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This paper presents an interior point algorithm to solve the multiperiod hydrothermal economic dispatch
(HTED). The multiperiod HTED is a large scale nonlinear programming problem. Various optimization
methods have been applied to the multiperiod HTED, but most neglect important network characteristics
or require decomposition into thermal and hydro subproblems. The algorithm described here exploits the
special bordered block diagonal structure and sparsity of the Newton system for the first order necessary
conditions to result in a fast efficient algorithm that can account for all network aspects. Applying this
new algorithm challenges a conventional method for the use of available hydro resources known as the
peak shaving heuristic.
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1 INTRODUCTION

Hydro generators play an important role in a deregulated environment due to their fast re-
sponse times on both start-up and in changing output. The determination of economic hydro
and thermal generation levels that satisfy both physical and operational constraints is known
as hydrothermal economic dispatch (HTED). Traditional HTED algorithms [6, 8] are largely
static since the problem is decomposed by time period, and the solutions are coordinated over
the time horizon using heuristics. In addition, they do not account for important network
constraints.

The multiperiod HTED is a dynamic problem, that determines optimal hydro and thermal
generation settings over a time horizon. Recent approaches to the HTED are introduced in
Refs. [4] and [10] which both include more complete network models and allow for the
dynamic nature of the multiperiod HTED. In Ref. [4] a successive approximation algorithm is
used to find an approximate solution. In Ref. [10] the problem is decomposed into thermal
and hydro subproblems with solutions coordinated through a set of Lagrange multipliers.

The interior point algorithm presented in this paper produces a fast, efficient solution
without requiring decomposition and coordination. The algorithm takes advantage of the
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special bordered block diagonal structure and sparsity of the Newton system for the first

order necessary conditions.

The algorithm was tested using several different hydro systems of varying sizes. The re-
sults include consideration of different models for hydro generator water discharge rate. The
optimal dispatch for nonlinear discharge rates distributes the hydro generation throughout the
time horizon rather than using the hydro primarily in the peak demand periods. Allocating
hydro primarily to the peak demand periods is a common heuristic for HTED known as peak

shaving. The results presented here challenge the optimality of this heuristic.

The formulation of the multiperiod HTED and the derivation of the interior point
algorithm are presented in Section 2. Numerical results are presented in Section 3 and

conclusions are drawn in Section 4.

2 PROBLEM FORMULATION

The economic dispatch problem is given in general form as
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e N, is the number of time periods
e N, is the number of thermal generators
e N, is the number of hydro generators

e N, is the number of transmission lines in the network

t=1,
i=1,
t=1,
I=1,

® p;, is the generation level of thermal generator i at time ¢
. pf:, is the generation level of hydro generator i at time ¢
e Ci(pi;) are the thermal generation costs, usually assumed quadratic
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p, and p; are the maximum and minimum thermal generation limits
" and p!* are the maximum and minimum hydro generation limits
f,.f > are the maximum and minimum capacities of transmission line /

(1)

o I';; determines the power flow in transmission line / as a function of generator output via a

DC load flow

o y(p!,) represents the water discharge rate of hydro generator i as a function of generation level

e g, represents the maximum water capacity available for hydro generator i
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Assuming the generation costs Ci(p;,) are quadratic, this is a quadratic programming
problem with both equality and inequality constraints. The number of variables is equal to the
product of the number of generators and the number of time intervals, (Ng + Nj) x N;. It is
important to note that in the absence of the water capacity constraints on the hydro
generators, the problem could be decomposed by time period and solved as N; individual
problems with N, 4+ N, variables. For any practical number of generators and time periods,
the multiperiod HTED is extremely large and requires special solution methods.

While most HTED algorithms rely on decomposing the problem into hydro and thermal
subproblems and using various methods for coordinating the solutions, a careful use of linear
algebra to exploit the problem structure and sparse matrix methods to expedite the compu-
tations produces an efficient interior point algorithm that does not require decomposition. In
addition, the algorithm can be easily adapted to include nonlinear constraints associated with
the optimal power flow problem by a method such as Ref. [5].

The interior point algorithm developed here for the multiperiod HTED is based on the
following methodology

1. Convert all inequality constraints to equality constraints by introducing nonnegative slack
variables.

2. Form the Lagrangian for the entire problem. A logarithmic barrier function is used to
enforce the nonnegativity of the slack variables.

3. Differentiate to form the Karush-Kuhn-Tucker (KKT) or first order necessary conditions.

4. Tteratively find an approximate solution to the KKT conditions using Newton’s method.

To simplify the derivation of the KKT conditions, it is useful to re-write the problem using
vector notation. Letting p; = [p1.r, P2, -, Py - ,1);'\%,]T for t=1,2,...,N, p=1Ip1,
pa o)L F =MLl g=E.8--- gy,] and assuming the thermal generation costs are
quadratic and hydro generation incurs no cost, we can formulate the multiperiod HTED in the
following way
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where A, y1., ¥2.» ¥3.1» V4 and ys are nonnegative Lagrange multipliers, p is a nonnegative
barrier parameter, and ny, ny, ..., ns are the length of vectors sy, ...,ss. The first order
necessary (KKT) conditions for system (4) are
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where Gp; is the Jacobian matrix for y(p). The resulting Newton system for the approximate
solution of (5) is

OAp; + eAdy + Apis — Ay + FTAys  — F'Aya s + Gy Ays = b, (6)

eTAp, = bl (7)
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Api+ Asy = b),
—Ap; + Asy; = by,
FAp;+ As3; = by,
—FAp; + Ass s = by,
G, Ap: + Ass = by,
SiiAYi ¢ + YiAS; s = bs

S5AY5 + YSASS = bss
where S;, = diag(s;,), Y, = diag(y;,), S5 = diag(ss), Y5 = diag(ys) and
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We can eliminate As;, and Ass using (13) and (14). Then
Asip = Y\ (bs — SiAyis)
and
Ass = Y (by, — SsAys).

The resulting system is
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Gy Ap: — Y5 ' SsAys = (24)
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The entire Newton system can now be written in matrix from in the following way
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where 4; is the symmetric matrix
Q e I —-I F' —FT
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Ai= -I 0 0 D, O 0 27)
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A; = [AP; Ak Ayyi Aysi Aysi Aya ]t
bi = [bp b; Byx l;yz Eys 5)’4]T
D; =Y'S;y, Ds = Y5'Ss and GL’ is the appropriate block of G,, padded with zeros, i.e.
I 22 2w
Gp’ - [Gpr GP/ e GPI]
and
G, =[G, :0:0::0]

Carefully examining the structure of system (26) we can see that it is a bordered block
diagonal system. In addition, the system is sparse. Efficient solution requires taking ad-
vantage of these two aspects of the system.

By elimination, system (26) reduces to

N,

[DS - i(GL)TAF 'G,';,]Ays = by, — Z(G;;,)TA,."'b,- (28)

i=1 i=1
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It is important to notice that

A = A7

would be the solution to system (26) in the absence of the hydro energy constraint

') <8 (29)

Therefore, the Eq. (28) can be solved efficiently in the following way

Solve thermal economic dispatch for each time period to determine 4;!b;. This is ac-
complished by factoring 4; = L;D;L} and using forward-backward substitution.

Form the sum Zfil(G;;’)TAi"b,-. Since G;,l is sparse, a sparse matrix multiplication is
employed.

Form the product

(Gy)'4;'G, = (G)'L7"D;' LG, = VD'V

by first forming ¥ column by column using forward substitution in the equation
L;V = G),. Sum the contributions over time period to find Zﬁl(GL,)TA,TIGL(

e Solve the system (28) for Ays. The system is sparse, so sparse matrix methods are used.

Substitute Ays in system (26) and solve for A, i =1,..., N,

The interior point algorithm combines the solution of system (26) with a suitable choice of

step size and barrier parameter p in an iterative process. The interior point algorithm consists
of the following steps.

2.1 Algorithm (Interior Point Optimization)

I=0
Initialize py, A, yis, Sit» Vs, S5 and barrier parameter p
while not converged

I=1+1

Solve system (26) for Ap;, AAs, Ay;, and Ays
Solve Egs. (16) and (17) for As;, and Ass
Select appropriate step size « € (0, 1)
Update all variables

pi=pi" +oAp,
A =21+ aAd
)4.t = yf;l + oAy
Ys=y5 " +adys
st =si' +aAs;,

1 _ -1
S5 =55 +alss
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Compute complementarity gap
S=sm

Update barrier parameter u
end while

The convergence criterion is based on the fact that at the optimal solution the com-
plementarity gap 6 = 0. The algorithm terminates when ¢ is less than the desired tolerance.
At each iteration the barrier parameter u = 0 where f§ is a problem dependent constant.

3 NUMERICAL RESULTS

A number of computational experiments were run to test the multiperiod HTED and examine
the effect of different models for water discharge rates on the resulting dispatch. The basic
systems consisted of two thermal units and one hydro unit with a 24 hour scheduling period.
Data for the thermal units was based on Ref. [1] and is shown in Table I. The transmission
system is derived from the IEEE 30 bus test case, with 30 buses and 41 transmission lines.

A variety of hydro units were considered with characteristics derived from Ref. [9]. A
quadratic function is a very good approximation for the hydro generation discharge curve [7].
Both linear and quadratic models for discharge rates were considered. The model takes
the form

‘y(pflr) = ah(pﬁt)z + bhp,}{; + ch-

Coefficients ay, by, c;, were estimated by least squares regression on the data. Coefficients for
the quadratic model can be found in Table II. Linear coefficients are given in Table III.
Results were produced for three test systems consisting of the 2 thermal units combined
with each of the three hydro units. The results were similar for all three test system. Figures 1
and 2 show the results of the multiperiod HTED for the test system including the two thermal
units and hydro generator 3. The dispatch depicted in Figure 1 uses the linear model for the

TABLE I Thermal Unit Characteristics.

Pi Pi a; b; Ci
Unit (MWh) (MWh) ($/MWh?) ($/MWh, (%)

1 100 1000 0.0 2.0 0.00375
2 30 200 0.0 3.75 0.0175
TABLE II Coefficients for Quadratic Hydro Discharge Curve.

ay by, cn
Unit (acre-ft/MWh?) (acre-fi/MWh) (acre-ft)
Hydro 1 712.55 0.739499 0.00247689
Hydro 2 7.91027 0.395815 0.011795

Hydro 3 4633.69 —0.331932 0.00590656
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TABLE HI Coefficients for Linear Hydro Discharge Curve.

by, ch
Unit (acre-ftyMWh) (acre-ft)
Hydro 1 3.354 81.3003
Hydro 2 0.915 3.64
Hydro 3 6.67 2717.07
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FIGURE 1 Economic dispatch with hydro unit 3: linear discharge rate.
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FIGURE 2 Economic dispatch with hydro unit 3: quadratic discharge rate.
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hydro discharge rate with coefficients from Table III. The dispatch in Figure 2 shows results
for a quadratic discharge model with coefficients from Table II.

As Figure 1 illustrates, the linear model allocates the available hydro generation to the peak
demand periods, an effect known as peak shaving. Peak shaving is a well-known hydro-
thermal scheduling characteristic based on the heuristic that since thermal generation costs
increase with generation level, it is most economical to use hydro energy during the peak.
Peak shaving algorithms were developed in Refs. [2, 3]. The validity of this concept was first
investigated in Ref. [11].

In Figure 2 the peak shaving characteristic is no longer evident. The optimal dispatch
produced with the quadratic discharge model utilizes the hydro generation more evenly
throughout the dispatch horizon. Since the quadratic models the hydro discharge more ac-
curately, the results provide further evidence of the nonoptimality of the peak-shaving
heuristic.

4 CONCLUSION

An interior point algorithm for the multiperiod HTED has been presented. The algorithm has
the ability to account for all transmission network constraints and does not require decom-
position into thermal and hydro subproblems.

Results were generated for several test systems with hydro units of varying sizes. A
comparison of linear and quadratic models for the hydro unit discharge rate shows when the
discharge rate is accurately modeled, the hydro generation does not follow a peak shaving
pattern. This result challenges the use of the peak shaving heuristic to decouple the hydro and
thermal units in HTED algorithms.
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