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For a large variety of new products, the Bass Model (BM) describes the empirical cumulative-adoptions
curve extremely well. The BM postulates that the trajectory of cumulative adoptions of a new product
follows a deterministic function whose instantaneous growth rate depends on two parameters, one of
which captures an individual’s intrinsic tendency to purchase, independent of the number of previous
adopters, and the other captures a positive force of influence on an individual by previous adopters.
In this paper, we formulate a stochastic version of the BM, which we call the Stochastic Bass Model
(SBM), where the trajectory of cumulative number of adoptions is governed by a pure birth process.
We show that with an appropriately-chosen set of birth rates, the fractions of individuals who have
adopted the product by time 7 in a family of SBMs indexed by the size of the target population
converge in probability to the deterministic fraction in a corresponding BM, when the population size
approaches infinity. The formulation therefore supports and expands the BM by allowing stochastic
trajectories.
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1 INTRODUCTION

In the past several decades, new-product diffusion models has been an active area of research
in marketing (Mahajan et al. [11]; Mahajan and Wind [12]; and Rogers [16]). Such models
are useful because they can provide insights into the timing of initial purchase of new
products by consumers. Much of the work in this area has been spawned by an influential
paper of Bass [5], in which it was assumed that the instantaneous rate of adoption of a
new product (or technology) at any time epoch depends on two forces, one is an intrinsic
tendency for an individual to make a purchase (given that the individual has not yet adopted),
independent of the number of previous adopters in the target population, and the other is
a positive influence by previous adopters on the remaining individuals in the population
(via, e.g., word of mouth).

The mathematical formulation of the Bass Model (BM) is as follows. Let p and g be
two parameters that represent the extent of the above-mentioned two forces, let m be the
size of a target population, and let N(f) be the cumulative number of adopters of a
new product by time ¢ Then, under the assumption that N(f) is a continuous function
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with N(0) = 0, Bass postulates (Bass [5], p. 217) that the following differential equation
holds:

PO pn—nol[p+In0) 120 (1)

That is, the growth rate of N(f) at time ¢ is equal to the product of m — N(f) and
p + (g/m)N(t), where m — N(¢) is the size of the remaining population and p + (g/m)N () is
the instantaneous adoption rate of every individual in the remaining population.

Notice that if we let F(#) be the (continuous) fraction of individuals who have adopted the
product by time ¢, i.e., let

Foy="2, @

then, Eq. (1) has the following equivalent form:
JO=0-FOllp+qF@®], t=0, G)

where f'(f) denotes the derivative of F(¢). It was shown in Bass [5] that the solution of (3) is
given by

F 1 — e~ (P+o) 0 4
®= W, t>0, “4)

and that this S-shaped solution (or equivalently, its bell-shaped derivative f()) provides
excellent empirical fit for the timing of initial purchase for a wide range of consumer dur-
ables.

While the deterministic BM is parsimonious, there also has been a common belief
(see, e.g., Eliashberg and Chatterjee [7]) that it would be of interest to have an appropriate
stochastic version of his model. In this paper, we formulate a stochastic counterpart of the
BM where the trajectory of cumulative number of adoptions is governed by a pure birth
process. Our purpose is to show that with an appropriately-chosen set of birth rates, the
fractions of individuals who have adopted the product by time # in a family of the formulated
stochastic Bass models indexed by the population size m converge in probability to the
solution (4) of a corresponding BM, when m approaches infinity.

Our formulation is inspired by a model introduced by Taga and Isii [19] for the study of the
pattern of communication between an information source and individuals within a social
group. Specifically, Taga and Tsii assume that transmission of a given piece of news can take
place either directly from the source to an individual or between individuals within the group;
and that the growth of the number of individuals who have received the news follows a pure
birth process whose birth rates are functions of two parameters that correspond to these two
modes of information transmission. Observe that while the intended application context is
different, the stochastic assumptions in Taga and Isii’s model are remarkably similar in spirit
to the deterministic ones in the BM. A primary motivation of this paper is to show that with a
proper scaling of the birth rates in Taga and Isii’s model, this observation can be formalized
as a convergence result. By bridging these two families of models together, we hope to gain a
better understanding of the BM in terms of having micro-level stochastic interactions
amongst individual adopters (see, e.g., Roberts and Lattin [15]).
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In Section 2, we describe the model and state the convergence result; the proof is given in
Section 3. In Section 4, we comment on future work.

2 THE MODEL AND THE CONVERGENCE RESULT

Consider a product that has a potential market size of m individuals. We assume that each
individual in this potential market, which will be referred to as the target population, will
eventually adopt (or purchase) exactly one unit of the product. The timing of this adoption is,
however, uncertain. Let 4,,(f) be the cumulative number of adoptions by time #, with
An(0) = 0. Following Taga and Isii [19], we assume {4,,(f), t > 0} is a pure birth process.
Our specific assumptions on the birth rates are described as follows.

If an individual has not yet adopted the product by time #, then we assume that the
“intrinsic” probability for this individual to adopt the product during the time interval
(t, t + h) is (independently of everything else) given by

oh + o(h). (5)

If, on the other hand, an individual has already adopted the product by time ¢, then we assume
that the probability for this individual to “induce” any other member of the remaining
population at time ¢ to adopt in (¢, ¢ + /) is (independently of everything else) given by

——ﬂ_—Ih +o(h). ©)
(If m = 1, we define f/(m — 1) as 0.)

Thus, each individual in the target population has an intrinsic adoption rate and an
induction rate, given by o and f respectively; moreover, the induction rate f associated
with each individual is apportioned uniformly to all other members of the population.
The parameters o and f correspond conceptually to the parameters p and g in the
deterministic BM.

Suppose 4,,(t) =j, where 0 <j < m — 1. Then, according to (5) and (6), the probability
for any individual in the remaining population at time ¢ to adopt the product in (¢, t + ) is
given by [a + jf/(m — 1)}k + o(h). Since the size of this remaining population equals m — j,
the probability for 4,,(f) to increase to j + 1 (from j) in (¢, t + &) is given by A,k + o(h),
where

lmjs(m—j)(oc+Lj>, j=0,1,...,m—1. @)

m—1

Since the growth of 4,,(f) stops upon reaching level m, it follows that the range for j in (7)
can be extended to cover the case j = m as well. We will refer to 4, as the birth (or diffusion)
rate at state j, and the resulting pure birth process {4,,(¢), ¢ > 0} with birth rates {Amj}j’-’;o as
the Stochastic Bass Model (SBM).

Paralleling (2), define

Am(t) .

Bu(t) = e ®)
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that is, let B,,(¢) be the fraction of individuals who have adopted the product by time ¢ in an
SBM with population size m. Then, our result is the following weak law for B, ().

THEOREM For t > 0 and any positive &,

Jim P{|Bu(?) — Foo(1)l > £} =0, ®

where F(t) is given by

1— e—(a+[i)r

Foo(2) ='1W,

(10)

the solution of (3) in a corresponding BM with parameters p = o and q = fi.

We note that the difference between the SBM and Taga and Isii’s original formulation is
that in the latter, the probability in (6) is defined as fh + o(h) (Taga and Isii [19], pp. 27-28).
The apportionment, or scaling, of f in the SBM parallels the term g/m in (1) (apart from
using m — 1 in place of m); and it is this scaling of Taga and Isii’s model that accounts for the
convergence in (9).

The SBM is also closely tied to several well-known models in the theory of epidemics
(Bailey [2]; Bartholomew [3], Chapters 9 and 10; Bartlett [4]; and Gani [9]). In particular,
with & = f# and one initial adopter, but without the factor m — 1 in (6), the SBM becomes the
simple stochastic epidemic or the logistic model (Bailey [1]; Haskey [10]; and Mansfield and
Hensley [13]). The simple stochastic epidemic model with a large population of susceptibles
has been studied in Williams [20]. Williams observed that the epidemic curve (i.e., the
derivative of expected cumulative number of infectives over time) is quite different from that
in a corresponding deterministic model (see also Feller [8]), but succeeded in showing that
if the number of initial infectives is also allowed to increase, then there is asymptotic
agreement.

3 PROOF

The proof consists of two steps. In the first, we show that
lim E[B,,()] = Foo(2); an
m—00

and in the second, we show that

lim Var[B,(?)] = 0. (12)

The convergence in (9) is then a standard consequence of Markov’s inequality:

E{[Bu(1) = Foo (O}

g2
_ Var{Bu()] + {E[Bu(t)] — Foo()}
- 5 :

P{|Bn(t) — Foo(1)] > €} <

Below, we will establish (11) and (12) via several intermediate lemmas.
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We begin with the observation that E[B,,(f)] = F,,(f), where F,(¢) denotes the distribution
of the adoption time of an “arbitrary” individual in the target population. This follows
because if 4,,(f) = k, where 0 < k < m, then the conditional probability for a randomly-
selected individual to have adopted the product by time ¢ equals k/m. We will henceforth
replace E[B,,(f)] by the equivalent notation F,,(¢) and work with the associated adoption-time
interpretation.

Next, we note that explicit formulas for F,,(¢), for any m > 1, can be obtained from
standard results for the state distribution of pure birth processes (Bartlett [4], Section 3.2;
Taga and Isii [19], p. 28; Bartholomew [3], p. 252; or Ross [17], p. 324). Specifically, it can
be shown that F,(¢) has the form:

m—1
Fu®)=1=Y ame ™', >0,
=0

where the a,,;s are functions of the birth rates. As examples, we have (details omitted):

Fi(=1- e,
Rl =1- a__ﬁﬁe“z"" - i ﬁe—(“Jrﬁ)t,
1 _L a B oy 20+ B gy
BO=l -G pa=p®  “a=p°  m—p
and
1 _ _2ﬁ3 —dat Zﬂz —3(a+p/3)t
= - G- pGa =2’ G PG B°
_ —98 22y _ 3%+ 2B _ipy
Bo—28)(Ba— p) 30— B ’

The expressions, however, become extremely complicated as m increases. The key idea in
our proof of (11) is to bound the F,,s from above by the solutions of a corresponding family
of BMs.

Denote by f,,(¢) the density of F,,(f). The starting point of our bounding argument is the
following lemma.
LEMMA 1 For m = 1, we have
h@) =l -F @], t=0;
and for m > 2, we have

Jn@) [1 = Fu@lle+ B, Fw(®), 120, (13)

where

Pp=—". (14)

m—1
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Proof The statement for m = 1 is an immediate consequence of the fact that F is the
exponential distribution with parameter o.
We now assume m > 2. With A4,,(f) replacing j in (7), we have

Ama, oy = [m— Am(t)][a + ;é_lAM(t):I; (15)

and upon taking expectations and dividing by m, this becomes

ElAma, ] _ aE[m — Am(1)] " BE{[m — Am(D)4m (1)}
m m m(m — 1) ’

(16)
By conditioning on 4,(f), we have

E[’lmA,,,(t)] —

m—1
N kPl () = ).
m m pard

For 1 <j < m, denote by f,,;(f) the density function of the jth adoption epoch; then, we
clearly have:

/q'mkP{Am(t) = k} =fm.k+l(t)

and
LS = tt)
mj____l mj m\t).
Therefore,
E[Ama, )] _
— = fu(). 17
Next, note that
E[m "'Am(t)] 1 _ E[Am(t)] 1 _
e 1 — == 1 — F,(1). (18)

Finally, since E{[4.(£)]*} > {E[4n(1)])?, we have
E{[m — An())An()} < E[m — Apn()IE[An()];
and therefore,

E{lm — An(OMn(®)} _ _m E[m — An(] E[An ()]
m(m — 1) “m-—1 m m

=" _[1 = Fy())Fm2). (19)
m-—1

Substitution of (17), (18), and (19) into (16) now establishes (13). |
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Observe that if we replace the inequality in (13) with an equality, then we will have a
corresponding differential equation that is of the same form as (3). This observation naturally
suggests that we compare F), against the solution of this corresponding differential equation.

Formally, define, for every m > 2, a BM with parameters p = o and ¢ = f,,; and denote by
Gu(?) the fraction of individuals who have adopted by time # in this model. Then, according
to (3), the Gys satisfy

gn(®) = [1 — Gu()le + B, Gu(], =0,
where g,,(#) denotes the derivative of G,,(?); moreover, in light of (4), we have

1 — e~ (+Bu
1+ (8, Jo)e= Bt

Gu(t) = (20)

To have full correspondence between the G,,s and the F,s, we further define

|1, fort=>0,
Gi() = [ 0, otherwise.

The function G; can be viewed as the limiting solution of the BM when g — oo (for any
fixed p).

Let D; and D, be two distribution functions and denote by Dy and D,, respectively, their
corresponding tail distributions (i.e., let Di(f) = 1 — Di(f) for i = 1, 2). Recall that D, is said
to be stochastically less than D, whenever the inequality l_)l(t) < Dz(t) holds for all ¢ > 0.
In the next lemma, we show that G, is stochastically less than F,.

LEMMA 2 Forall m > 1, we have
Gu(t) < Fu(®), t20. 1)

Proof Since G(t) =0 for all ¢ > 0, (21) is clearly true for m = 1.
For m > 2, we first rewrite (13) as

Jn®
T Fnlla+ BuFn @] =~ (22)

Next, it is easily seen that the left-hand side of (22) can be expanded as:

1 Sm(®) B Sn(®)
a"‘ﬁml—Fm(t) O(+ﬂm0(+ﬁmFm(t).

(23)

Now, substituting (23) into (22) and integrating both sides of the resulting inequality from 0
to ¢ yields (after a little bit of algebra)

1 ln( 1 —F,@® ><t
a+ B, \1+ B, /0Fu()) ~
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It follows that

_L=Fnl) e
1+ (Bn/0O)Fm(t) ~ ’

which, after a rearrangement, becomes

1 — e~ C@+B! "
Fu(t) < 1+ (B, /a)e=CHht " (24)
Since the right-hand side of (24) is G, (?) (see (20)), this proves (21). |

Lemma 2 can also be rephrased as that the function G,, lies entirely above the function F,,
for every m. In the next lemma, we consider the region bounded between G,, and F,,; and we
show that as a function of m, the areas of these regions converge to 0 when m increases to
infinity.

LEMMA 3
(o0
1mj[%m—mmw=
m—00 0

Moreover, the convergence is monotone.

Proof Clearly,
me%nmw=me—®wm 25)

Denote by 1, the mean of a given distribution function D, and recall the standard formula
Up = f0°° D(t)dt. Then, the right-hand side of (25) can be evaluated as UF, — Mg, provided
that both u, and pg, are finite. We will examine uy and g, separately.

We begin with pg . Since ug = 0, we will consider ug, for m > 2. From (4), it easily
follows that

(p+ g)e” 7o

F() = —p T e

(26)

By differentiating (26) with respect to g, it is straightforward to show that F(f) is strictly
decreasing in g (for fixed p and #). Since f,, (see (14)) is strictly decreasing in m with
lim,,—, 0 B,, = B and since F(¢) is continuous in g, it follows from (20) that for all z > 0, the

G,,(f)s converge monotonically from below to Foo(f), where Foo(f) is given by (10). With
p=aand g = f in (26), it is easily shown that

Hp = j Foo(t)dr = Bln(“ - B), @7)
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and with S, replacing f in (27), we also have

* = 1
lg, = L Gu(t)dt = Em(“_i;_cﬁ_m)

It follows that ug, is strictly increasing in m with
lim pg = pp, < 00. (28)
m—>00

We now turn our attention to p . For 1 <j < m, denote by 4,, the jth adoption epoch;
then,

l m
=— E E[A4,,]. 29
HUF, m 2 [ j] (29)

Next, for 1 <i < m, denote by X,,; the ith inter-adoption time; then, since the X,,s are
exponentially distributed and since 4, = > _; Xini, We also have

j-1

1

Eldm) =) -, (30)
i=0 mi

where the A,,;s are given by (7). Substitution of (30) into (29) now yields, after an interchange
of the order of summation,

122 1
B = o 2 BT = D G1)

It follows easily from (31) that uy = 1/a and

RYEEY
tr=75\% a+p)

therefore, we have pp, > pp,. We will next consider py for m > 2, and prove that the
sequence of . s decreases monotonically to . (Actually, we conjecture that the F,s
decrease stochastically to F, but have been unable to prove this stronger result.)

For 0 <y <1, define

¢(y) = m;
and observe that in terms of the function ¢, (31) can be written as ur, = E[¢(U,)], where
U,, is distributed uniformly over i/(m — 1) for i =0, 1,...,m — 1. Now, consider U,, and

U1, for any m > 2; and observe further that the probability-mass function of U, is,
intuitively, more “spread out” than that of U,,4,. Since the function ¢ is strictly convex in y,
these observations naturally suggest that the following inequality should hold:

E[p(Un)] > E[¢(Uns1)]- (32)

We will prove (32) via a coupling argument.
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The first step is to construct U,, from U,y as follows. Let U, = Uy if U,y equals
either 0 or 1; and let

-1 i
l——, with probability L
Un={M7 1 m i
T with probability 1 — -
if Upy1 =i/m, fori=1,...,m — 1. Note that for this construction to be valid, the resulting

U,, must satisfy P{U,, =i/(m— 1)} = 1/m for all i =0, 1,...,m — 1; this can be easily
verified, and we omit the details.
Next, observe that the coupling above can be restated as

Uy = m+1 Zm+l, (33)

where, by definition, Z,, = 0 if Uy, equals either 0 or 1, and

— 71 with probability —
7 .= m(m — 1) m
T d ith probability 1 d
m, wit] probaoility ‘—'n—1
if Upy1 =i/m, fori=1,...,m — 1. Moreover, it is easily shown that we have
E[Zm+l | Um+l] =0 (34)

with probability 1. (Relations (33) and (34) show that U,, is greater than U, in the sense of
what is known as convex order.) It now follows in a standard manner from (33), Jensen’s
inequality, and (34) that

E[¢(Un)] = E[¢(Un+1 + Zn41)]
= E[E[¢(Un+1 + Znt1) | Unt]
> E[¢(Un+1 + ElZns1 | Uns1))]
= E[¢(Un+1)];

and this proves that for m > 2, ur is strictly decreasing. In addition, recall that
Up, = 1/a > pp,; therefore, it also follows that up is finite for all m.
To determine the limit of the y s, observe that (31) can be written as

m—1 1 1

=y +——, 35
Ug, " sml+ma+[3 (35)
where

1 A 1
! Em—l;a-i—ﬁi/(m— n’
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Now, the fact that the function ¢ is decreasing implies that s,,—; is an upper Riemann sum of
¢ in the interval [0, 1]. Since ¢ is integrable, it follows that s,,_, converges to

1 _ 1_1_ _l 0(+B
]o¢(y)dy_Joa+ﬁydy_ﬁln( o )

which is us_ (see (27)); and this, together with the fact that the second term in (35) converges
to 0, proves that

lim jig, = iz, (36)

m—0o0

Finally, we return to (25) and rewrite its right-hand side as

L [Fn(®) — GO dt = (s, — ) + (tr, — M, )-

It now follows from (36) and (28) that both ur — pp_ and up — pg, converge to 0 as
m — oo. Since we have also shown that the convergence is, for both cases, monotone, this
completes the proof. |

We are now ready to prove (11).

Proof of (11) We will establish, for all ¢ > 0, the following two inequalities:

Foo(f) = limsup F,,(2) (37
m—00
and
Foo(?) < liminf F(2). (38)
m-— 00

The convergence in (11) then follows from (37) and (38), since

Foo(?) < liminf F,,(f) < limsup F,,(f) < Foo(?)
m—00

m—00

(see, e.g., Rudin [18], pp. 56-57).
Consider (37) first. Since Gy,(#) > F,,(¢) (Lemma 2), we have

lim sup G,,(f) > limsup F,,,(¥), ¢=>0. (39)

m—0o0 m-—> 00

In the proof of Lemma 3, we showed that for all # > 0, G(?) converges monotonically from
below to Fo(t). The convergence of G,,, and hence of G,,, implies that

lim sup G,,(¢) = lirréQ Gu(t) = Foo(2);
m—

m—00

and this, together with (39), proves (37).
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We now turn our attention to (38), which we prove by contradiction. Consider an arbitrary
fixed ¢, say *; and suppose (38) does not hold at #*. Then, there exists a positive ¢ and a
subsequence {n;};-, of positive integers such that

F,(t*) < Foo(t") — ¢ (40)

for all k£ > 1. Now, consider the function G,, and recall from Lemma 2 that G, (f) = F,,(?)
for all ¢+ > 0. Moreover, as a consequence of Lemma 3, we have

00

lim J [Go (£) — Fy,(D]dt = 0. @1
k—o00 Jq

We will show that (40) is in contradiction with (41).
Suppose (40) holds. For any given k, define a distribution function H,, as follows:

Gy (), for 0 <t < G,'(Fy(t"),
Hy(t) = | Fo (1), for G;\(F, (") <t <1, (42)
Gp (), fort* <t < oo,

where the superscript “—1” in G;k' denotes functional inverse. Since Gy, (f) and H,, (t) agree
att =G, Y(F,,(¢*)) and at t = * and since the function G,,, is strictly increasing in , we have
G (f) = F () for G, Y(F,(t)) <t < t*; and therefore, G, (f) > H,(f) for all ¢>0.
Moreover, since the function F,, is strictly increasing in ¢, so that F, (f) < F,(¢*) for
G, W(F,,(t) <t < t*, and since G,,(t) > F,,(?) for all ¢, we also have that H,, (1) > F,,(f)
for all ¢ > 0. Thus, the function H,, is, by construction, sandwiched between G,, and F,,.
It follows that

00

j:o[Gm (1) = Fu(O)dt = jo [Gou (1) — H (D)1 43)

Next, observe that
G, (Fu (1) < G (Foo(t*) — 8) < F) (Foo(t*) — &) < Fi) (Foo(t%)) = 1

and that these inequalities, together with (42), (40), and G, (f) > F(?), imply that the right-
hand side of (43) can be further bounded as follows:

00 r*
J [Gn, () — Hy (1))dt = [Gy, (&) — Fp, (¢)]dt
0 JG Fy ()

ot*

> (G, (1) — Fu, (£)]dt

I (Foo(t)—2)

ot*

> [Foo(t) — (Foo(£*) — &)]dr. (44)
JFZ (Foo(*)-2)

Finally, since F, is strictly increasing and since F!(Foo(f*) — €) < *, the last bound in (44)
is positive; moreover, this lower bound is independent of k. We have, therefore, arrived at a
contradiction to (41). This establishes (38), and the proof is complete. n
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Denote by 0,,(¢) the variance of the total number of adoptions by time # that is, let

Om(t) = Var[4,,(¢)]. It is easily seen that 6;(t) = F;(¢)[1 — F1(?)]. For m > 2, we derive in the
next lemma a formula for d,,(¢).

LEMMA 4 For m > 2, we have

m2

p

m

5m(t) = ﬁ

{1 = Fu(@llec + BEn(O] = fn(D} + 7 {fn(®) — o1 = Fpu ()]}, £=0.  (45)

Proof Upon taking expectations, (15) becomes

Elnay 0] = 3tm — ELAW0]) + —L— (mEL4,0) — E(U4, 0P,

which, after a rearrangement, yields

ElAnOF) = "% n — B O] + mEUA (0] ~ = Bl o},
Hence,
Om(t) = E{[An()’} = (EMAn (O]
— {2 Bt} = Fn ) "5 Bl

Upon substitution of E[4,,(t)] = mF,(f) and E[An4, ] = mfu(?) (see (17)), the last expres-
sion rearranges straightforwardly to (45). n

We are finally in position to prove (12), and hence to complete the proof of the Theorem.

Proof of (12) From (8) and (45), we have

Var[B,,(1)] = #Mt)

- %{[1 — FOllo + BEn(D] — fi ) + ;‘ﬂ— ) — o[l — Fu(0]).  (46)

Since F(f) satisfies (3) with p = « and ¢ = f, the convergence in (11) implies that

Jim ([1 = Fn(@llec + fEn(®)] = ()} = 0. (47

Next, it is easily seen from (13) that f,(f) — o[l — F,,(¢)] is uniformly bounded; and hence,

Jim 1) =ol1 = FuO]) = . @®)

Finally, (46), (47), and (48) together yield (12). |
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4 COMMENTS
Since the publication of Bass’s paper, the solution (4), or its derivative,

_[(p+q)*/ple P+
1+ (g/p)etrrap’

J@®

has been used extensively to forecast the growth of sales volume of new products over time.
In such applications, it is important to develop estimates for the parameters p and g from
(say) historical data (see, e.g., Putsis and Srinivasan [14], Section 11.2.1). A standard fra-
mework for this purpose is to conduct a regression analysis (ordinary least squares or
nonlinear least squares) based on the assumption that the actual sales in successive time
intervals can be modelled as the sum of two independent components: the (discretized)
adoption-rate curve, mf(f), and a sequence of i.i.d. error terms. The adoption of such a
framework can be attributed to the fact that the BM assumes that N(¢) is a deterministic
function. In other words, the deterministic assumption effectively forces one to model
deviations of the actual sales data from the adoption-rate curve (solely) as manifestations of
the presence of independent random errors, as opposed to being a consequence of the
underlying stochastic nature of the forces behind successive adoptions. Further work to
investigate the use of SBM as a framework for parameter estimation will be reported in a
subsequent paper.

The formula for J,,(¢), the variance of cumulative adoptions, in Lemma 4 is potentially
useful in applications where the variability of the cumulative-adoptions curve is of impor-
tance (see, e.g., Cohen, Ho, and Matsuo [6], p. 245). The asymptotic form of this variance
function is also relevant in parameter estimation. A natural conjecture is that the growth of
dm(?) is of order m and /m[B,,(t) — Fo(?)] is normally distributed as m — oo.
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