Mathematical Problems in Engineering © 2001 OPA (Overseas Publishers Association) N.V.

Volume 7, pp. 503-524 Published by license under
Reprints available directly from the publisher the Gordon and Breach Science Publishers imprint,
Photocopying permitted by license only a member of the Taylor & Francis Group.

Existence Criteria for Singular Initial
Value Problems with Sign Changing
Nonlinearities

RAVI P. AGARWAL?* DONAL O’'REGANP

and V. LAKSHMIKANTHAM?®

2Department of Mathematical Sciences, Florida Institute of Technology, Melbourne,

Florida 32901, USA; bDe,oartment of Mathematics, National University of Ireland,
Galway, Ireland;

(Received 16 April 2001)
A general existence theory is presented for initial value problems where our nonlinearity
may be singular in its dependent variable and may also change sign.

Keywords: Singular initial value problem; Sign changing nonlinearity; Upper and lower
solutions; Existence criteria

1. INTRODUCTION

This paper discusses the singular initial value problem

{y’=q(t)f(t,y)» 0<t<T(< o0) (1.1)

»(0) =0,

where our nonlinearity f is allowed to change sign. In addition f may
not be a Carathéodory function because of the singular behavior of the
y variable i.e. f may be singular at y = 0. Nonsingular problems have
been discussed extensively in the literature [1-6]. However only a few
papers [2, 3] have appeared when the nonlinearity f'is singular at y = 0.
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The results here are new and they complement and extend those in
[2, 3]. In this paper to establish existence for (1.1) we approximate (1.1)
by a sequence of nonsingular problems, each of which has a lower
solution o and a upper solution f3,. Using the Schauder fixed point
thecorem we establish the existence of a solution which lies between o
and f, for each approximating problem. The Arzela—Ascoli theorem
will then complete the proof. In addition we also present, in this paper,
casily verifiable criteria which guarantee that (1.1) has a solution
y € C[0, T] with y > 0 on (0, 7].

2. EXISTENCE THEORY

In this section we discuss the initial value problem
{y’ =q(Nf(t,y), 0<t<T(<o0) 2.1
)7(0) =0, '

where our nonlinearity f may change sign. We first present an upper
and lower solution result for the singular initial value problem. The
idea involves approximating (1.1) by a sequence of nonsingular pro-
blems each of which has a lower solution o and a upper solution f,,.
The Arzela--Ascoli theorem will then complete the proof. After the
proof we discuss how to construct the lower solution «. In particular
general criteria will be given which will enable us to verify immediately
that a particular equation has a lower solution «. This has the added
advantage that we do not need to construct a explicitly for each ex-
ample. Also in this section we replace the f§, condition with another
more easily verifiable one. Examples will then be given to illustrate our
theory.

THEOREM 2.1  Let ny € {3,4,...} be fixed and suppose the following
conditions are satisfied:

S0, 7] x (0,00) — R is continuous, (2.2)
T

g€ C00,T], ¢g>0 on (0,T] and l q(x)dx < oo, (2.3)
Jo
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let n € No = {ng,ng + 1,...} and associated with each n
we have a constant p,, such that {p,} is a nonincreasing
sequence with lim,_, p,, = 0 and such that for (2.4)

T
— <t<Twe have (1) f(t,p,) = 0,

Ja € C[0, TN CY(0, T], (0) =0, ¢ >0 on (0,T]
such that for each n € Ny, q(t) f(¢,0(t)) = o'(t) for

te [g, T) and q(t)f(%:,ac(t)) > d(t) for te (0,%),

( for eachn € Ny, 3B, € C[0,T) N C'(0,T] with

Bu(t) = o(t) and B,(t) > p, for t€[0,T] and
J q(t) f(t, B, (1)) < B, (1) for te [T T) with (2.6)

)
n

a0 (3:8,0) < (0 sor e (0.3),

ap = max{ sup B,(¢): ne NO} < 00 (2.7)
t€[0,7]

(2.5)

\

and

{lf(t,y)l < &(y) on [0,7] x (0,a0] with

2.8
g > 0 continuous and nonincreasing on (0, 00). (238)

Then (2.1) has a solution y € C[0,.T) N C'(0, T] with y(t) > a(t) for
te[0,T).

Proof Without loss of generality assume p,, < min,gr/3 7 a(t). Fix
n € Ny. Let t, € [0, T/3] be such that

a(ty) = p, and oft) <p, forte|0,1,].
Define

— pn lf t e [O, t"]
O(,,(t) - {Ot(l) ifte (tnv T] .



506 R. P. AGARWAL et al.

Consider the initial value problem

{y’ =q()fi(t,y), 0<t<T

y(O) = Pps (29)

here

T

(
‘/'(—,?1-‘,/311([)>, y= ﬁ,,(t) and 0 <1 < _;l_

B, (0), ¥ P and T <i<T

f(;l_;vy)’ Oln(t) Sy< ﬁ,,(l) and 0 <1 < l;
fn*(tvy) = ;

T
,f(t,)"), OCH([) Sy < ﬂn(t) and 71_ <t<T

T
,f(t,oc,,({)), y < an(’) and — <¢<T

T T
,/"(-,oc,,(t)), y<ou(t)and 0 <t < —

n n’

Schauder’s fixed point theorem [I, 2] guarantees that (2.9)" has a
solution y, € C[0, T) N C'(0, T]. We first show

u(t) = a,(t) fort€0,7]. (2.10)

Suppose (2.10) is not true. Then there exists 1) < 1 € [0, 7] with

yn(rl) = o‘u(rl)a yn(TZ) < O‘H(T2)
and
yu(t) < o,(t) for € (1,12).

Of course

Il

r(y,, — o) (F)dr. @.11)

JT)

y"(r2) - 0‘!1(‘52)
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We now claim
(Vw — ;) (1) = 0 and a.e. ¢ € (11,12). (2.12)
If (2.12) is true then (2.11) implies
Yu(12) — o(72) 2 0,

a contradiction. As a result if we show (2.12) is true then (2.10) will
follow. To see (2.12) we will in fact prove more i.e. we will show

(yn— o) (1) =0 for t € (t(,72) provided t# t,.
Fix t € (11,12) and assume ¢ # t,. Then y,(¢) — a,(f) < 0. Now either
(1) t < ty; or (i) t > 1.

Case (i) t<t,(<T/3).
First suppose ¢, = T/n. Then

(vn — o) (1) = [q(t)f,f(t,y,,(t)) - “;z(t)]

T T
qU)f(—,%&O) —o(r), 0<t<—
n n
T
— <ttty

L q(t)ﬂtv OC,,(t)) - OC;,(t),

n
T
n

T
q(t)f(gvpn)v 0<t <

Bl

a() St p,),

<t<ty

207

from (2.4). Next suppose #, < T/n. Then t < T/n so we have

00 =) () = a0 1(3.0(0) = 50 = () (30 ) >0

from (2.4).
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Case (ii) t>t,.
First suppose #, < T/n. Then

O = o) (1) = [q(0) £ (1, 90(1)) = 03, (1)]
([(t)f'(_]:,a"(t)) - al/l(t)’ tn <t —

n

(O f(1,0(1)) — (1), %st

«a(fam)—wm <t L

;

n

q(0) St (1)) — o (1),

=0,
from (2.5). Next suppose f, = T/n. Then
(= ) (1) = q(0) [t 0 (1)) — 00,(1) = q () {1, (1)) — o (1) = 0,

from (2.5).

Consequently (2.12) (and so (2.10)) is true, and now since
o(r) < o, (1) for t € [0, T) we have

o(f) < o, (8) < yu(t) for t €0, 7). (2.13)

Next we show

ya(t) < B, (1) forte0,T]. (2.14)

If (2.14) is not true then there exists 7; < 1, € [0, 7] with
yll(rl) = [3,,(1']), y,,(‘Cz) > /‘,,(TZ)
and

() > B,(8) fort e (11,12).
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Notice also that

T

Va(t2) = yal1) :J

T

2 q(s)/;;k (Sa In (S))ds

There are three cases to consider, namely (i) T/n<7t; (ii)
71 < 12 < T/m; and (i) 7y < T/n < 13.

Case (i) T/n<r1.
Then (2.6) implies

T

A\

) = ) = | 66,8, (s < | * B (s)ds

T at

= /)),1(7:2) - ﬁn(tl)v

a contradiction.

Case (ii) 7, <1 < T/n.
Then (2.6) implies
T2

yu(t2) = yu(11) = I

T

1015 5))ds

< Jtz B (s)ds = B,(t2) — Bu(11),

71

a contradiction.

Case (iii) 11 < T/n < t3. Now

(D) =t = [ a0 1(Ep)as <1 (1) - e

and

yn(©2) = (f) = [ a6t Bu(61)ds < u(x2) ~ B, (1)

n T/n
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Combine to obtain

ya(t2) = yu(t1) < B, (12) = B, (11),

a contradiction.
Thus (2.14) holds. In particular for ¢ € [0, 7] we have

a(t) < o (t) < yalt) < B,(¢) < ao; (2.15)

here aq is given in (2.7). We next show

{¥n}.en, is a bounded, equicontinuous family on [0,7].  (2.16)

To see this notice (2.8) and (2.15) guarantee that we have

()l <q(t) forte(0,7),
g(u(1))
and so
+ V(1) < q(t) forte(0,T);
here

(1) du
Mo:L ﬂszmM»

For t,5 € [0, T] we have

pt

1) = (o) = || v

<

r g(t)dz|.

Js

This together with the uniform continuity of G~' on [0, G(ap)] and

a(t) = ()l = GG (1)) = GHG ()]
=G (n(1) = G~ (vu(s))
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immediately guarantees that {y, },cy, is equicontinuous on [0, 7]. Thus
(2.16) holds. The Arzela—Ascoli theorem guarantees the existence of a
subsequence N, of Ny and a function y € C[0, T] with y, converging
uniformly on [0,7] to y as n — oo through N;. Also y(0) =0 and
a(t) < y(t) < ap for t € [0, 7). Fix ¢t € (0,7) and let n; € N; be such
that T/ny <t < T. Let N ={n € Ny :n>n}. Now y,, n € Nj, sa-
tisfies

T

yu(t) = ya(T) - j a(5)/ (5, () ds

T
= (1) = | a(6) s 39

t

Let n — oo through Nj to obtain

T

3(t) = y(T) - j a(5).f(5, y(s))ds.

t

We can do this argument for each ¢ € (0, 7).

Remark 2.1 We could replace (2.7) and (2.8) in Theorem 2.1 with the
following condition:

f ave the i
{ or each ¢ € [0, 7], we have that {8,(7)} is a (2.17)

nonincreasing sequence and lim,_ f3,(0) = 0.

To see this notice that we only needed (2.8) in the proof of
Theorem 2.1 from (2.16) onwards. Here notice we have

a(t) < op(t) < yau(t) < Bu(t) < B,,O(t) for t € [0, 7).

Now lets look at the interval [T/ng, T). Let

R = sun (0 f0x) € [, 7] and o) < 3 < ().

0
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We have immediately that
{yu},=, is a bounded, equicontinuous family on [7/no, T).

The Arzela—Ascoli theorem guarantees the existence of a subsequence
N, of integers and a function z,, € C[T/ny, T| with y, converging
uniformly to z, on [T/ny,T| as n — oo through N,,. Proceed in-
ductively to obtain subsequences of integers

Nll(] 2 Nno+l D2 N/\‘ 2

and functions

T
e € C[‘E,T]

with

ya converging uniformly to z; on [T'/k, T] as n — oo through Nj

and
T
Zk+1 = 2} On [—, T].
k

Define a function y : [0, 7] — [0,00) by y(x) = zx(x) on [T/k, T] and

y(O) =0. Notice y is well defined and a(t) < y(r) < B, (f) for
€(0,7). Fix te (0 T) and let m € {ng,ny +1,...} be such that

T/m <t<T. Let Ni,={n€ Ny :n=m}. Now y,,n € N}, satisfics

m?

T

yult) = (1) - [ 4(5)/(5, yuls)) d.

Jr

Let n — oo through N¥, to obtain

m

¥(1) = (1) - ] (5, (5)) ds.
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We can do this argument for each ¢ € (0, T). It remains to show y is
continuous at 0. Let € > 0 be given. Now since lim,_, f8,(0) = 0 there
exists n; € {ng,ng + 1,...} with g, (0) < ¢/2. Since g, € C[0, T] there
exists d,, > 0 with

ﬁnl(t) <'§‘ for t € [0,6,,1].

Now for n>n; we have, since {f,(¢)} is nonincreasing for each

te (0,7,

Bult) < Buy(1) <5 for 1 €[0,3,].

This together with the fact that o(r) < y,(f) < B,(¢) for t €0, 7],
implies for n > n; that we have

(1) < yu(t) < % for t € [0,0,,].
Consequently
0<u(t) <y(H) < 5<c forre (0,0,]

and so y is continuous at 0. Thus y € C[0, 7).
Remark 2.2 Suppose (2.2)—(2.5), (2.7) and (2.8) hold, and in addition

assume the following conditions are satisfied:

( for each n € Ny we have q(7) f(t,y) = () for
T
(t,y) € [;, T) x {y € (0,00) : y < a(t)} and

q(t)f(,—llr ; y> > o (1) for (2.18)

\ (t,y) € (0,—’7{) x {y € (0,00) : y < a(t)}
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and

( for each n € Np,3B, € C[0, T] N C'(0, T} with
Bu(1) = p, for t€[0,T) and q(1)f(t,B,(r)) < B,(7)

for 1 |11, 7) with g1 (1) < Ay(0

for t € (O,I).
n

(2.19)

Then the result in Theorem 2.1 is again true. This follows immediately
from Theorem 2.1 once we show (2.6) holds i.e. once we show
B.(t) = a(t) for t€[0,7] for each n e {ny,m+1,...}. To see this
suppose it is false for some n € {ng,ny+ 1,...}. Then there exists

T <17 € [O,T] with

/fn(rl) = O‘(Il)v ﬁn(tz) < O((‘Cz) and ﬁu(t) < O((f) forte (T|712)'

There are three cases to consider, namely (1) T/n<r1y;

(i) 11 < 12 < T/nand (i) 1y < T/n < 1.
Case (i) T/n<r1
Then (2.19) and f,(¢) < a(t) for ¢ € (11,12) yields

um>ﬁmn—rmmmszMMﬁmms

JT

> Ifz oc'(s)ds = o(12) — a(ty),

JT
a contradiction.

Case (ii) 1) <12 < T/n. Then

Bo(52) — fo(m1) = ﬁMmm>r%mdlmwys

> [12 o' (s)ds = a(t2) — a(zy),

JT1

a contradiction.
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Case (iii) 1 < T/n < 15.
Then

(D) =i > [ a0 (E 5,0 )as > 1(Z) e,

and

pute) — (1) > j/ 0 B, > o) ~ a5 ).

Combine to get
Bn(TZ) - ﬁn(rl) = OC(‘L'z) - OC(T]),

a contradiction.
If in (2.4) we replace T/n < t < T by 0 < ¢ < T then in this case we
define f;; as follows:

ft,y), an(t) <y < B,(2)

S, B,(1), ¥ = B,(0)
fn*(tvy) = {
f(ta an(t))v Y S a"(t)'

For completeness we state the result.

THEOREM 2.2 Suppose (2.2) and (2.3) hold. In addition assume the
following conditions hold

letne {1,2,...} = Ny and associated with each
n € Ny we have a constant p, such that {p,},

, ) . - (2.20)
is a nonincreasing sequence with lim,_,. p, =0
and such that for 0 < t < T we have q(£)f(t,p,) = 0,
{EWEC[O,T]DC'(O,T], a(0) =0, o« > 0 on (0, T} (221)
such that q(t) f(t,a(t)) = /(1) for t € (0,T) '
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and

for eachn € Ny, 3 8, € C[0, T]n C(0, T]
with B,(t) = a(t) and B,(t) = p, for t€]0,T) (2.22)
and q(1) (1, B,(1)) < B,(t) for t€(0,T).

Finally assume either (2.17) or (2.7), (2.8) (with Ny replaced by Ny)
occur. Then (2.1) has a solution y € C[0, T) N C*(0, T] with y(t) > a(f)
for t € 0, T).

Next we discuss how to construct the lower solution « in (2.5) (and
in (2.18)). Suppose the following condition is satisfied:

let n € Ng and associated with each n we

have a constant p, such that {p,} is a decreasing

sequence with lim,_.«, p, = 0 and there exists a (2.23)
constant ko > 0 such that for I <r<T

and 0 < y < p,, we have ¢q(¢) f(t,y) = ko.

The argument in [2, Chapter 1] guarantees that there exists a
a € C[0, TN CY0,T], 2(0) =0, a(t) < p,, for ¢ € [0, T] with

q(t) flt,a(t)) = o/ (t) forte (0,7) (2.24)
and
q() flt,y) = (1) for (1,y) € (0,T) x {y € (0,00) : y <a(1)}.
(2.25)

If in addition to (2.23) assume the following holds:

f(,») is nondecreasing on (0,7/3) for each fixed y € (0,00).
(2.26)

Then (2.5) is satisfied. This follows from (2.24) if ¢ € [T/n, T), whereas
if 7 € (0, T/n) then (2.24) and (2.26) yield
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In addition it is easy to check that (2.18) also holds.
Combining the above with Theorem 2.1 and Remark 2.2 gives the
following existence result.

THEOREM 2.3 Let ny € {3,4,...} be fixed and suppose (2.2), (2.3),
2.7), (2.8), (2.19), (2.23) and (2.26) hold. Then (2.1) has a solution
y € C[0,T) N C'(0, T| with y(t) > 0 for t € (0, T).

Remark 2.3 In Theorem 2.3 we could replace (2.7), (2.8) with (2.17).

Remark 2.4 One could replace (2.26) in Theorem 2.3 with the more
general condition: there exists ¢ € (0, 7/3) with f{-,») nondecreasing
on (0,9) for each fixed y € (0, 00).

Looking at Theorem 2.1 and Theorem 2.3 we see that the main
difficulty when discussing examples is constructing the f, in (2.6) (and
(2.19)). As a result we present a theorem which removes (2.6) (and
(2.19)) and replaces it with an easy verifiable condition. We first pre-
sent the result in its full generality.

THEOREM 2.4 Let ny € {3,4,...} be fixed and suppose (2.2)—(2.5)
hold. Also assume

g > 0 continuous and nonincreasing on (0,00) (2.27)

{If(t,y)lsg(y)Jrh(y) on [0,T] x (0,00) with

and h >0 continuous on [0, 00).

Also suppose there exists a constant M >0 with G™'(M) >
sup;epo,7) (¢) and with

T M ds 2.28
00 < | a0

holding; here G(z) = [; du/g(u) (note G is an increasing map from
[0,00) onto [0,00) with G(0)=0). Then (2.1) has a solution
y € C[0, T) N C(0, T with y(t) = a(t) for t € [0, T).
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Proof Choose ¢ > 0, ¢ < M with

T iy M ds 2.2
J, seoas< | (RN CIRIONZ IO M

Let mp € {3,4,...} be chosen so that G(p,,,) < ¢ and without loss of
generality assume n1g < 9. Let o, be as in Theorem 2.1 and again we
examine (2.9)" with

f(g,a-'(m), y>G(M) and 0<r< T

f(t,G7'(M)), y =G (M) and ngg T

T
/G}) o (1) <y <GH(M) and 0 <7< —

fi(ty) = -
fit,y), o, () <y <G (M) and — <1< T

T
St 0,(8), v <ou(t) and o <t<T

T
f(%lcx,,(t)), y<o,(t) and 0 <t < o
As in Theorem 2.1, (2.9)" has a solution y, with
yu(t) = o, (1) = a(r) for t€[0, 7).
Next we show
yu(t) < GT' (M) forte0,T). (2.30)

Suppose (2.30) is false, then since y,(0)=p, there exists
71 <12 € [0, T] with

pu < y"(t) < G—I(M)
for ¢t € (11,12), ya(t1) = p, and y,(12) = G"(M).
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Now for ¢ € (11, 12) we have

i (e0) < 2000 {1+ RN,

since if te€(0,T/n) then f(t,y,(2)) =AT/n,yu(t)) < glyu(2)) +
hn(t)), whereas if ¢ € [T/n,T) then f;(t,u(1)) =it 3a(1)) <
g(n(1)) + h(ya(1)). Thus

A0 < g1 10

} for t € (11, 12).

20n) ST T 20
Let
() du
mn=L 5= GO (0)
and so

(v
V(1) < q(t){l +%—%} for t € (11,12).

Integrate from 1, to t; to obtain

() ds
L (1 + (h(G~'(s))/8(G~1(s)))]
vn(12) ds
Jc(p,,) (1 + (h(G~'(s))/g(G~"(s)))]

T M dS
qu®“<L[rumowmmm4mm.

Consequently v,(12) < M s0 y,(t2) < G~'(M). This is a contradiction.
Thus (2.30) holds and so

a(t) < oy(t) < yu(t) < GT' (M) for t€[0,T). (2.31)

Essentially the same reasoning as in Theorem 2.1 from (2.16) onwards
completes the proof.
We also have the following result.
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THEOREM 2.5. Let ng € {3,4,...} be fixed and suppose (2.2), (2.3),
(2.23), (2.26) and (2.27) hold. In addition assume there is a constant
M > 0 with

[Tq(x)dx < [M ds

J0 Jo [1 + (/1(G“(s))/g(G—l (v)))] (2.32)

holding; here G(z) = [;du/g(u). Then (2.1) has a solution
y € C[0, TN CY(0, T) with yp(t) > 0 for t € [0, T).

Proof This follows immediately from Theorem 2.4 once we show
G~' (M) > a(t) for each t € [0, T]

(o is described after (2.23)). Suppose this is false. Then since «(0) = 0
there exists 7| < 1 € [0, 7] with

0<a(f) <G ' (M) forte (t,12), a(t) =0
and o(ty) = G™'(M).

Notice (2.23) (see (2.24)) implies
o (1) < q(0) f(t,a(t)) for t € (z1,72),

so we have

() MO oo
£(a(0) S"(’){' +g(a(,)>} for 1€ (z,72)
Let
o(r)
(0= <= 6
SO
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Integrate from 7; to 7, to obtain

@) ds
.[0 [1+ (A(G~())/8(G~1 ()]

B v(t2) ds
h Jo (14 (h(G~"(s))/8(G~"(5)))]

T M dS
< Jo 9(s)ds < L [T+ (HG1(5)/2(GT)]

Thus v(12) < M, so a(t2) < G~'(M), a contradiction.

Remark 2.5 In Theorem 2.5 we could replace (2.23), (2.26) with Egs.
(2.4) and (2.18).

Next we present some examples which illustrate how easily the
theory is applied in practice.

Example 2.1 The initial value problem

! — oy B
{y YU+ + 4, 0<t< T(< ) (2.33)

¥(0)=0, 0,>0, A>0

has a solution y € C[0, 7] N C'(0, T] with y(¢) > 0 for ¢ € (0, T} if

* ds
< J . 2.34
0 1+ [(x+ l)s](ﬂw)/(““) + Af(o + ])S]u/(aﬂ) ( )

To see this we will apply Theorem 2.5 with
m=3 q=1, g)=y"% hy) =y +4,
together with
1
p,=— and ko= 3%
n

Clearly (2.2), (2.3), (2.26) and (2.27) hold. Also for n € {3,4,...},
(T/n) <t < Tand 0<y<p, we have

) ft,y) 2y =2 n* 23,



522 R. P. AGARWAL et al.

s0 (2.23) is satisfied. From (2.34) there exists M > 0 with

< [M ds
Jo 1+ [(0{ + I)S](/"“"“)/(“’H) + A[(OC + l)s]a/(aﬂ)’

so now (2.32) holds with this M since

G(z) = il N 1 /a
(4)—a+l, so G7(z) = [(o-+ 1)z] 77

Existence of a solution to (2.33) is now guaranteed from Theorem 2.5.

Example 2.2 The initial value problem

td
)= —_— ﬂ-—
{} <y0+Ay /l), 0<t<T(< o0) (2.35)

with a>0,0>20, >0, >0, 0<f<1, 420 has a solution
y € C[0, TIn C'(0, T] with y(f) > 0 for t € (0, T).
To see this we will apply Theorem 2.3 with
_ _ _r 4
m=3 q=1, g0) =15 h)=4"+4

together with

T 1/0
Py = (m) and k() = 1.

Clearly (2.2), (2.3), (2.8) and (2.26) are satisfied. Also for
ne{3,4,.. .}, (T/n)<t<Tand 0 <y<p, we have

, 1 *1
q(f)./(r,y)zym—b G) = A=A+ —1=1

n
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Thus (2.23) holds. It remains to check (2.7) and (2.19). Let
ﬂn(t) =at+p,
where a > 0 is chosen so that

Tot—()
a

+A(@T+p3) —2—a<0 and 1+ A(aT+ p;)* —a<0;
(2.36)

the existence of an a > 0 so that (2.36) holds is immediate since
0<pf<1. Clearly (2.7) is true. Also if ne{3,4,...} and
(T/n) <t < T we have

toc

Q(l)f(t, ﬁn(t)) - ﬁl’l(t) S [[at]o + A(at + pn)/} - l:| —a

o—0
<0 +A(aT+p3)f —A—a
<07

whereas if n € {3,4,...} and 0 < ¢ < (T/n) we have

w01 (21,0) -0 = [ (3) S+ Alar 0~ 3] -
< [(,H 1) + A(aT + p3)* — /1] —a

=1+ A(aT+p;3)f —a
<0.

Thus (2.19) holds. Existence of a solution to (2.35) is now guaranteed
from Theorem 2.3.
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