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The contribution of this paper is twofold. First we give a generalization of the
S-procedure which has been proven useful for robustness analysis of control systems.
We then apply the generalized S-procedure to derive an extension of the Kalman—
Yakubovich~Popov lemma that converts a frequency domain condition within a finite
interval to a linear matrix inequality condition suitable for numerical computations.
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1 INTRODUCTION

Consider the following condition given by multiple inequalities:

¢'e¢ <0, V¢eg, (1)

G:={CeC"(#0,S¢<0,Vi=1,...,m}, (2)
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where O and S; are given Hermitian matrices. It is trivial to verify that
a sufficient condition for (1) is given by

m
dr; >0 such that O < ZT;S,'. (3)
=1
The S-procedure [1] is to replace the multiple inequality constraint in
(1) by the single inequality in (3) with multipliers 7;. While this
procedure is concerned with the quadratic forms on C", an extension is
available [2] to the case of the quadratic forms on £,, the set of square
integrable vector-valued functions.

In general, the S-procedure on C” is conservative, i.e. (3) is only
sufficient for (1) and may not be necessary. Nevertheless, the condi-
tion (3) can be efficiently verified by searching for the parameters 7;
which is a finite dimensional convex feasibility problem. Indeed, the
S-procedure and the aforementioned extension have been shown to be
useful for developing various methods for control systems analysis and
synthesis [2—4].

When applying the S-procedure, the main concern is whether or not
the procedure is conservative for the particular condition at hand. This
fact gives rise to the following fundamental question: When does the
S-procedure yield an exact (nonconservative) condition? This question
has already been extensively studied by Yakubovich and others. It is
shown (for the nonstrict inequality case) that the S-procedure on C"
1s exact if m <2 and that for m > 2 there are © and S; such that the
S-procedure is conservative [1,4,5]. Moreover, the S-procedure on £;
is known to be exact regardless of the number of constraints m [2].

In this paper, we generalize the S-procedure on C” in the following
manner: note that the set G in (2) can be characterized by

G={CeC"(#0,{"S¢<0,VSe S} (4)

where
S = {ZT[S,‘Z Ti > 0, Vi = 1,...,m}.
i=1

Then the S-procedure is to replace condition (1), defined together with
(4), by the existence of S € S such that © < S. Now, if we consider a
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general class of matrices S instead of the one given above, the
S-procedure is still valid, i.e. the latter condition is sufficient to
guarantee (1). We call this the generalized S-procedure.

The first contribution of this paper is to show conditions on S under
which the generalized S-procedure is exact, and give a specific set S that
satisfies the conditions. The second contribution is to show that the
celebrated Kalman—Yakubovich—Popov (KYP) lemma [6,7] and its
extension to the finite frequency condition simply follow from the gen-
eralized S-procedure. The finite frequency KYP lemma thus obtained
is useful for solving various control problems including the integrated
design of dynamical systems [8] and the computation of the structured
singular value (upper bound) [9].

2 THE GENERALIZED S-PROCEDURE

Let us first introduce the notion of lossless sets, which will turn out to
be a class of S in (4) leading to an exact (nonconservative) generalized
S-procedure.

DEFINITION 1 A subset S of nx n Hermitian matrices is said to be
lossless if it has the following properties:

(a) Sis convex.
(b) SeS=71SeSVr>0.
(c) For each nonzero matrix H € C"™” such that

H=H">0, t(SH)<0VSeS,

there exist vectors (;€C" (i=1,...,r) such that
H=Y"G¢, ¢SG<0VSeS,
i=1

where r is the rank of H.

The following is one of our main results and formally states that the
generalized S-procedure is exact if the set S in (4) is lossless.

THEOREM 1 (The generalized S-procedure) Let a Hermitian matrix ©
and a subset S of Hermitian matrices be given. Suppose S is lossless.
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Then the following statements are equivalent.

() ¢eC<0VCeG:={CeC"(#0,SC<0VS e S}
(ii) There exists S € S such that © < S.

To prove this theorem, the following lemma is useful. The lemma is
a version of the separating hyper-plane theorem [10] and has been
derived in e.g. [11].

LEMMA 1 Let X be a convex subset of C", and F: X — C"" be a
Hermitian-valued affine function. The following statements are equivalent.

(i) The set {x: x € X, F(x) < 0} is empty.
(ii)) I nonzero H=H*>0s.t. tr(F(x)H)>0 Vx € X.

We now prove Theorem 1.

Proof (ii) = (i) is trivial. To show the converse, suppose (ii) does not
hold, i.e. there is no S € S such that © < S. Then, from Lemma 1, there
exists a nonzero matrix H such that

H=H">0, tr((6-S)H)>0VSeS.

Since S is lossless, we have from property (b) of Definition 1 that
tr(SH) <0 VSeS, tr(6H) > 0.

The first condition in turn implies the existence of the vectors (; in
property (c), and the second condition becomes

tr(OH) = iq@g« > 0.
=1

Hence, there exists an index k such that (;@¢ > 0. Noting that §; € G,
we conclude that (i) does not hold.

The significance of Theorem 1 can be explained as follows. Given a
condition as in (1), Theorem 1 may be used to equivalently convert the
condition to a numerically verifiable condition of the form given in
statement (ii) of Theorem 1. To make sure that the conversion is exact,
first we have to characterize the set G as in (4) for some set S. Then we
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need to check if S is lossless. Of course these steps are usually non-
trivial, but can be done for some class of G that is relevant to control
systems analysis. We will do this next.

3 THE FINITE FREQUENCY KYP LEMMA

Consider the class of G described by
Gg:= { [jg{] € C*: f = jwg, for some w € R, |w| < wo}, (5)

where wg > 0 is a given real scalar. Viewing jw as the Laplace operator s,
it is easily seen that this set is related to (input, output) signals ( £, g) of
an integrator. Thus it is not surprising that the set G plays a key role in
the analysis of dynamical systems.

The following result identifies the set S that characterizes the set G
in (5) through the definition in (4).

LEMMA 2 Let a real scalar wy and complex vectors f and g be given.
The following statements are equivalent.

(1) There exists a real scalar w such that f=jwg, |w| <wyp.

(i) [f;]* [% —:’%Q} [jg[] <0,V complex matrices P=P*,Q=0Q* > 0.

Proof Suppose (i) holds. Then

[ﬂ [IQD —:%Q] [é] = (W —wp)(g"Qg) <0

and hence (ii) holds. Conversely, if (ii) is satisfied,
t(ff* —woge")Q + tr(gf* +/fg)P <0

holds for all P= P* and Q = Q* > 0. It can readily be verified that this
implies

[T —wigg" <0, gf* +fg"=0.
It now follows from Lemma I11.4 of [11] that (i) holds.
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Let us now give a result that shows the losslessness of the set S
related to G defined in (5). Its proof is rather technical and will be
given later to keep the presentation streamlined.

LEMMA 3 Let a scalar wy>0 and a matrix F € C*** be given. Define
a subset of Hermitian matrices by

S:= {F*[g —:%Q}F: P=P,Q0=0" >0}.

Then the set S is lossless.

The following theorem is a generalization of the KYP lemma [6,7]
where a frequency domain condition is required to hold only for a given
low frequency band. The result is a simple consequence of the general-
ized S-procedure.

THEOREM 2 Let a scalar wy >0 and matrices A € C™", Be C*"™ and
a Hermitian matrix © € C"™>*™ po given. Suppose A has no
eigenvalues on the imaginary axis. Then the following statements are
equivalent.

(1) The finite frequency condition

N -1 * . -1
[(ij—IA) B} e[le—IA) B}<O, Vil < wo

holds.
(i) There exist Hermitian matrices P, Q € C**" such that Q > 0 and

A B|'[-0 P ][4 B
[1 o] [P wggHI o}+@<0'

If matrices A, B and © are all real, the equivalence still holds when
restricting P and Q to be real.

Proof Note that (i) holds if and only if

e¢<0 Y(eg
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where

g:={[$]e C™™: w # 0, jwx = Ax + Bw for some w € R, |w| < wo}.

Defining

=) e= 17 1)

and applying Lemma 2, the set G can be characterized as
G={(#0:("SC<0VSeS}

where
S = {F*[IQ, _:%Q}F: P=P, Q=0 >0}.

From Lemma 3, the set S is lossless and hence the S-procedure in
Theorem 1 yields (i) < (ii).

Finally, to prove the real case result, assume that there exist
(complex) Hermitian matrices P and Q satisfying the condition in
statement (ii). Then, noting that

(M+J'N)=(M+jN)*>O©[M "N}_[M -N

N M N M]>O ©)

holds for any real square matrices M and N, one can show that the
real parts of P and Q also satisfy the same condition.

A simple change of variables in Theorem 2 yields a characteriza-
tion of another frequency domain condition where the inequality is
required to hold in an arbitrarily given frequency interval.

COROLLARY 1 Let real scalars w, <w,, matrices A€ C™", Be C™"™
and a Hermitian matrix © € C"™>®+™ be given. Suppose A has
no eigenvalues on the imaginary axis. Then the following statements
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are equivalent.

(1) The finite frequency condition
. -1 * . -1
[(jw]—IA) B} @[(jwl—IA) B} <0, Vi <w<w (7)

holds.
(i) There exist Hermitian matrices P, Q € C"" such that Q >0 and

4 B]'[ -0 P+jw.Q][4 B

where w. := (w1 + wy)/2.
Proof Note that w; <w <w, is equivalent to || < dmax Where

d}:w—wc, uf)max = (wz —wl)/2.

Hence, the result follows by applying Theorem 2 to (4, B, ©) with &
via the following transformation:

Jjwl—A=jol— A, A:=A—jwl.

When A, B and © are real matrices, one can show the following:
If inequality (8) holds for

w) =, wy =0,
P:=Pr+jP;, Q:=0r+j0r>0

then the same inequality holds for

wyi=—0, w:=—aq,
P:=Pr—jP;, Q=Qr—JjQ1>0.

Thus the frequency domain condition (7) holds for wy <w < w», if and
only if the same condition holds for —w; <w < —w;.

When 4 and B are real, the finite frequency condition in Corollary 1
can be characterized by an LMI involving real matrices only. Such
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characterization is directly useful for numerical computation. The result
follows from a straightforward application of the identity (6) and hence
the proof is omitted.

COROLLARY 2  Consider the finite frequency condition in Corollary 1.
If A and B are real matrices, the condition is equivalent to the following:

(iii) There exist real symmetric matrices P, Q € R¥ " of the form

_|Pr —P; _19Qr -0
7"[ ] Q‘[Qz QR}’

satisfying Q > 0 and

A B[ -9 P+Jw.Q][A B
I 0 P—-Jdw.Q —wiwrQ I 0

}+®<&

where

o -1, 4 0 _[B o
J.—[In 0}, A.—{O A}, B._[O B}

and ® is defined in terms of the real and the imaginary parts of © as
Jfollows:

Ur Vi J U Vi
0= , +J , R
Ve Wk -V, W
v Ur ~U
®= [ }’ U:: [ y I:I,
vV W U Ug

Ve -V, Wr —-W
V= { K l}, W= [ K 1].
V[ VR WI WR

4 CONNECTION TO THE (D, G)-SCALING

The finite frequency KYP lemma (Theorem 2) shown in the previous
section can also be derived through the losslessness theorem of the
(D, G)-scaling upper bound of mixed x [11]. In that case, we need some
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restrictions on matrix © to allow for an appropriate loop-shifting and
its proof will no longer be self-contained, for the necessity proof relies
on the losslessness of the (D, G)-scaling shown in [11]. Nevertheless, it
would be of interest to outline the derivation of the finite frequency
KYP lemma through the (D, G)-scaling.

Let us first derive the finite frequency bounded-real lemma which is
a special case of the finite frequency KYP lemma. Consider the m x p
transfer function matrix

G(s) := C(sI— A)"'B+ D,

where matrices 4, B, C and D are possibly complex. Suppose 4 has no
eigenvalues on the imaginary axis. Then it can readily be verified [9]
that the following identity holds for all real scalars w and wg > 0:

G(jw) = C(I— 6A)'6B + D =: G(6),

where

6 := w/wy,
Mo [A B} . [ JwoA™! A7'B
" lc D] [—jwCA' D—CA'B]

From the standard p-analysis, we have

IGUW <1, Vw| <wy & |G <1, V8| <1
& det(I—MV) £0, VVEYV,

where

V :={diag(6I,A): 6 e R, A e CP*" || <1, ||A]| < 1}.
Using the losslessness of the (D, G)-scaling with respect to the
uncertainty V consisting of one repeated real scalar § and one full-

block complex matrix A [11], the last condition is equivalent to the
existence of complex matrices D = D* > 0 and G = —G” such that

R b R N O v
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Now, defining
P:=jG*wy, Q:=D/u}

. A B .
the congruent transformation by [ 0 —jwp I} yields
A B]'[-0 P ][4 B4_C<D*I olfc ol _,
I 0 P QBO|T 0 0 1|0 —I]|0 1 '

Clearly, P=P* and Q = Q* > 0. Thus the existence of such P and Q is
necessary and sufficient for the finite frequency bounded-real condi-
tion to hold.

We now consider the condition

[UM_I,,A)_IBT@[(M —IPAWﬂ <0, Vwl<wo.  (9)

Clearly, © must have at least p negative eigenvalues in order for this
condition to hold. On the other hand, if all the eigenvalues are nega-
tive, the condition becomes trivial. Hence, it is reasonable to assume
that © has both positive and negative eigenvalues, in which case, it can

be written as
o= ¢ D]°[1 o C, D
- Cz D2 0 -7 C2 D2 .

Let us also assume that D, is square (p x p) and nonsingular. This is a
restrictive assumption. Using the above expression for ©, the condi-
tion in (9) can be described by
G1(jw) G (jw) < G2(jw) G2 (jw), V|w| < wo,
where
Gi(s) := Ci(sI— A)"'B+D; (i=1,2).

This condition is in turn equivalent to

Gl < 1, Vjw| < wp,  G(s) := Gi(s)Gals) ™.
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It can be verified that a state space realization for G(s) is given by

A — BD;'C, ' BD;!
G(s) = .
(& —DlDz_lCQ ) D1D2_l

Applying the finite frequency bounded-real condition to G(s) and

performing the congruent transformation with [ CI g
2 D

shown that the finite frequency KYP lemma (Theorem 2) holds.

5 PROOF OF THE LOSSLESSNESS OF THE SET S

], it can be

In this section, we prove Lemma 3. The following two lemmas are
instrumental for the proof. Below, (-)! denotes the Moore—Penrose

inverse of a matrix.

LEMMA 4 Let complex matrices R and S be given. Suppose
IR S]|<1, R+R =0.

Then there exists a matrix Q such that

R S .
[5 2 0nes

Moreover, one such Q is given by

Q= -S*R(I+R?)'s.

(10)

(11)

Proof From the supposition, we have ||R|| <1 and hence I — RR* > 0.

Let Q:=(I— RR*)'?. From (10),
RR*+8S* <I= S5* < Q%
This implies (e.g. [12]) that there exists a matrix C such that

§=QC, |c|<1.
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Let
0 := —-S*Q'ROTS = —S*R(I — RR)'S.

Clearly, Q is skew Hermitian. Note that

s oll-llca ereell

b el elllls =l

R
) QH’

where 0 := —QOTRQQ and the last inequality holds due to ||C|| < 1.
It can be verified that

IN

RQ + QR* = 0.

Repeated use of this identity, after some manipulations, yields

R Q[ R Q) _[1 0 o
-Q 0/|-9 Q| |0 I-RU-QONHR | =7
where the last inequality is due to the following fact:
I-Q'>0=0<I-RI-QOHR < I

Hence we conclude that the norm condition in (11) holds.

LEMMA 5 Let complex matrices Z and W of the same dimensions be
given. The following statements are equivalent.

G) WW*<ZZ* and ZW* + WZ*=0.
(i1) There exists a complex matrix A such that
W=2ZA, ||A|<1, A+A*=0.
Proof (ii)= (i) is trivial. To show the converse, suppose (i) holds.
Then there exists V such that

W=2v, |[V[<1.
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This V satisfies
Z(V+V*"Z*=0.

If Z*Z >0, then V+ V*=0 and we are done. So consider the case
Z*Z #0. Let V be a Unitary matrix such that

Zv=[Z, 0],
where Z is full column rank. Define R and S by
[R S } = VY,

* *
where R is square with its dimension equal to the rank of Z and =
denotes irrelevant entries. Then
IR SlI<1<«=|V[=1
R+R =0« Z(V+V")Z*=Z(R+R)Z; =0.
From Lemma 4, there exists Q such that

R S

A= V[-S* 0

}V*, A <1, A+A* =0,

For this A, we have

R S

ZA =[Z, 0][_5* 0

]V*:ZV:W.

Hence we conclude that (i) = (ii).

We are now ready to prove Lemma 3.

Proof Properties (a) and (b) in Definition 1 are easily verified. To show
property (c), let H be a nonzero matrix such that

H=H*>0, tr(HS)<0VSeS. (12)

Since H is positive semi-definite, it admits a full rank factor H= GG*,
G € C*" where r is the rank of H. Defining

W nxr
[Z} =FG, W,ZecC™,
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the latter condition in (12) can be written

tr(WW* —w§ZZ*)Q + tr(WZ* +ZW*)P <0
VP=P, Q=0">0.

It can readily be verified that this condition is equivalent to
WW* <WZZ*, WZ*+ZW*=0.

From Lemma 5, there exists a matrix A € C™" such that
W=wZA, |Al<1, A+A*=0.

Since A is skew-Hermitian with norm less than or equal to one, its
spectral decomposition yields

A= i)\,-uiu;‘, l)\,l S 1, )\+)_\, = 0, Er:u,-u? =1

i=1 i=1

Fori=1,...,r, define

Wi — W —— . ). 7+ n
Ci'—Guh [Zi]'—[z}ul—FCH wl’zlec'

Then H = }";_, (;¢; and
Wu; = woZAu; = w; = \iwoz;.
Hence we have

2
wiwt = Wi\l zizp < wizizl,

wiz; + zw; = wo(Ni + Mi)zizf = 0.
These conditions imply
tr(G¢iS) =¢SG <0 vSeS

and we conclude that S satisfies property (c) of Definition 1.
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6 CONCLUSION

We have given a generalization of the S-procedure, a powerful tool in
control and optimization theories. As an application of the generalized
S-procedure, the finite frequency KYP lemma is derived. These results
are expected to be useful for control systems analysis and synthesis.
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