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This work develops improvability theory for assembly systems. It consists of two parts.
Part I includes the problem formulation and the analysis technique. Part II presents the
so-called improvability indicators and a case study.

Improvability theory addresses the questions of improving performance in production
systems with unreliable machines. We consider both constrained and unconstrained
improvability. In the constrained case, the problem consists of determining if there exists
a re-distribution of resources (inventory and workforce), which leads to an increase in
the system’s production rate. In the unconstrained case, the problem consists of
identifying a machine and a buffer, which impede the system performance in the
strongest manner.

The investigation of the improvability properties requires an expression for the system
performance measures as functions of the machine and buffer parameters. This paper
presents a method for evaluating these functions and illustrates their practical utility
using a case study at an automotive components plant. Part I uses the method developed
here to establish conditions of improvability and to describe additional results of the
case study.
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1 INTRODUCTION

Assembly system is a production system which includes the merging of
parts produced. In most cases, it consists of two or more serial lines pro-
ducing component parts, one or more assembly machines where the
components are merged and, if necessary, additional machines for pro-
cessing the assembly. In practice, the machines are not absolutely
reliable and may experience random breakdowns. This leads to a reduc-
tion of the production rate (I;TQ), which is defined as the average num-
ber of parts produced by the last machine of the system per unit of
time. In order to localize the negative effect of the machine break-
downs, each pair of consecutive machines is usually separated by a
finite buffer, which is supposed to attenuate the perturbations. An
example of such a system is shown in Fig. 1, where my, i=1,2, j=
1,..., M; are the component machines, my; is the assembly machine,
mgj, j=1,..., My, are the additional processing machines, and b;; and
by, are the buffers. Systems of this structure are often encountered in
the automotive industry, and they are the focus of this work.

The idea of improvability of production systems was introduced in
[1] to facilitate the development of quantitative engineering methods
for design of continuous improvement projects and requirements for
automation. According to [1], a production system is improvable under
constraints if its resources can be re-distributed so that the PR is

b11 bim,

mi1 |:| mimM,

FIGURE 1 Assembly system.
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increased. Unconstrained improvability addresses the question of
constraints relaxation and, in particular, identification of a machine
improvement of which leads to the largest improvement of the system
as a whole; such a machine is referred to as the bottleneck.

The properties of improvability for serial production lines have been
investigated in [1]. Roughly speaking, it was shown that a serial line is
unimprovable with respect to workforce (WF) re-distribution if each
of its buffers is on the average half full and with respect to work-in-
process (WIP) re-distribution if each machine is blocked (by a full
buffer after it) and starved (by an empty buffer in front of it) with equal
frequency. A method for identifying the bottleneck machine, in terms
of frequencies of machine blockages and starvations, has also been
developed [2]. These results found applications in continuous improve-
ment projects at several automotive plants and led to improvements in
system performance [3—5].

Analysis of improvability properties of assembly systems was initi-
ated in [6]. Only the simplest case of two component machines and
one assembly machine (i.e., M; = M,= My=1) was addressed. Since
in most applications more than a single machine is involved in the pro-
duction of each component part, development of improvability theory
for assembly systems, shown in Fig. 1, is desirable. The purpose of this
research is to develop such a theory and demonstrate its applicability
using a case study at an automotive component plant.

More precisely, the goal of this work is to characterize improvability
properties of assembly systems in terms of variables that can be mea-
sured on the factory floor during the normal system operation. The vari-
ables involved are the machine average up- and down-time, starvation
time, blockage time, and the average buffer occupancy. In terms of
these variables, we derive simple rules that allow factory floor person-
nel to determine if the system is improvable and design projects leading
to the improvement. These rules, referred to as Indicators of Improv-
ability, are the main results of this research.

The derivation of the improvability indicators requires expressions
for the system performance measures as functions of the machine and
buffer parameters. Exact analytical evaluation of these functionsis, unfor-
tunately, impossible. Therefore, approximations are necessary. Such
approximations have been developed in [7-9], under the Markovian
assumption on the machine reliability, using a decomposition technique.
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Unfortunately, no convergence conditions or analytical estimates of
accuracy have been provided. Since these conditions and estimates are
necessary for the development of improvability theory and since the
reliability characteristics considered in this work are Bernoulli, rather
than Markovian, this paper presents an aggregation-based method for
performance analysis of assembly systems, provides a proof of its con-
vergence and an estimate of accuracy. Part II of this work uses these
results to establish the conditions of improvability.

While the results presented here address only the assembly system
shown in Fig. 1, an extension to more complex structures, with more
than two component lines and more than one assembly machines, is
straightforward.

Finally, although the performance analysis technique developed in
this paper is motivated by improvability considerations, it can be used
independently — as a tool for throughput and inventory analysis of
assembly systems in large volume manufacturing environment. To illus-
trate this point, the paper presents an industrial case study where the
method developed is utilized.

The outline of the paper is as follows: Section 2 describes the assump-
tions on the assembly system considered in this work. Section 3 formu-
lates the problems of improvability theory. Section 4 presents the idea
of the approach to performance analysis used in this work. The aggre-
gation procedure and its convergence properties are described in
Section 5. Section 6 discusses the accuracy of the estimates obtained.
Section 7 presents the case study. Finally, in Section 8 conclusions are
formulated. The proofs are included in Appendices A and B.

2 THE MODEL

The following model is considered throughout this work

(i) The system consists of component machines, my, i=1,2, j=
1,..., M, an assembly machine, myq;, additional processing machines,
myj, j=2,..., My, and buffers, by, i=1,2, j=1,...,M; and by,
Jj=1,...,My— 1, storing the parts produced by m;;, respectively.

(ii) All the machines require a fixed, and identical, time to process a
part. This time, T, is referred to as the cycle time. The time axis is
slotted with the slot duration 7.
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(iii) Each machine is characterized by the probability, py, i=0,1,2,
j=1,..., M, to produce a part during a time slot, given that it is
not blocked and not starved. This probability is referred to as the
machine production rate in isolation.

(iv) Each buffer is characterized by its capacity, Ny i=1,2, j=
1,...,M;and Ny;, j=1,..., My — 1; the buffer capacity is assumed
to be finite.

(v) Machine m;; (except my;) is starved during a time slot if buffer
b;;—1 is empty at the beginning of the time slot. The assembly
machine my, is starved for parts, if at least one of the buffers by,
i=1,2, is empty at the beginning of the time slot. The first two
component machines m;;, i =1, 2 are never starved.

(vi) Machine m;; (except miy,, i=1,2) is blocked during a time slot if
buffer b; has N; parts at the beginning of this time slot and
machine m; ;,; fails to take a part during this time slot. Machine
min,, i=1,2, is blocked during a time slot if buffer b,y is full and
the assembly machine, mq,, fails to take parts from the buffers at
the beginning of this time slot. Machine my, is never blocked.

A few remarks concerning this model are in order:

Remark 2.1 Assumption (ii) implies synchronous operation of the
machines. It is introduced to simplify the analysis. Although somewhat
restrictive, it is not unrealistic, especially for operations with auto-
mated material handling. On the other hand, the assumption that the
processing time, 7, is fixed does reflect the situation in most large vol-
ume manufacturing systems, with automated material handling or not.
The often cited in the literature random processing time is not, in our
opinion, appropriate in the context of these systems.

Remark 2.2 Assumption (iii) defines the Bernoulli statistics of
machine reliability. It is appropriate for operations with down-time of
the order of the cycle time 7. This is often the case in modular assem-
bly systems where operators use push-buttons to stop a module of
the operational conveyor in order to complete the operation with the
highest possible quality. The duration of this “breakdown” is of the
order of the cycle time and, therefore, the probability to produce a
part during the cycle time arises naturally. Another frequent pertur-
bation is pallet jam on the operational conveyor; to correct for this
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problem, also a short period of time is required. In many automotive
assembly lines, these are the predominant perturbations. In these situa-
tions, the Bernoulli model is appropriate. This model is not appro-
priate for machining lines, where the down-time is typically much
longer than the cycle time. In these cases, the Markovian model, devel-
oped in the framework of assembly systems in [7-9], is an appropriate
formalization.

Remark 2.3 Assumption (v) implies, in particular, that only one part
of each type is required by the assembly machine. This assumption
does not restrict generality and may be removed by an appropriate
model modification.

Remark 2.4 Assumptions (iii), (v) and (vi) are formulated in terms
of time-dependent failures, i.e., the machines can go down even when
blocked or starved. Another possible model is operation-dependent
failures, where no breakdown of starved or blocked machines is pos-
sible. Both models are practical, depending on the production system
at hand: For automated palletized material handling, time-dependent
model is more appropriate. In case of manual material handling,
operation-dependent failures often take place.

Model (i)—(vi) is used below to introduce the problems of improv-
ability theory.

3 IMPROVABILITY THEORY: PROBLEM FORMULATION

In this section, we formulate the problems of improvability theory,
solution of which is the main goal of this research.

31 Constrained Improvability
Assume that the buffers capacity N; and machines efficiency p;; are
constrained as follows:
M, M, My—1
ZN]i-l-ZNz,'-f- ZN(),'ZN*, (3.1)
i=1 i=1 i=1

M, M, My

1121 P2 ][ Poi =P (3.2)
i=1 i=1 i=1
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Expression (3.1) can be interpreted as WIP constraint: The total inven-
tory in the system cannot exceed N*. As in [1], expression (3.2) is inter-
preted as WF or machine efficiency (ME) constraint: The total work
that can be carried out in the system is bounded by p*, and a re-
assignment of the workforce or work among the operations leads to
changes in p;’s compatible with (3.2).

Denote as p;, N;, p; and N;, i=0,1,2, vectors with components
[pits---»Pim)s [Ni,...,Nig] (for i=0, No=[Noi,..., Nom,-1)]),
[Pjis-- - P and [N, ..., Nj, ] (for i=0, N§ = [Ngy, ., N pg—1])s
respectively.

DEeFINITION 3.1 The assembly system (i)—(vi) is improvable with
respect to WF if there exist vectors pg,pi,p5 such that

My« My _x My _« *
[1:5) P T L2 P T poy = P and
ﬁ?(P’{,PE,PS,Nl,Nz,No) > PR(p1,p2, po, N1, Na, Np),

where PR denotes the production rate of the system, i.e., the average
steady state number of parts produced by the last machine, mopy, per
cycle time.

DEFINITION 3.2 The assembly system (i)—(vi) is improvable with respect
to WF and WIP simultaneously if there exist vectors pj,p;,p5 and
N7, N3, Ng, such that TLZ p3, TIS p3 TIES o6y = 7 and 3502 N+

YoM N+ M NG = N* and
I;IV{(I’T’P;’I’S’N;’NE’NS) > I?ﬁ(Pl’PZaPO,Nl,Nz,No).

DEFINITION 3.3 The assembly system (i)—(vi) is improvable with
respect to WIP if there exist Ny, N5 and N§ such that M N+
M N+ M Ny = N* and

i=1

PR(p1,p2,po, Ni, N3, Ng) > PR(p1,p,po, N1, Na, No).

3.2 Unconstrained improvability

When the system is no longer improvable under constraints or when
the resource re-allocation, required by the improvability conditions,
cannot be carried on the factory floor, a further increase in PR can be
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obtained only by the constraints relaxation, i.e., by increasing p* or N*.
In practical terms, this amounts to the improvement of the machine
isolation production rates (say, by improved preventive maintenance
or by installing a more efficient machine) or by allocating additional
in-process inventories to the system. The question arises: Which p;; or
Nj; should be increased so that the largest increase in PR is obtained?
A formalization of this question is as follows:

DEFINITION 3.4 Machine my, i=0,1,2, j=1,..., M; is the bottleneck
machine (BN-M) if

dPR N dPR
Opij =~ Opmn

, Vmn #ij.

DEFINITION 3.5  Buffer by is the bottleneck buffer (BN-B) if

ﬁ(Pl,pz,po,Nn,le,---,Nij+ 1,..., Nope—1)
> ﬁ(PlaPZ,PO’ N]15N12a s aNmn + 15‘ . ':NOMQ—I)s Vmn 7é U

3.3 Potency of Material Handling System

Production lines consist of machines and buffers or, more generally,
material handling system (MHS). In the framework of model (i)—(vi),
the efficacy of each machine is characterized by its production rate in
isolation, py, i=0,1,2,j=1,..., M, and the efficacy of the production
system from the point of view of the machines is defined by min;;p;;.
The efficacy of the MHS, however, does not seem to have a quantita-
tive characterization. Indeed, buffer capacities, Ny, Vij#0M, do not,
by themselves, define how efficient MHS is. Based on the bottleneck
definition presented above, such a characterization is introduced as
follows:

DEerFINITION 3.6 MHS is weakly potent if the machine with the
smallest isolation production rate is the BN-M; otherwise, MHS is not
potent. MHS is potent if it is weakly potent and, in addition, production
rate of the system is close to that of the slowest machine in isolation.
MHS is strongly potent if it is potent and this production is achieved
using the smallest total buffer capacity N* = Eg'l Ny + fo, Ny +
i Noi.
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Remark 3.1 The notion of MHS potency might be further quantified
by introducing, say, 5% or 10% difference between the isolation pro-
duction rate of the worst machine and the production rate of the sys-
tem as a whole. Analogously, the notion of strong potency may he
made more precise. We leave them, however, as they are, because the
term “close” and “smallest” may have different meaning in various pro-
duction systems and industries. Therefore, quantification of these terms
is a function of a particular application.

3.4 Problems

The goal of this work is to derive conditions under which the assembly
system (i)—(vi) is improvable in both constrained and unconstrained
sense. As it was pointed out above, the conditions sought are to be
formulated either in terms of the data available on the factory floor or
in terms of the data that can be constructively calculated using the
machine and buffer parameter vectors, p;’s and N;’s. These conditions
are referred to as Indicators of Improvability. The problems, then,
addressed in this work are:

PROBLEM 3.1 Given model (i)—(vi), derive indicators of improvability
with respect to WF, WIP, and WF and WIP simultaneously, which could
be used based on either measured or calculated data.

PROBLEM 3.2 Given model (1)—(vi), derive indicators of improvability
for bottleneck identification, which are based on real-time or calculated
data.

PROBLEM 3.3 Given model (i)—(vi), determine the potency of MHS
using the indicators of improvability mentioned above.

Solutions of these problems are provided in Part II of this work,
based on the performance evaluation technique developed below.

4 PERFORMANCE EVALUATION: IDEA OF THE APPROACH

The idea of the approximations used in this paper is as follows: Con-
sider the serial production line consisting of the component machines
mi,...,Mip,, the assembly machine mg;, the additional processing
machines my,...,moy,, and the buffers separating the machines
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(see Fig. 1). A recursive procedure for evaluating the production rate of
this line has been developed in [1]. This recursive procedure allows also
for the evaluation of the steady state probabilities of buffer occupancy
and probabilities of machine blockages and starvations. In order to
use this procedure for the serial line at hand, assume that the isolation
production rate of myg; is modified so as to account for the existence of
the other component line. Specifically, introduce a fictitious assembly
machine, denoted as mj,, with the isolation production rate defined by
po1 Prob{buffer b,y is not empty}. If Prob{buffer by, is not empty}
were known and if this probability were independent of the occupancy
of buffer by, the recursive procedure of [1] would result in the pro-
duction rate of the assembly line (i)—(vi). Since this probability is
unknown and the dependence does exist, we introduce iterations, as
described below, and prove their convergence (Section 5). In construct-
ing the iterations, we use several independence assumptions; they are
justified numerically in Section 6 and, on this basis, the accuracy of the
method developed is evaluated.

The iterations are introduced as follows: At the first step, assume
that Prob{buffer by, is not empty} = 1. Then the serial production
line {my1, b1, ..., mip,, bim,, Mgy, bots - . ., Mo, }, which we refer to as
the upper line, is defined completely and, using the recursive proce-
dure of [1], calculate Prob{buffer by, is not empty}. Consider next
what is referred to as the lower line {my1,ba,..., Mo, borsy, Mg,
bot, . .., mon, }, Where my,; is another fictitious machine with the isola-
tion production rate py; Prob{buffer by, is not empty} and, again
using the recursive procedure of [1], calculate Prob{buffer b, is not
empty}. Use now this probability for the second iteration in analysis
of the upper line and continue this process, alternating between the
upper and the lower lines. As it is shown in Section 5, the iterations are
convergent and result in the estimates of both Prob{buffer by, is not
empty}, i=1,2, and PR(p1, p2, po, N1, N2, No).

5 PERFORMANCE EVALUATION: RECURSIVE PROCEDURE
AND ITS CONVERGENCE

In order to bring the notations in compliance with those used in the
recursive procedure of [1], denote the upper line and the lower line,
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respectively, as

/
{mu1, b1, mia, ..., mMipg s biag,, My, Bor, Moz, - - -, Mo Mo—15 Do, Mo—15 Moty
_ AT / / / / /
= {my, by, my, ..., my By iy By s My s

mjwl-kMo—l’b;\ll-e-Mo—l’mlMﬁMo}’ (5.1)
where

my;, i=1,...,M,
m; = ¢ My, i=M +1,

moi—pm, L=Mi+2,...,M;+ My,
b = b, 1:=1,...,M1,

boj—m, i=Mi+1,...,Mi+My—1,

and

"
{ma1,b21,maa, . . ., Mangy, baasy, Mgy, bot, Moz, - . ., Mo pMy—1 b0, Mo—1> Mort, }

. " /! " 1 /! " 4 1"
= {my, by, my, ..., Mgy, By Mipgy 15 Oty Mipgy 25 -5
/! /! "
Mty Mo—15 Oy +-Mp—15 mM2+M0}’ (5.2)
where
ms;, i=1,...,M2,
mﬁ.’—-: mg,, i=My+1,
myi—M,, i=M2+2,...,M2+MQ,
b”"{bZi, i=1,..., M,
i = .
bO,i—Mz, i=My+1,...., M)+ My—1,

The isolation production rates of the machines and the capacity of
the buffers for the upper and the lower lines are denoted as y; v;, T,
and A;, respectively:

D, i=19-"aM1,

Wi = . (53)
Do,i-M,» l=M1+2a'-"M1+M03
N]i’ i=17-~~aM1’

,'2{ . (5.4)
NO,!'—Mp I=M1+la-“aM1+Mo—l9



332 S.-Y. CHIANG et al.

D2is i=13-'-aM2,
v = . (5.5)
Doi-My, P=Ma+2,..., M+ My,
Nzi, i=1,...,M2,
A= ] (5.6)
NO,i—Mzs 1=M2+19"'5M2+M0—13
where, obviously,
UM\ +j = VMy+js j = 2, [N ,M() (57)
and
vy =Amptjy j=1,...,Mp—1. (5.8)

Denote as X, (0) the estimate of the steady state probability that
buffer b),, is empty and as Xy (0) the estimate of the steady state
probability that buffer b}, is empty. Then, in compliance with the
approach described above, define the isolation production rates of my,
and my; as

pay+1 = poi[1 = Xz (0)], (5.9)
Uny+1 = pot[l — Xy (0)]. (5.10)

At the first step of the iterations, assume that X M2 (0) =0, ie.,
Prob{buffer b,y is not empty} = 1and pas,+1 = po1- Then, the upper

3 / / / / / ] / / /
line  {my, by, M, ..., My, Blyg, s Miyg 15 Dl s Mg 2 -5 Ppg,y pgy 15
/ / : :
vty +-My—1>Mar, 11, } 18 defined and the recursive procedure of [1] can be
written as follows:

Pl +1) = pill = Qb (k + 1), 1 (k),T))], 1<i<Mi+Mo—1,
ul(k+1) = il = Q(ul 1 (k+1), uf(k +1),Ti1)], 2 < i< Mi+ Mo,

plk) = w1, fgin, (k) = patemy k=0,1,2,3,...,

(5.11)

with initial conditions

pl0) =, i=1,...,M+ M,
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where
(1-90-0a) _ x(1 - )
1 NN ° #yﬁ a=__—’
O(x,y,N) = 11—~();/y)aN YI=2)" (51
Nriox 7Y

According to [1], this procedure is convergent to

pl o= lim pf(k), pbi= lim gb(k), i=1,...,Mi+ M,, (5.13)
k—00 k—00

and the steady state probability that buffer b, is empty is evaluated as
X1 (0) = Oy, 1y, 1: Ty (5.14)

This completes the first iteration for the upper line.
The first iteration for the lower line {mf{,b],mj,...,my, by,

1 /! /" /" /! /' 3
mM2+1’ M2+1’mM2+2’ fre ’mM2+M0—1’bM2+Mo—1’mM2+M0} beglns by
defining the isolation production rate of mjy, , ;:

UMy+1 = po1[l — Xy (0)], (5.15)

where X, (0) is evaluated above. Then, the lower line is also analyzed
using the recursive procedure of [1]:

v (k+1)=ull - Q(Vib+1(k+ 1),V,f(k),Ai)], 1<i< M+ M, -1,
v/(k+1) = [l = Q] (k +1), 2 (k +1), A1), 2 <i < Ma+ My,

v(k)=w1, vhnK) =Vaere,  k=0,1,2,3,...,

(5.16)

with initial conditions

v/(0)=uv, i=1,...,Ms+ My,
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where function Q(x, y, N) is defined in (5.12). The limits of this proce-
dure are denoted as

1

lim v/(k) = v/, limvP(k) =0, i=1,...,My+M, (5.17)
k—o0 k—o0
and X 5:(0), i.e., Prob{buffer b,y, is not empty}, can be evaluated as

Xy (0) = Qwiy, vl 1o May). (5.18)

This leads to the second iteration for the upper line, and the process
is repeated again. Formally, the iterations between the upper and the
lower lines can be represented as follows:

B+ (s + 1) = por[l — Xy (0, 5)],

ph(s+1) = (s + D[ — Qb (s + 1), 4/ (s + 1), T))],
1 <i< M+ M, -1,

pl(s+1) = pa(s + D1 = Quf (s + 1), ub(s + 1), Tisy)],
2< i< M+ M,

Xar (0,5 + 1) = @y, (s + 1), 1y, 11 (s + 1), Tagy),

Ury+1(s + 1) = por[1 — Xag (0,5 + 1)],

Vs +1) = vu(s+ )1 — Qwl (s + 1),/ (s+1),A)], (519
1<i<M+My—1,

v/(s+1) =v(s+ D1 — QW (s + 1), v (s + 1), Aiy)],
2<i< My + My,

Xar(0,5+1) = Q(iy, (s + 1), v} 41 (s + 1), Aagy),
u,(s+1)=,u,~, i=1,..., M\, M1 +2,...,M; + My,
V,-(s+1)=1/,~, i=1,...,My,My+2,..., M)+ M,

§=0,1,2,3,...,

with the initial conditions
XMér(O, 0) = 0,

where pif(s—l— 1) and pb(s+1),i=1,..., M, + M, are given by (5.13),
v/(s+1)and vb(s+1),i=1,..., My+ M, are given by (5.17).
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THEOREM 5.1  Recursive procedure (5.19) is convergent, i.e., the fol-
lowing limits exist:

lim ﬂMH—l(s) = KUay+1,
5—00

slirgouif(s) =: uif, i=1,...,M + M,,

lim pb(s) =: pl, i=1,..., M+ Mo,
§—00

| (5.20)
sll'rgo VMy+1 (S) =1 VUMy+1,

lim Vl-f(s) =/, i= 1,..., M+ My,

lim u,-b(s) =l i=1,...,My+ M.
§—00

Moreover,

S ;P
By +i = Viytis i=1,...,M,,

b — b P —
MM1+i—VM2+i’ 1—2,...,M0-

Proof See Appendix A.

Parameters u,f defined in (5.20) (respectively, z/if ) represent the aggre-
gation of the first i machines of the upper (respectively, lower) line into
a single machine. Analogously, u? (respectively, 1) represent the aggre-
gation of the last M+ My—i+1 (respectively, M+ My—i+1)
machines of the upper (respectively, lower) line into a single machine.
Therefore, “1{4. +u, (respectively, uAf,z +M,) can be used to define an esti-
mate of the system production rate, PR, as follows:

PR =y vt = Vi ontos (5.21)

where the second equality is due to the last statement of Theorem 5.1.
Recursive procedure (5.19) can be used to evaluate other perfor-

mance measures as well. Indeed, let E[};ij], Vij # 0M,, denote the aver-

age steady state occupancy of buffer b;. Then, the estimates can be
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introduced as follows:

Ny; 1 fr1 _ b k
wi (1 ﬂ‘+1) .
Bl =" kQ(u], il 1, Nyy) (1 : s J=1.., My,
; s U=\ (1= 1)

Ny f b k
1 v (1 -viy) .
E[h2j]= ZkQ(ij’Vjﬁ-l’sz) 5 ( J j+f , _]: 1,...,M2,

=0 L=y \v (1 =)
Noj 1 f (1 _ b ) k
b oty 4 KM, +jt1
E[hOj]:ZkQ(H1{,11+ja Kty 41 Noy) 1 — 2 ( b = ]fj
k=0 Fod i1 \Bag, 441 (1= py, +j)
Ny S (1 —yb k
S KOy Vg1 Ny) -y ( 2t ity
= My+j> Y Ma+j+15 4V0) 1— 0P b 1 7 >
k=0 Mottt \Patyse1 (1 = Vag )

j=1,...,My—1.

(5.22)

Also, if the probability of machine manufacturing starvations and
blockages are defined as

ms;; = Prob({m;; is up during a time slot} N
{b; j-1 is empty at the beginning of this slot}),
Vij # 11,21,01,
mso1, = Prob({my; is up during a time slot} N
{bin, is empty at the beginning of this slot}), i=1,2,
nTb,,- = Prob({m;; is up during a time slot} N
{b;; is full at the beginning of this slot} N
{the immediate downstream machine of m;; fails to take
a part from b; at the beginning of this slot}),
Vij # 0Mo,
(5.23)
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then, the respective estimates are (see [10] for details):

msy; = wOul 1 Timr), j=2,..., My,
msy = l/jQ(l/]{pI/jb,Aj_l), j=2,...,M,,
msot, = PorQ(idg,» g, +1:Tan)s
msot, = po1Q(Wip,s Vi1 M),

mo = ity Q(Bag, 41> Bty T +-1)s (5.24)

= U1 QWi j 1> Vatyp Mati1)s S =200, Mo,
mby; = QW 1, Ty), j=1,..., M,
mby = v,QWh v/ A, j=1,..., M,
mbo; = L, +jQ(M?m +jt+1> iUJI{'h +j2 Lati49)

= VMz+jQ(V1ll)42+j+l’ V1{42+j’ Aryej)s J=1,...,Mo—1.

Expressions (5.19)—(5.24) are used in Part II of this work as a basis
for development of Improvability Theory. They also could be used
independently as a tool for evaluating assembly systems performance
(see Section 7).

6 PERFORMANCE EVALUATION: ACCURACY OF THE
ESTIMATES

Under assumptions (i)—(vi), the dynamics of the assembly system are
described by an irreducible, ergodic Markov chain with the states
(Kisoskpg optg1o Kl skpg,)s ki =0, Ty i=1,..., M1+ Mp— 1,
and k/'=0,...,A;, i=1,...,M; (or the states (k{,...,kp . k{,...,

VMot Mo—1)s ki = 0,..., T, i=1,...,M, and k' =0,...,A;, i=1,...,
M, + My —1). In terms of X;/(0) (or X;»(0)), the production rate of the
system is

PR = v, (1 — X(M|+Mo—1)’(0)) (or vaty+me (1 — X,(M2+M0—I)"(O)))'
(6.1)
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To describe the relationship between the exact production rate
PR (6.1) and its estimate (5.21), introduce the joint stationary prob-
ability X, it ity (K5 o .,kjf .k, ..., k) that consecutive buffers
Li+1,...,j, 1<i<j<M;+ My—1, contain k/, i’ﬂ,...,k; parts,
respectively, and consecutive buffers m,m+1,...,n, 1 <m<n< M, +
M,—1, contain k,,k,. ...,k parts, respectively. In general,
of course, the joint probability distribution Xj i (ki ...,
k].’,k,’L’,,...,k,’,') is not equal to the product of its marginals, X’i:(k{)
and Xip1rjrmr o (Kipys oo kj’ .k, ... k). However, for certain values
of k/,... ,kj’ ,ky, ...k, related to blockages and starvations, they are
indeed close. Specifically, define

v !
Ei',j’,Mé' = ril/ax lei’,...,j',Mg (Oa ki+] s Fi+2’ DR} F]a 0)
i+1

- Xi',...,j’ (Oa ki/+13 Fi+2a sy I:‘j)‘i,Mz” (0)

v "
EMl',m”,n” = 1?,,37( lXMl’,m”,,..,n”(Oa 0: km+1, Am+29 ey An)

m+1

b

— X1 (0) X (0, K15 A, - -, )
0,y (¥) = | X (0,6, Tisa, ..., T})
— Xi(0)X iy, oW, Tiga, ..., T,
67 (@) = X,..p (@ Tist,... . T)) = K@) Xgay,y (Tisa, . 1)
Omr i (B") = | X (0, 6", Ay, . . )
— Xt (0) X i1y, (B Az - ),
Omr (") = | X, (@, A1 - ., An)
— X (a”)j(mﬂ)”,...,n" (Amsts - -5 An)

61 = max max{O,-r,j: (bl), Gil‘j, (a'),e,v ! M"},
iyl R

’

b

b

1" o (1
62 = max max{f (b"), 0" (a"), erty mr '},
9 ba

6= max(61, 52).
(6.2)
Remark 6.1 Roughly speaking, parameters e account for the cou-

pling of the upper and lower lines and parameters 6 account for the
coupling of the machines within each line.
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NUMERICAL FACT 6.1 For the assembly system defined by assumption
H—(vi),
6k 1.

Numerical Justification Justification is carried out using numerical
analysis of the Markov chain defined by assumption (i)—(vi). Specifi-
cally, the transition matrix has been constructed and iterated upon
until the stationary probability distribution X’,-:,m, j:,,,,uymynu(ki',...,kj’,
kl,...,k)), has been reached. Then, the small parameters ¢, 7MY
eutmr> O j(0"), 0" (@'), Opyr u(b") and 6™ "' (a") in (6.2) are cal-
culated. Finally, the value of § is evaluated. In every case analyzed, it
was found that § < 1. Several typical examples are shown in Table I
and the machines and buffer parameters of these examples are given in
Table I1. Based on this analysis, we conclude that Numerical Fact 6.1
holds.

Using the small parameter 6, the accuracy of estimates (5.21), (5.22)
and (5.24) can be evaluated as follows:

THEOREM 6.1  Under assumptions (i)—(Vvi), the following holds:

(@ PR= PR+ 0(5),
(b) Efhy] = Elhy] + O(6), Vij # 0Mo,
) r?lgo](k) = mso1,, + 0(5), k=1,2.

Proof See Appendix B.

TABLE I Illustration of § and the estimation error

Cases 6 PR PR (IPR - PR|/PR) - 100 (%)
I 0.0449  0.4605  0.4423 3.96
11 0.0491 03894  0.3747 3.77
i 0.0075  0.6267  0.6246 0.35
v 00202  0.6848  0.6911 0.92

TABLE II Parameters of cases in Table 1

Cases Nyt Ni2 Nn N Noo Neo pii P12 Pn P2 P Po2  DPos

I 1 1 1 1 1 1 08 08 08 08 08 08 038
11 1 1 1 1 1 1 08 06 08 08 09 062 08
11X 2 2 2 2 2 2 08 08 08 08 08 08 08
v 2 2 2 2 2 2 08 08 08 08 09 085 08
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The accuracy of estimates (5.21), (5.22) and (5.24) has also been
investigated numerically, using the direct Markov chain analysis. A
few typical examples are shown in Tables I and III-V. In all cases
analyzed, the estimates resulted in sufficiently high precision. In all
examples, convergence took place in just a few iterations, and compu-
tational time was insignificant (a fraction of a second, using Pentium
133 MHz processor).

TABLE III Illustration of accuracy of E[h]

Cases E[h“] E[h12] E[hz]] E[hzz] E[hm] E[hoz] max,-yj(JE[h,-j] - E[hy]l)/
Elhnl  E[ha] E[hn] Elhn]  Elhoa]  Elho] Elhy) - 100 (%)

I 0.8849 0.8201 0.8849 0.8201 0.6404 0.5756 4
0.8894 0.8207 0.8894 0.8207 0.6215 0.5528

II 0.9027 0.6815 0.9027 0.8607 0.685  0.4868 3.8
0.9063 0.6856 0.9063 0.8579 0.6669 0.4684

111 1.5908 1.4769 1.5908 1.4769 1.1498 1.0359 0.3
1.5904 1.4729 1.5904 14729 1.1517 1.0342

v 14692 1.422  1.4692 1422 1.2627 1.2154 1.1
1462 14166 1.462 14166 1.2745 1.2291

TABLE IV Tllustration of accuracy of ms;,,
Cases r'ﬁfvlz r'nvszz r’r‘IS‘ml %012 fn\goz ﬁf&‘og max,-,j,k(lﬁﬁ,-j(k) ms;j(k) I/
ms2 msy  mso,  mso, msp, mso3 msij,, ) - 100 (%)

I 0.0921 0.0921 0.1439 0.1439 0.2877 0.3395 5.36
0.0844 0.0844 0.1434 0.1434 0.3028 0.3577

I 0.0584 0.0779 0.2866 0.1254 0.1953 0.4106 5.73
0.0652 0.0749 0.2829 0.1279 0.2065 0.4253

il 0.0404 0.0404 0.0629 0.0629 0.14 0.1733 1.5
0.0406 0.0406 0.0634 0.0634 0.1421 0.1754

v 0.0611 0.0611 0.0776 0.0776 0.1113 0.1151 6.2
0.0621 0.0621 0.0758 0.0758 0.1044 0.1089

TABLE V Illustration of accuracy of mb;
Cases  mbyy mbya mby mbyy mbg; mbyy  max; (|mby — mby|/
mby, mbyz mby, mbay mby; mbo; y;[;xj) -100 (%)

I 0.3395 0.2877 0.3395 0.2877 0.1439 0.0921 5.36
0.3577 0.3028 0.3577 0.3028 0.1434 0.0884

I 0.4106 0.1753 04106 0.377 0.266 0.0604 6.39
0.4253 0.1865 0.4253 0.3866 0.2629 0.0581

111 0.1733 0.14 0.1733  0.14 0.0629  0.0404 1.5
0.1754 0.1421 0.1755 0.1421 0.0634 0.0406

v 0.1151 0.1113 0.1151 0.1113 0.0776 0.0611 6.2
0.1089 0.1044 0.109 0.1045 0.0759 0.0621
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7 CASE STUDY: PERFORMANCE ANALYSIS OF AN
AUTOMOTIVE COMPONENT ASSEMBLY SYSTEM

In this section, an application of the performance analysis technique
developed above is illustrated.

71 System Descriptionand Problem Formulation

The topological structure of the production system under consideration
is shown in Fig. 2. It consists of three circular conveyors, two of which
produce component parts 4; and A, respectively, and the third serves
as a buffer. The mating of the two components occurs at Operation
150 (the assembly machine). All operations, from 10 to 200 (excluding
150) serve to either process component i, i=1,2, or to attach a pur-
chased part to each of the components.

The operation of each component loop is as follows: Parts are trans-
ported by the conveyors on pallets. Raw material (parts A; and Aj)
is loaded at the first operation of each loop (Operations 10 and 110)
if a pallet is available; if not, Operations 10 and 110 are starved for
pallets. After being loaded, the parts are transported by the conveyors
to the subsequent operations (20,...,80) in Component 1 loop and
(120,...,190) in Component 2 loop. Operation 90 transfers the

Load A ,

(59

Buffer Conveyor

o 06 ® @

T — ]

FIGURE 2 Assembly system layout.

== LoadA ,




342 S.-Y. CHIANG et al.

finished Component 1 onto the buffer conveyor and releases the pallet
for loading at Operation 10. The finished Component 1 is transported,
by the buffer conveyor (again on pallets), to the assembly Operation
150 where Components 1 and 2 are mated (if the Component 2 is
available at the time of the arrival of Component 1). The assembled
part undergoes additional processing at Operations 160—190 and is
released at Operation 200 in the finished goods buffer, making a pallet
available for Operation 110.

The cycle time of each machine is 65, i.e., the nominal production
rate of the system is 600 parts/h. The actual performance for six con-
secutive months is summarized in Table VI. As it follows from this
table, the average production rate over the six months period is 362
parts/h, i.e., the system operates at 60% of its capacity. The goal of this
case study was to identify and eliminate the causes of this significant
loss of productivity. Below, we use this case study to illustrate the
application of the production rate evaluation technique developed
above. In Part II of this work the case study is described in its entirety.

7.2 Production Rate Evaluation

Neglecting the circular nature of the conveyors and the effect of the
pallets, the system under consideration can be conceptualized as shown
in Fig. 3.

Although it is quite important, we neglect here the effect of the
circular nature of the conveyors. We do so because we do not have a
theory for analyzing such structures. Nor the current literature offers

TABLE VI Measured production rate of the system

Month May June July  August  September  October
PR(parts/h) 337 347 378 340 384 383

b » ® b 6
opiso O opreo (@ opio 2B opiso "% opaso 2% opao

ohehelehe

FIGURE 3 Structural model of the assembly system.
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such a technique. The effect of starvation of Operations 10 and 110 for
pallets will be, however, taken into account by estimating the probabil-
ity of Operations 10 and 110 starvation from the real-time operation
data and reducing the isolation production rate of these operations
appropriately (see below). The blockage of Operation 200 due to the
finished goods buffer will be treated analogously.

The model of the system with the machines and buffer parameters
identified from the real-time data is shown in Fig. 4, using, as an exam-
ple, the May data. In this figure, the number under each machine indi-
cates its production rate in isolation. The numbers in the rectangles
represent the buffers capacity. The effect of the closed nature of circu-
lar conveyors, i.e., the starvation of Operations 10 and 110 due to the
lack of pallets and the blockage of Operation 200 due to full finished
goods buffer, was taken into account as follows: The average fractions
of time when Operations 10 and 110 were starved for pallets and Oper-
ation 200 was blocked were identified from the real-time data and the
isolation production rates of Operations 10, 110 and 200 were multi-
plied by a factor (1 — average fraction of time when starvation or block-
age take place) (see Fig. 4).

Thus, the model of the assembly system is identified. Using the itera-
tion procedure (5.19) and (5.21), we calculate the production rate of the
system for each of the consecutive six months. The results are shown
in Table VII along with the actual production rate.

10 2030 40 50 60
FOAFOAFOAO
94 087 088

p: 0.89(1-0257) 092 0.

p: 0.89(1-0.134) 093 0.92 0.89

FIGURE 4 Assembly system with parameters identified (based on May data).

TABLE VII Comparison of measured and estimated production rates

Month May  June July  August  September  October
PR (parts/h) 330 336 302 335 380 337
PR (parts/h) 337 347 378 340 384 383

Error (%) 21 32 201 1.6 1 11.9
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As it follows from these data, the production rate estimates match
closely the actual ones, with the exception of the months July and
October. We rationalize the situation in July by the fact that during
this month a two weeks shut-down period took place and, supposedly,
some phenomena, not reflected in the data identified, were presented.
We do not have an explanation for the large error in the month of
October.

8 CONCLUSIONS

This paper formulates the problems of Improvability Theory for
assembly systems. The development of this theory requires a method
for evaluating system performance measures as functions of machine
and buffer parameters. In this paper, such a method is developed, its
convergence is proved, and an estimate of its accuracy is provided. In
addition, the paper describes an application of this method to an assem-
bly line at an automotive component plant. In Part IT of this work, this
method is used to derive improvability indicators for assembly systems.

APPENDIX A: PROOFS FOR SECTION 5

To prove Theorem 5.1, we need two auxiliary statements. The first one
refers to the serial production lines defined and analyzed in [1]. The
serial line is defined in [1] as [p1,...,pi .-, Pa N1, - .., Nag_1], where
p; and N; are the machines and buffer parameters (analogous to p;’s
and Nj’s of assumptions (iii) and (iv) of Section 2 above). For this
auxiliary statement, we consider two serial lines with all but one iden-
tical machines and all identical buffers. We define these lines as

Line 1:  [p1,...,Pi-1,Pi>Pis1s-- s P> N1, - -, N1l (A1)
Line 2: [p13"‘spi—]spj’pH—l""apM’Nh’"9NM—1]' .

LEMMA A.1 Consider two serial lines defined by expressions (A.l).
Assume that i# 1 or M and p; > p;. Letpjf, pj” andpjf, ﬁjb,j= 1,...,M,
be the steady states of the recursive procedure (4) of [1] applied to lines 1
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and 2, respectively. Then

ﬁjf>pjf5 ﬁjljf-l<pjl']+l’ j:i""’M_z’
= =b b
Pl >l Bl =15

and

pl=pl, B2>p,
13]{_1 <p]j:1’ ﬁ]b >p]b5 .]: 3371

Proof For j=M — 1, the statement of the lemma follows from the
monotonicity of PR with respect to p/s. For j< M — 1, the proof is
obtained by induction (see [10] for details).

The steady states of the recursive procedure (5.19) are defined by the
following equations:

pa+1 = porll — QWipy, vl i1, M),
= pill = Qb T, 1<i< Mi+Mo—1,
pl =l = Quly, . Timy)l, 2< i< My+ My,

vatr1 = porll = @y, a1, Do), (A2)
vl = w1 = QWh v/ A)), 1<i< My+Mo—1,
v/ =ull = QW vt Aich)], 2<i< My+ My,
le= H1, /‘?\4,+M0 = EMi+My»
V{: Vi, V}"’12+M0 = UMy+M,-

Introduce (M;+ M,+2M,—2) two machine—one buffer serial pro-

duction lines, L], i=1,...,M;+My—1, and L}, i=1,... , M+
M, — 1, where the first machine has the isolation production rate ,uf

i

(respectively, u,-f ), the second Mf’+1 (respectively, u}j_l), and the buffer
capacity is I'; (respectively, A;). The following properties hold:

LEMMA A.2 Let PR; be the production rate of line L, i=1, ..., M;+
My—1, and PR! be the production rate of line L}, i=1,..., M+
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M, — 1. Denote “1{/1|+M0 as PR}, y, and u,{42+M0 as PR}y , .- Then,

() PR = (u/u)/mi» i=1,...,M+Moy, and PR!=w/v})/v,
i=1,..., M+ My,
(b) PR, = PR” Vi=1,..., M+ My, Vj=1,..., My+ M,.

Proof The proof of statement (a) is similar to that of Lemma A.8
of [1].
Using Statement (a) of this lemma and Lemma A.8 of [1], we have

PR,=PR,,, i=2,..., M+ M,

i - (A.3)
PR/ =PR!,, i=2,...,M,+ M.

Now we will show, by contradiction, that
PRQ:PRJ’.’, Vi=1,....M{+ My, Vj=1,..., My + M,.

This will complete the proof of statement (b) Suppose that PR}, ., >
PR}y, .- Then, by induction, we prove that uM‘ 5> I/M2 syand py, <
V{hﬂ, V2<j< M,. In particular, N'M.+M0 < Vi, 4, SO DY state-
ment (a) and (A.3), PR} .\, < PRy, .y, and PRy, ., < PR}, .;,
which contradicts the assumption. Therefore, we conclude that
PRy 11 < PRy, .-

Assuming that PR}, ., < PR}, ., and proceeding analogously, we
obtain PR}, ., > PR}, .. Therefore, PR}, ., = PR}, ;. Using (A.3),
we finally conclude that

PR,=PR!, Vi=1,...,M\+ Mo, Vj=1,..., M)+ M.

Proof of Theorem 5.1 Using Lemma A.l and the monotonicity
properties of function Q(x,y, N) (see [1]), it is possible to show that
ar+1(5), and vag,41(s), s=1,2,..., are bounded on [0, 1] and mono-
tonically decreasing and increasing, respectively. Then, the conver-
gence of sequences p,-f(s), ub(s), i=1,...,M;+ M, and yif(s), vl (s),
i=1,...,My+ M,, s=1,2,3,..., follows immediately from [1] based
on that fact that py,+1(s) and va,41(s), s=1,2,3,..., are convergent
(see [10] for details).
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In addition, since, from (A.2),

g1 = pot[l = QWip, Vi o1 Man) I — Q(udy,s gy 1s Tan,)]
= poull — Q(udy s thg, o1, Tar ML — Ol Vi i1 M)

4
- VM2+1 >

by Lemma A.2 and Egs. (5.3)—(5.6), we have

PR§‘11+1 = “]{ll—i-l [1 - Q(/‘I’ﬁl|+2’ I‘Ll{[]—(—l’PMl'i'])]
= PRKI;H-I

= V]lf'12+1 {1 - Q(VII\J'!T{-Z’ V}{'[2+1’ AM2+1)]'

It follows then that
b _ b
l‘l’Mz+2 - UM2+2'

From Lemma A.2, we have

S b S/ b
Ha+2Bmi+2 _ Vip+2VMp+2
KM,y +2 VUM,+2

. b . b —— .
Since pys, 10 = Vip, 1o and p, 42 = Va,+2, We Obtain

S _ .,/
42 = VM|+2‘

Similar arguments can be used to prove

f o .
By 4i = Yagyrin 1= 35, Mo,

b _ b P
Vatiti = Ubgyris 1= 3,..., M.

347

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)
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APPENDIX B: PROOFS FOR SECTION 6
Consider the following conditional probabilities:

Hpgy 1 = Prob{my; produces |my; is not blocked and not starved
due to b}, being empty},
Um,+1 = Prob{my; produces | my; is not blocked and not starved
due to b}, being empty},
i/ (or /) = Prob{m, (or m") produces|m, (or m") is not blocked},
i=1,...,My+ M, (ori: 1,...,M2+M0),
b (or #) = Prob{m] (or m!) produces | m, (or m!) is not starved},
i=1,...,My + M, (01‘i=1,.‘.,M2+M0).
(B.1)

These probabilities play important roles in the proof of Theorem 6. 1

Specifically, we show below (Lemma B.3) that if fiy, ;1 (OF Dar,41), ,u,

(or Vf ) and ,u, 11 (or Vf’H) are known the stationary probability distri-
bution of buffer occupancy, X;/(-) (or Xi»(-)), can be calculated w1th
the error (’)(6) Further, Lemma B.4 shows that fi, 1 (or Zar41), u,

(or Vf ) and u, 1 (or Vb+1) can be evaluated from the steady state of
recursive procedure (5.19), with the error O(6). Therefore, since the
production rate can be calculated as PR = [1-X (Mo -1y (0)] ety 4.0
(or PR = (1 = X3y, po-1y (0)]Vag,40,), the first claim of Theorem 6.1
will follow. The other three claims are proved analogously.

LEMMA B.1 Under Numerical Fact 6.1, the conditional probabilities
fipg,+1 and Upg, 11 have the following form:

@) fpgy11 =por[l — XM"(O)] + O(6),
(®) Tag41 = por[l —XM'( )] + O(8).

Proof First we show that Prob{my; is blocked or starved due to b),,
being empty} is O(6)-close to Prob{my; is blocked or starved due to
by, being empty | mp; is not starved due to b}, being empty}. Then,
taking into account that [, ,; = Prob{mq produces|mp; is not
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blocked and not starved due to b), being empty}, we use this rela-
tionship and the conditional probability formula to prove claim (a).

Claim (b) is proved analogously (see [10] for details).

LEMMA B.2 Under Numerical Fact 6.1, the conditional probabilities

,u,f L2, ulf , 72 can be evaluated as follows:
(@)
il =

pill = X1y (0] +0(6), i=2,...,M,M+2,...,Mi+ Mo,
il = X1y (0)] + O(8), i=M+1;

(b)

({1 = [ (TF=h 1) 0 = 1) Fo oy T T
+(Hr=li+l Hr)(l firgy 1) X M (Tio . Tyy)
S (T2 ) B (T bz ) (1 = 1)

X Xy oy i D) |+ O@), i= 1., My,

Hi = i [1 - E;]L/:I;i{wo (Hr-—l+1 Hr)

x (1= w) X o1y (r,,...,rj_l)]w)(a), =M +]1,

1 —zﬁ;i{""( )

x (1= )X oy (T ,Fj—l)] + 0(9),
 i=My 42, My + My;

©

o

l/i[l — ’?(i—l)’(o)] + 0(5), i=2,...., My, My, +2,..., My + My,
Uil = X1y (0)] + O(8), i= M, +1;
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(Y]
Vt{] [ ;—m( f:l+1 )(1 )X". Gty By -y Aja)
+ (Hfizm Vr) (1- 17M2+1)3}i",...,Mg (Aiy. .o Aagy)
+ Z"fﬁfﬁ% (Hr—H—l u,) DMy (H{;}wz 4o u,) (1 -v)
X ‘?i”,...,(j—l)"(Ai’ nou aAj—l)] } +0(6), i=1,...,M,,
b=

7|1 = S (T w)
X (1 =) X oy Ai. s Ai)] + O6), i=Mr+1,
ul = S (T v)
X (=) X oy (Ao M) + O(6),
{ i=My+2,..., M+ M,,

where Xil,,_,,,-,(h;,...,hj'.) (or /\7,~~,m,ju(h§’,...,h]’/)) is the steady state
probability that consecutive buffers i’,...,j' (ori”,...,j") in the upper
line (or in the lower line) of the assembly system contain hi, ..., h; (or
his....h)) parts, respectively, and [iy, .y and Uu,y1 are given by
Lemma B.1

Proof Invoking Lemma B.1, it is possible to show that the proof of
this lemma is similar to the proof of Lemma A.6 of [1]. Details can be
found in [10].

Consider now (M;+ M,+ My—1) two machine—one buffer lines
L,i=1,...,M, +M0—1 where the first machine is defined by ﬁif ,
the second by b +1» and the buffcr is of capamty I';, and L}, i=

., M, where the first machine 7/, the second 7 ., and the buffer
A. Let Xi(+) (or Xin(-)) be the equlllbnum probability distribution of
buffer occupancy of line L] (or L}). Along with these M+ M,+
My —1 lines, consider the assembly line (i)—(vi) with M+ M, + M,
machines. Let X;(-) (or X«(-)), as before, be the equilibrium prob-
ability distribution of buffer occupancy of buffer i in the upper line
(or in the lower line). Then, we have
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LEMMA B.3  Under Numerical Fact 6.1, the following is true:

Xy =Xe()+0©), i=1,....Mi+My—1,j=0,....T;, (B2)
Xty =Xo(j) +0(6), i=1,...,Ms, j=0,...,A. (B.3)

Proof The proof of this lemma for i=1,... M —1,M;+2,...,
M+ My—1 in the upper line and i=1,..., M, —1 in the lower line
follows directly from Lemma A.7 of [1]. The proof for i=M;, M, +1
in the upper line and i= M, in the lower line is as follows: Consider
assembly system (i)—(vi) with M;+ M+ My—1 machines. Let
Ky = [k]r, .. sk(i—l)”k(i+1)'s . ’k(M1+Mo——1)"k1: . ’kMé’]a 1<i<M;+
Mo—1, 0<ky<Tj j#i (or Ky =[kv,....Kus1po-1y k1755
i1y kgsry's - - skapl, 1<i< My, 0<ky<A; j#i), be an (M;+
M, + M, — 2)-dimensional vector.

Let Y (h}, Ki), 1 <i< M+ M, — 1, denote the probability that there
are /i parts in buffer i, and k; parts in buffer j of the upper line, Vj #4,
and k; parts in buffer / of the lower line, /=1,..., M,. Similarly, let
Yin(h!, Kin), 1 <i< M,, denote the probability that there are A} parts
in buffer i, and k" parts in buffer j of the lower line, Vj# i, and k/ parts
in buffer / of the upper line, I=1,..., M; + My— 1. Since assembly
system (i)—(vi) can be described by an ergodic Markov chain with
states Yy (h], Ki') (or Y (h}, Kiv)) in the steady state we write:

Y (0,Ky) = Z Y:(0, K;/)Prob{m, does not produce |0, K}
ki’
x Prob{Ky — Ky [0 — 0} + Y Yu(1,Ky)
&
x Prob{m] does not produce, m,, produces |1, Ky}

X PI'Ob{I_(,'I — Ky | 1— 0} (OI' Y,‘H(O, Ki") ZZ Y,'" (0, Kiﬂ)
ki”
x Prob{m/ does not produce | 0, K;}
X PI‘Ob{I_(i" — K IO — 0} + Z Y,-I/(l,f(iu)
ki”

x Prob{m; does not produce, m},, produces| 1, Ky}

X PI‘Ob{Kiu i K,'” | 1—- 0}) N (B4)
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where Prob{m does not produce | #, Ki:} denotes the conditional
probability that machine i in the upper line does not produce a part
during a cycle, given that buffer 4] contains h’ parts and buffer &} con-
tains k; parts, Vj# i, and Prob{Ky — Ky | h; — K} denotes the eond1-
tional probablhty of the transition from the state where buffer &/, j # 1,
contains k parts to the state where buffer b’ contams k’ parts, given
that the number of parts in buffer &/ changes from h to k. First, for
the buffers in the upper line, summation over all K;: € R - Mot Mo 2
yields

X (0) = Z Y (0, Ky)Prob{m. does not produce |0, K;}

x Y Prob{Ki — Ky |0—»0}+EY (1, Ky)

K;

1

x Prob{m] does not produce,m,, , produces|1,K;}

x > Prob{Ky — Ky |1 — 0}.

Ky
Since )", Prob{Ky — Ky |0 — 0} =1,

X:(0) = Z Y:(0, Ki)Prob{m. does not produce |0, K;'}

il

+ Z Y:(1, Ky»)Prob{m! does not produce,
k"l

ml,,, produces |1, Ky }. (B.5)

This expression is similar to (A.11) of [1], which makes the rest of the
proof analogous to that of Lemma A.7 of [1].

Lemma B.3 shows that if the conditional probabilities fiyy, 1, Uar,+1,
u,,z—l ., M+ M,, and u,,u,b,z—l ., M5+ My, are known, then
it is possible to determine, approximately, the steady state buffer occu-
pancy probability distributions of X;(-), i=1,..., M;+ My—1, and
X, w(+),i=1,..., M,. The task of determining the values of these condi-
tional probabilities, however, remains. Lemma B.4 shows that they are

given, approximately, by recursive procedure (5.19).
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LEMMA B.4 Under Numerical Fact 6.1,

By +1 = pm+1 + O(6),
Uay41 = Va1 + O(0),
B =ul+00), @=p+00), i=1,..,M+M,

v =v/+06), P=vt+06), i=1,...,M3+ My,

i

where uM1+1,uM2+1,pf,uf?, i=1,...,M;+ M,, and I/if,I/ib, i=1,...,
M, + My, are given by Eq. (5.20).

Proof With the help of Lemmas B.1-B.3, it is possible to show that
the proof of this lemma is similar to Lemma A.10 of [1] (see [10] for
details).

LEMMA B.5 Under Numerical Fact 6.1, the following is true:

Xi(0) =Xy (0) +0O(8), i=1,...,M;+ M,—1,

Xin(0) = Xin(0) + O(8), i=1,...,M,,
where X;1(0) and X;(0) are, respectively, stationary probabilities of
buffer b} being empty in line L and buffer b! being empty in line
L}, and

Xi(0) = O/, pir1, T0), i=1,..., My +Mo—1,

(B.6)
XiII(O) :Q(V{,Vi+1,Ai), l= 1,...,M2.
Proof Using Lemma A.5in[1],
Xi(0) = Qi i1, To)s i=1,..., My 4+ My— 1. (B.7)

By Lemma B.4,

X:(0) = O/, pis1, T) + O(), i=1,....,Mi+Moy—1. (B.S)
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Therefore, from (B.6),
X:(0) = Xi(0) + O(6), i=1,...,M; +My— 1.
Analogously, we can conclude that
Xin(0) = Xin(0) + O(6), i=1,...,M;+ My—1.

Proof of Theorem 6.1 Proof of statement (a) Using Lemma B.3 and
Eq. (6.1), the production rate can be calculated as

PR = puag, 10,1 — X vty 70-1y (0]
= piagy+mo[1 — X(M1+M0—1 (0)] + O(6)
(or PR = v, 4m[1 — (M2+Mo 1y »(0)]
= vtz anol1 = Xty pt0mry 0]+ O(8)).
From Lemma B.5, this may be expressed as
PR = pingy+mo[1 = X (a1, 1p-1y] + O(6)
(or PR = gy, [1 — XMos mo1y'] 0(8))-
Using (B.6), we obtain
ﬁ = /-"M|+Mo[1 - Q(/‘]{JI+M0_15NM|+M09FM1+M0—1)] + 0(6)
(Or I;ﬁ = VM2+M0[1 - Q(Vj\f42+M0~1s UM,+Mys AM2+M0—1)] + 0(6))
Therefore, using Eqgs. (5.21) and (5.19), we conclude that
PR = PR+ O(6).

Proof of statement (b) According to the definition of the average
steady state in-process inventory, E[h;;] can be

Ny

Ellj) =) k- Xyk), j=1,...,M. (B.9)
=0
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From Lemma B.3, we have

Ny
Elhj] =) k- Xy(k) +0(6), j=1,..., M. (B.10)
k=0
By Lemma A.5 of [1],
iy y 1
Xy;(k) = X1;(0) (—~b—>ak, k=1,...,Ny, (B.11)
1=l

where o = ﬁjf(l - ﬁ;’H)/ﬁ]’.’H(l - ﬂ,f). Then,

N[j

- y 1

E[hlj]:§:k-xlj(0)<l_~b )ak+(’)(6), j=1,....,M;. (B.12)
k=0 Hjit

Using Lemmas B.4 and B.5 and Egs. (5.3)-(5.6), we obtain

Ny 71— ub \*
E[ﬁlj]:Zk-le(0)<1 : )(“’ a “f“f)) +0(6),
k=0

- “}7+1 “jl')+1(1 = 1)
j:L"-le- (B13)

From Eq. (B.6),

Ny; S b k
~ - 1 N'(l_u‘-ﬂ)
Elhy) =Y k- Qu,uf 1,N1')( ) < ; ’ +0(8),
’ f\:o PN = i )\ (1 - i)
j=1,...,M. (B.14)

Therefore, we conclude

Elhy] = E[h] + O6), j=1,...,M. (B.15)

Analogously,

Elhy) = Elhy] + O(6), j=1,...,Ma,
Elhoj) = Elho) + O(8), j=1,...,Mo—1.
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Proof of statement (¢) From the definitions of manufacturing starva-
tions in (5.23) and Egs. (5.3)—(5.6), ms;; can be written as

nTS‘U:p},\?(]_I),(O), ]=27-5M1 (B16)
By Lemmas B.2 and B.4, this can be approximated as

#isy = = i + O(8)

Using Eq. (A.2), we have

msy; = — il — Q(ul 1, 1, Tp1)] + O(6)
= wQul 1, Tjim) +0(6), j=2,...,M;. (B.I8)
Therefore, from (5.24),

msij = msij+ O(8), j=2,...,M.

Similar arguments can be used to prove that
msy; = msy + O(6), j=2,...,M,,
mso; = msogj + O(8), j=2,..., Mo,
mby; = mby + O(6), Vij.

Proof of Statement (d) For the probabilities of manufacturing starva-
tions of the assembly machine, mso;, and msq,, from the definition
in (5.23), they can be expressed as

misor, = po1 X1, (0),

m3So1, = Po1 Xaar, (0).
By Lemmas B.3 and B.5, using (5.3)—(5.6), we have

mso1, = porX1a, (0) + O(6) = porXua, (0) + O(6),
mso1, = po1Xaar, (0) + O(8) = po1Xaw, (0) + O(6).
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Therefore, using Egs. (B.6) and Egs. (5.3)-(5.6) yields

msor, = po1Qiy,» Wy, 11, Tary) + O(6),
msor, = poQ(Wigy> Viny 11> Amty) + O(8).
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