, ag
10 1023 ay,ayp
11 2047 ag, dy1
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where 4#(0) = a and 4(—Tp) = #(-2Tp) =--- = i[—(n—1)Tp} = —a,
T, is the sample rate used to gemerate the PRBS, and a is the
magnitude of the PRBS signal. The inverse PRBS, used for g-Markov
Cover, is constructed by

u(kT,) = sk) ® a(kT,), s(k) = { o ’]‘cf)‘ée(’i‘ (11-4)

It is clear after some analysis that u(k) has a period 2m and u(k)=
—u(k + m). The mean of the inverse PRBS is

2m—1

1
my = Eymu(kTp) =5~ > u(kTy) =0, (I1-5)
i=0

and the autocorrelation of u(k) is
2m—1

RalrTy) = Byt (k+ )Ty Jd" (kTy) = 5 Y- wl(k+7) Tyl (kT;)
=0

(&, T=0,
-2, T=m,
2
- a
=Y -, Teven, (11-6)
m
2
a
—, T odd.
\ m

In the rest of this paper, the term “PRBS” is used to represent the
inverse PRBS.

IL.B. PRBS Sampled at Higher Rate thanits Generation Rate

Consider the situation that the PRBS is generated at the sample rate
1/T, and the signal is sampled at a higher rate 1/T than its generation
rate. Assume that the ratio of two sample rates is an integer n, defined
as follows:

T

=2 11-7
ne=— (I1-7)
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The period number of the PRBS signal sampled at 1/T is 2n,m, and
the mean of the signal is zero computed by the following equation:

1 2n,m—1
my = Egpmu(kT) = o > wkT)=0. (11-8)
i=0

However, the autocorrelation is quite different from the situation that

the PRBS is sampled at its generation rate. In this case, the auto-
correlation is defined by

2n,m—1
Ru(TT) = Espmut|(k + T)T]u" (kT) = 5,;1; Z u[(k + 7)T|u* (kT),
r i=0
(11-9)

and equals to

Ry (tT)

( 2

(n, —f)a2+7’—a 0<7<n or m <7 <n(m+1),

—7a* — (n, — 7‘)%, n(m—1)<7<nm or n,(2m — 1) <7< 2n:m,
=

2
—(n, — 27) i—zn—, otherwise if 7 even,
i
L(nr — 2%) i otherwise if 7 odd,

(1I-10)

where 7= 7 — fix(¢/n;)n, and fix[-] is a round-off operator which
takes integer portion of [ - ]. Figure 1 is an autocorrelation plot of a 5th
order PRBS with unit magnitude sampled three times faster than its
generation sample rate. When T is between —2 and 2, the autocorrela-
tion is greater than one. The absolute value of the rest of the
autocorrelation is less than 3/31 (that is n.a*/m) when the absolute
value of 7 is greater than 2 and less than n.(m — 1) =90. Note that
when the order of the PRBS increases, n.a’/m reduces rapidly. For
example, for 10th order PRBS with unit magnitude and n,=3,

a’/m=0.00293 which is less than 0.3 percent of the autocorrelation
when 7 €[-2,2]. This property is very important for applying PRBS
to g-Markov Cover identification.
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FIGURE 1 Autocorrelation of PRBS sampled faster than its generation rate.
(See Color Plate I at the back of the issue.)

lll. WEIGHTED MULTIRATE q-MARKOV COVER USING PRBS

Consider the discrete asymptotically stable system

x(k + 1) = Ax(k) + Dw(k),

y(k) = Cx(k) + Hw(k), (ITI-1)

where w € R™, x € R™ and y € ;R are the input, state, and output
vectors. Suppose that X is the solution of the following Lyapunov
equation:

X = AXA" + DWDT, (I11-2)

where W is the covariance matrix of the white noise input w. The
Markov parameters H; and covariance parameters R; (i=0,1,2,...) of
(I11-1) are defined by

Hy=H, H;=CA"'D, i=1,2,...,

. I11-3
R;=CA'XCT + HHWHT, i=0,1,2,... ( )
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lILA. System Responses and its Autocorrelation

Use the same approach as Ref. [6], let x(k, I) denote the state response
of (11I-1) with e;u as input, where e; is the Jth standard base vector in
R™ and u is the PRBS sampled », times faster than its generation
sample rate with a period number m. Since the PRBS is a periodic
signal with period number 2n,m, the steady state response of the linear
system (111-1) will also be periodic with the same period number as the
PRBS. For any integer p >0. Let x(2n,mp+ k) represent the state
response of (III-1) at time (2n,mp + k)T and for 0 <k < 2n.m define
the steady state response with input e;u as

1

x](k) = plgglo x!(2n.mp + k)
o0 .2n,m——1 ) k-1 .
= AN AN AP Dequ(i) + Y | AF T Dequ(i).
=0 i=1 =0

(I11-4)
Assume stable system (III-1), leading
i—1
x}(k+i) = Ax[(k) + Y A7 FDe(j), i=0,1,...,¢—1. (III-5)
7=0
Using (I11-1) and (I1I-5) we can have the following relationship:
Qv (k) = Q0.x](k) + QoH,w](K), (111-6)

where @, is a block diagonal matrix with g blocks of positive definite
output weighting matrix Q, and

5 (k) equ(k)
, yi(k+1) , eru(k + 1)
yq(k) = N b4 wq(k) = : 4
Hk+q—1 ek +q—1
| ys(k+g-1) uk +q—1) (111.7)
r C Hy 0 ... 0
CA H Hy ... 0
0, = : , Hy=
_CAq—l Hq—l Hq_z ... Hy
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Taking the expectation over one PRBS period from both sides of
Eq. (III-6) yields

Q,R07 = 0,0,X'0707 + Q,H,W]H] O] + Q,A]07,  (I1I-8)

where for any g < nm, matrix R{I has Toeplitz structure. Define
Ry Ny Ay Ay
74 I I I
Ry=) R, X=X, w,=> W[, A=) Al (119
I=1 I=1 I=1 I=1

Then for any g < n,m we have

QR0 = Q,0,X01 07 + QH,W,H] Q7 + Q,A,07,  (11I-10)

where
RJ’}'(O) Ryy(l) Ryy(q— 1)
Ryy(l) Ryy(o) R Ryy(q — 2)
Rq - . . . . s
RJ’)’(q - 1) Ryy(q - 2) - Ryy(o) (III'I l)
ny, 2n,m—1
Ry(1) =3 g0 2o HUDON"
Ny 1 2n,m—1
X=3 5— > "+, (1-12)
I=1 T j=0
w(0) w(i1) ... Wg-1)
w(1) wo) ... Wg-2)
W, = ’
W(g-1) Wg-2) ... W) (111-13)
m—1 .
W(r) = { (nr - )block-dlag[a%,. Lal, T<n,
0 — n; X n, matrix, > n,
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ar is the PRBS magnitude used for the Ith input and A, has the
following property based upon Theorem 3.1 in Ref. [6]:

lim [|Agllr =0, (I11-14)

where ||-|| denotes Frobenius norm. Property of (I1I-14) is the key of
allowing the use of the PRBS to develop a q-Markov Cover since for
larger enough m,

QR 0T = 0,0,X0] 07 + Q,H, W, H] Q7. (I11-15)

Il.B. Weighted Multirate g-Markov Cover Theorem

Let the unknown (presumed nonlinear) system

x(k+ 1) = £ (x(R), w(k), a16)

y(k) = g(x(k), w(k)),
be subjected to an input sequence {w(0), w(1), w(2),...} generating
the output sequence {y(0),y(1),»(2),...}. We say that (III-16) is
g-identifiable if there exists a linear model of the form (III-1) that can
reproduce the same output sequence {¥(0), y(1),»(2),...,»(g—1)} in
response to the same input sequence {w(0), w(1),w(2),...,w(g—1)}.
The following lemma (see Ref. [6] for a proof) provides the necessary
and sufficient condition for g-identifiability.

LemMaA III-1  Let R, and H, WqH{;r be constructed from the response
of system (I11-16) given the PRBS input w with period m=oco. Then the
system (111-16) generating the data y(i) i=0,1,2,...) is g-identifiable if
and only if the data matrix Dy = Ry — HyW,H] > 0.

If the system generating the data is not g-identifiable, then it is
possible for the g-Markov Cover identification to construct a least
squares fit to the data with a linear model, see Refs. [1,2], but there
exists no linear model of any order that can produce the data exactly.

The computation of the weighted g-Markov Covers starts from the
data matrices D,, M, = [HIT,HE,...,HJ_I]T, and Ho. Based upon
Lemma III-1 it is concluded that a state realization {4, B,C, H} is a
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q-Markov Cover of given matrices D,, M, = [H{,H} ,‘..,H;_I]T,
and H, if the data matrices D,, M,, and H, constructed from system
matrices {/i,ﬁ, CH } are identical to the data matrices D, M,, and
H,, respectively. Define P, to be a full column rank square root of
Q,D,07 . i.e.,

QqDyQy = Qq(Rg — HyWoHy )0y = Py - Py, (IM-17)
and denote r to be the rank of QquQ;Ir. Partition matrix P, as
P, =[P}, P|,....,P, ], PieR", i=0,1,...,q—1. (lI-18)
Define
P=[P},P|,....,P] ], P=[P],P;},...,P] ] (I11-19)

The following lemma, which extends the result in Ref. [3], transfers the
g-Markov Cover problem to a linear algebra problem.

LEMMA III-2  Assume that the period of the PRBS is infinity, i.e.,
m=o0. A realization {A,B,C,H} with X equal to identity is a
g-Markov Cover matching the data matrices D,, M, and H, if and only
if there exists realization {/1,1:3, (:', fI} which is a unitary coordinate
transformation of {A,B,C,H} such that the following equations are
satisfied:
P[/LDA] = [P’ Qq—lMlI]’ [‘a’ﬁ][jsﬁ]T =1,
C=07'Py, and H=Q 'Hy. (I11-20)

Using the linear algebra result for all solutions of (I11-20) all g-Markov
Cover can be generated from the given data matrices Q,R,07,
Q) Mg, and Q™' H,.

THEOREM II1-1 Suppose that the data matrices QqRquT, Q;_IM ,
and Q7 'H, are generated by the steady state responses y!(k)
(I=1,2,...,n,) defined in (II1-6) from the PRBS excitation with
m=o00. Then all minimal q-Markov Covers of the system with identity
state covariance, data matrices D,, M,, and H, can be obtained by the
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Jfollowing equations:

~

[4,D] = P*[P,Q, 1 M)+ V,UVE;, C=Q7'Py, and H=Q 'H,,
(I1-21)

where matrix U is arbitrarily unitary with dimension (r —ry) X (r —ry)
(r1 is the rank of P), V,, is a column unitary matrix whose column space
belongs to the null of P with dimensionr X (r —ry), and V, is also column
unitary, whose column space belongs to the null of [PQ, 1M, with
dimension (r — n,) x (r — ry). Furthermore, the -Markov Covers (111-21)
are stable and exist for any q > 0.

The proof of Theorem 1II-1 follows the same procedure as the results
in Refs. [3,6].

1.C. Weighted Multirate g-Markov Cover Algorithm

The results of Theorem III-1 may not sound interesting because the
signal y!(k) (I=1,2,...,n,) defined in (III-6) and the PRBS with
m=oc0 cannot be generated in practice. But Theorem III-1 suggests
that the g-Markov Cover can be approximated using the PRBS with
large enough period number m because in this case Eq. (1II-10) can
be approximated by (III-15). Also, the steady state signal y!(k)
(I=1,2,...,n,) can be obtained approximately in the experiment by
taking the steady state responses of system (III-16). Following is the
weighted multirate g-Markov Cover algorithm using PRBS.

(1) Set parameters m and n, (ratio of PRBS sampling period over sys-
tem output sampling one, see (II-7)), and then, conduct experiments
to obtain steady state output responses y/(k) I=1,2,...,n,).

(2) Compute autocorrelation matrices R,,(i) and cross-correlation
matrices Ry, (i) (i=0,1,...,9~— 1) by the following:

ny 2n.m—1
Ry(i) =537 S v+ )R
I=1 k=0
(I11-22)
ny 2nm—1
Rl =53 3 3+ (e,

=1 k=0
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where u,;(k) (I=1,2,...,n,) is the PRBS signal for the Ith input
and y!/(k) (I=1,2,...,n,) is the steady state response of system
(I11-1) with only the Ith input is excited by u,(k). Then the system
Markov matrices can be computed by

H; = R,,() W, (II1-23)
where matrix W is defined in (III-13), and notice that in (1II-13) a,

(I=1,2,...,n,) is the magnitude of the PRBS for the 7th input
channel. See Ref. [6] for the derivation of Eqs. (III-22) and (I11-23).

Select parameter g, and form matrices R,, M,, and H, by
[ R,,(0) Ry,(1) ... Ryl(g—1)
Ryy(1) Ry,(0) .. Rylg-2)
R, = ,
Rp(@—1) Rylg—2) ... Ryl0)
L v vy vy (I11-24)
r H,; Hy 0 ... 0
H, H, H,
M; = . , Hg=
-Hq—-l Hq_1 Hq_z - Ho

and Q, is a block diagonal matrix with g blocks of positive definite

matrix Q. Note that matrix Q is selected by user to scale the

output.

Form matrix P, by

— Computing D, = Q,[R, — H,W,H[]0Q], where W, is defined
in (ITI-13).

— Doing the Schur decomposition of D, to obtain

. [a 0[5
Dy =[B, Pq][o ix] p (I11-25)

q

such that the diagonal elements of block-diag A A| are in
decreasing order, and A is chosen such that g||A|| « gl|A|l,
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where A € R, and &||M|| and g|| M| denotes the maximum
and minimum singular values of M.
~ Constructing P, by

P, = P,A2. (111-26)

(5) Construct matrices P, P, and V,U V; by
— Defining

P =P, P,....,P] ],
PT =[P}, P],...,P ], (I11-27)

5T
P =[P[,P],...,P] ]

~ Making the singular value decomposition of P and [P, M)

et % %]

0 of|wf
(IT1-28)
=10, vl %[
Hal =R Bl o o | vr|
— If Pis full rank, letting, V,UV; = 0, and else,
V,UV; = VUV, (I11-29)

where U is an arbitrary unitary matrix.

(6) Compute A,D,Cand H by
A=P'P+V,UV L, L=[I 0];
D=P'M,+V,UViL, L=[0 L, (I11-30)
C=Q7'P, H=Q 'H,.

IN.D. Matlab GUI and Selection of PRBS System
Identification Parameters

Subsection III.C describes the mathematical details of the multirate
q-Markov system identification algorithm using PRBS. In practical
application, in order to obtain a good system identification model,
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FIGURE 2 Weighted multirate PRBS system identification GUI. (See Color Plate II
at the back of the issue.)

parameters like ¢ and r defined in Step 4 of the algorithm may need to
be tuned to have a good fit of the test data corresponding to the iden-
tified model. In order to make the system identification tuning process
(varying parameters ¢ and r) easy, an Matlab GUI is developed.
Figure 2 shows the Matlab system identification GUI.

The functionality of the PRBS system identification GUI is listed

below:

e System input block (upper-left portion) specifies the input PRBS.
The GUI allows the user to view number of input channels, PRBS
magnitude and order for any selected input channel. The selected
PRBS signal is also plotted on the GUI.

o System output block (middle-left portion) specifies and displays the
system output response of a loaded data file. The GUI allows the
user to view the number of output channels, output sample period,
and the input/output sample period ratio n, = T},/T.
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e Loading/saving data file block (lower-right portion) allows the user
to load a test data file for PRBS system identification and save the
identified model into a specified data file. This block also make it
possible to modify the selected identification parameter g (see Step 1
of the PRBS system identification algorithm in Subsection II1.C).

e Order selection block (upper-right portion) plots the diagonal
elements of A (see (III-25)). Note that each plotted point corre-
sponding to one order of the identified model. Moving the slider on
right allows the user to select parameter r (see Step 4 of the PRBS
system identification algorithm in Subsection II1.C).

e System response block (lower-left portion) calculates the response
error and plots the model response over the test response in the
system output block. This provides the feeling of the system identi-
fication quality with selected system identification parameters g and r.

The general procedure of weighted multirate system identification
using PRBS and its parameter selection can be described in the fol-
lowing steps:

Step 1: Design the PRBS system identification experiments

To design PRBS system identification experiments, one needs to select
the PRBS magnitudes a; (i=1,2,...,n,) and the order of PRBS
corresponding to parameter m, the system output sample period T and
the integer sample ratio n,= T,,/T, where T}, is the sample period for
generating PRBS. In general, the magnitude of PRBS is selected to
maximize the system output signal to noise ratio, and the order of the
PRBS shall cover the dominated frequencies of the identified system
such that these modes can be excited by PRBS. The sample period
ratio is selected such that the actuator is able to respond to the PRBS
command. For instance, consider the diesel engine system from the
fuel command to the engine speed output. Note that in a diesel engine,
fuel is directly injected into the individual cylinder at a proper crank
angle, or in other words, the fuel injection is a discrete event.
Identifying an engine model from the fuel command to the engine
speed requires that the PRBS fuel excitation can be executed by the
fuel system. For a six-cylinder four-stroke diesel engine running at
600 RPM, the fuel injection frequency is 30 Hz. If the desired system
output sample rate (1/7) is at 100 Hz, the input PRBS excitation
cannot be generated at 100 Hz since the PRBS fuel excitation cannot
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be executed by the fuel system. This requires a lower PRBS generation
frequency (1/T,) than 30Hz to make sure that the PRBS fuel
command can be executed by the fuel system actuators. If the PRBS
generation sample period is selected to T, = 0.1 (s), the selected sample
ratio is n, = Tp/T= 10.

Step 2: Run the system identification test and collect experimental data
After designing the system identification experiment, the next step is to
run the test and collect the experimental data. From the derivation of
the PRBS system identification theorem, steady state responses
(defined in (I11-6)) of one PRBS cycle (2n,m points) are used for system
identification. After the PRBS perturbation for a given channel is
applied, the response data shall not be collected until the correspond-
ing system responses are periodic and have the same period as the
PRBS (this indicates that steady state has been reached). For the
system with multiple input channels, the PRBS input excitation needs
to be applied individually, and the system output responses ( y;(k)
(I=L12,...,mn,), see (III-6)), corresponding to each PRBS input
channel shall be collected.

Step 3: System identification using GUI

After the experimental data is collected and converted into a Matlab
data file ready to be loaded into Matlab, the PRBS system identifica-
tion GUI can be used to obtain a linearized system model. To have a
good system identification result, the following parameters need to be
determined: output weighting matrix Q, number g of Markov and
covariance parameter to be preserved, and the identified system order
r. In general, the output weighting matrix is used to balance the output
response scale for different output channels. For example, if the
magnitude of output channel one is ten times larger than channel two
for a two-output system, the relative system identification error for
output channel two could be bigger than channel one even though the
absolute system identification error for both channels are the same. In
this case, the output weighting matrix Q can be used to adjust the
output magnitude ratio for different output channels to improve relative
modeling error for each individual output channel. The selection of
parameter ¢q is related to how well the identified model responses
match actual system ones. Increasing g improves transient and steady
state response match, but for a given PRBS order (given m) increasing
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g introduces more relative system identification error due to the fact
that finite PRBS order is used for system identification. Selection of
model order parameter r is described in Step 4 of the PRBS system
identification algorithm. The good news is that the PRBS system
identification GUI allows the user to select the parameters g and r
and validate the identification quality through clicking the buttons on
the GUL

IV. AN APPLICATION TO DIESEL ENGINE
SPEED CONTROL SYSTEM

This section describes the application of the weighted multirate g-
Markov Cover system identification to the diesel engine system from
the engine fuel command to the engine speed output. The system
identification is conducted using a Cummins 95 M11 diesel engine in a
test cell with PC controller (PC with extended I/O capable of con-
trolling a diesel engine) instead of an ECM (Engine Control Module).
The PC controller provides flexibility of implementing new control
logic. The PRBS system identification software was implemented into
the PC controller for experiment purpose.

The purpose of this system identification is to obtain a proper
linearized engine model for model-based control design, especially, for
the engine speed control system. In general, engine output torque is
controlled by the fuel quantity injected into the individual cylinder,
and the other engine control input such as engine timing (start of
injection) affects the engine torque output a little which will be treated
as disturbance input. An engine speed control system can be simplified
in Fig. 3, where engine timing and load are treated as disturbance. The
subsections below follow the system identification procedure defined
in the previous section.

IV.A. Designthe PRBS System Identification Experiments

The system identification experiments is design based upon rules stated
in Step 1 of the system identification process in Subsection II1.D.
Selection of parameters a; (PRBS magnitude), m=2"—1 (where n is
the order of PRBS), T (system output sample period), and T}, (PRBS
generation sample period) is shown in Table II.
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FIGURE 3 Engine speed control system.

TABLE II Parameters for PRBS system identification experiment

Parameter Selected values Why

a; 2 (mm®/stroke) 2mm?/stroke fueling fluctuation
may generate about 50 RPM speed
variation for a bared engine.

m 255(n=8) With selected T"and T, the period of
PRBS in continuous time domain
is 515 (2 x m x T,) which shall
be able to excite the system dominated
mode as low as 0.025 Hz.

T 0.01 (s) T is selected based upon the controller
sample rate (control algorithm executed
at about 100 Hz in PC controller).

T, 0.1(s) T} is selected such that the engine fuel
system is able to execute the PRBS fuel
command over 600 RPM. Note that over the
given engine speed range, the lowest engine
fuel injection frequency (at 600 RPM) is 30 Hz
for a six-cylinder four-stroke engine. The PRBS
generation sample period is selected three
times slower than fuel injection period.

IV.B. Experiment Setup and Data Collection

The experiment used a bare M11 engine (engine is not connected to
output) with a PC engine controller. The experiment setup (see Fig. 4)
and data collection process can be described as follows: (a) default
engine timing is used for this test, (b) engine DC fueling is used to run
the engine at desired engine speed, (c) after engine speed is stable
PRBS fuel excitation is added to perturb the engine system, and
finally, (d) after the engine reaches its steady state corresponding to
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FIGURE 4 Experiment setup.

the PRBS perturbation, one PRBS cycle of the input PRBS perturba-
tion and output engine speed response are collected at sample rate 1/T
(about 100 Hz). Note that each collected data file is associated to a
given engine speed. Therefore, the identified engine model is a function
of the engine operational speed.

Note that due to engine friction torque fluctuation, holding a
constant engine speed with constant fueling is not always feasible. In
fact, closed-loop system identification (with a stable engine speed
controller in the loop) is recommended. In this case, the speed con-
troller holds the engine at the desired speed when the PRBS fueling
disturbance is applied, and the identified model contains both engine
and speed controller dynamics. The engine system model can be
obtained by subtracting the controller dynamics. Both open- and
closed-loop system identification were conducted and similar results
are obtained. For this paper, only the open-loop system identification
results are presented.

Many system identification tests were conducted, but only two
system identification tests are described in this paper. That is, the
system identification test at engine speed equal to 1150 and 1500 RPM.
Figure 5 shows both the PRBS fueling disturbance in mm?/stroke
(upper plot) and the corresponding engine speed fluctuation in RPM
(gray line of lower plot). In the system identification experiments, due
to the PC control operational system the actual system sample period
is about 0.0113 s, leading one PRBS period equals to 57.6s. One of the
important aspect during the system identification tests is judging if the
collected system response is at the steady state or not. An easy way is
using the inverse symmetric property (u(k) = —u(k + m)) of the inverse
PRBS signal. Therefore, at the steady state the system output shall
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FIGURE 5 PRBS disturbance and corresponding engine speed response. (See Color
Plate III at the back of the issue.)

have the similar property, that is,
y(k) = —y(k +m), (Iv-1)

see the two points marked by arrows in Fig. 5. With the help of this
technique, the author was able to collect the system identification data
successfully without repeating any experiment.

IV.C. System Identification Using Weighted
Multirate g-Markov Cover

The PRBS system identification GUI in Fig. 2 was used to obtain a
linear engine model at a given engine speed. Step 3 of the procedure
described in Subsection III.D was used for obtaining discrete time
linear models. Since the system is an SISO one, the output weighting
matrix is set to one. The number of Markov and covariance param-
eters to be preserved is selected to be 60. That is, the first 60 Markov
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and covariance parameters of the identified model are close to these
calculated ones based on (III-23) and (11I-24). For practical purposes,
the parameter ¢ is upper limited by the numerical accuracy of
q-Markov Cover and the constraint g < m due to a finite PRBS period.
On the other hand, small ¢ may cost the accuracy of the identified
model. The selected g is based upon the concerns mentioned above,
and especially, the accuracy of the identified model quality, such as
how well the identified model response matches with the test one.

The order of the identified model is determined using the order
selection portion (see Fig. 6) of the system identification GUI in Fig. 2.
From Fig. 6 we can see that the largest gap exists between the first
(top) dots and second one. This indicates that there exists one
dominated first-order dynamics. For the diesel engine system from fuel
command to engine speed, this dominated mode is obviously the
dynamics from engine torque to engine speed. The second largest gap
is between second and third modes. The identified model order was
selected to be two since a third order model does not improve the
identified model accuracy and the gap between second and third modes
is the second largest. The steady state response of the identified engine

Order Selection

FIGURE 6 Model order selection. (See Color Plate IV at the back of the issue.)
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TABLE III Identified engine models

Engine speed 1150 (RPM) 1500 (RPM)
Discrete transfer (0.01982% — 0.1949z + 0.1562)/ (0.0567z* — 0.1888z +0.2297)/
function (2% — 1.834z 4+ 0.835) (2% — 1.732z4+0.7335)
Continuous 114 x (3.2 x 1073 — 0.01595 4+ 1)/  85.6 x (6.4 x 1075 — 0.0147s + 1)/
transfer function ((5/0.348 + 1)(5/15.88 + 1)) ((s/0.383 + 1)(s/26.95+ 1))
Output sample 0.0113 0.0113
period
PRBS generation 0.113 0.113
period
Selected model 2 2
order r
Selected parameter g 60 60

model with the same PRBS excitation as experimental one is drawn in
the lower plot of Fig. 5 (black line). One can see that both responses
are very close, indicating good system identification model.

Table 111 shows the two identified engine models for engine running
at 1150 and 1500 RPM in both discrete and continuous time domains.
The identified models are in discrete state space format, and then,
transferred into the discrete transfer function format and continuous
transfer function assuming zero order sampling. Consider the contin-
uous time transfer function for engine running at 1150 RPM. The
quadratic coefficient of the transfer function numerator is very close
to zero. By setting it to zero we can rewrite the transfer function into
the following format:

1-5/62.9 1

Gls) = N4 X 07588 X T 5/0348

(IV-2)

It is clear that the transfer function consists of two first-order dynamic
components. The first portion of dynamics (1 — 5/62.9)/(1 + s/15.88) is
a non-minimum phase transfer function approximating the pure delay
dynamics due to the diesel engine fuel system, and the second portion
of dynamics 1/(1 + 5/0.348) represents the engine mechanical dynamics
from engine combustion torque to engine speed. From Table III one
can see that the engine model DC gain decreases as the engine speed
increases due to the quadratic increment of the engine friction torque.
For the same reason, the time constant of the mechanical dynamics
increases as engine speed. Figure 7 shows the step response of the
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FIGURE 7 Step response and delay of identified model. (See Color Plate V at the
back of the issue.)

engine transfer function at 1150 RPM. The lower plot of Fig. 7 shows
a blow-up of the step response at the first 0.5s, where the vertical line
indicated the calculated fuel system delay at 1150 RPM and given fuel
command. We can see it clearly that identified transfer function pro-
vides almost identical time delay. This indicates that the PRBS system
identification is able to use a first-order transfer function with non-
minimum phase numerator to represent a pure time delay dynamics.
As a summary of this section, the PRBS q-Markov Cover is success-
fully applied to a diesel engine system from the fuel command to the
engine speed output. The identified transfer functions have order of
two. The pure time delay of the diesel fuel system is approximated by a
first-order transfer function with a non-minimum phase numerator.
The identified engine model is a function of engine speed due to non-
linear engine friction torque and fuel system delay. The identified
engine model was used for designing engine idle speed governor using
the OCC (Output Covariance Constraint, see Ref. [7]) control design
method. The designed controller stabilizes the engine speed with
proper response and over/under shoot performance at the first try.
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V. CONCLUSIONS

This paper successfully extend the PRBS g-Markov Cover system
identification technique to a weighted multirate case. The extension
allows the construction of a discrete time state space model at system
output sample rate while the PRBS excitation sample rate is slower
than the output one. The PRBS g-Markov Cover is successfully
applied to a diesel engine system from the fuel command to the engine
speed. The identified engine model is a function of engine speed due to
a nonlinear engine friction torque and fuel system delay. The identified
engine model was used for designing a engine idle speed controller
using the OCC Ref. [7] control design method. The designed controller
stabilizes the engine speed with proper response and over/under shoot
performance at the first try. This provides confidence of using
identified engine models for engine governor design.
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