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In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays,
without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a
controller is deduced. Such a controller utilizes an input-output description of the original system,
a circumstance that facilitates practical applications of the proposed approach.
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1 PROBLEM STATEMENT

Aspects related to stability for delayed systems have been dealt with in a number of
papers [2—7]. However, Lyapunov stability for this kind of systems has received less attention
during recent years [1]. In the following a stabilization result providing both a Lyapunov
function for point-delayed systems as well as a stabilizing feedback controller based on such
a Lyapunov function, is proved. This result requires some preconditions on the controller
structure, related to that of the plant, but does not assume a priori stability for the nondelayed
subsystem. A main advantage of the associate controller synthesis method is that only
output-feedback is required, so that only physically measurable variables are considered for
measurement. Thus, the use of an observer or estimator, which is one of the main obstacles
for using state-feedback controllers specially for nonlinear systems [9], is avoided.
Let us consider the following system with » point delays in its state vector:

x(t) = Ax(t) + Zn:Aix(t — ih) + Bu(?), (L)
i=1 .

y(#) = Cx(?).

where x(¢) € R, is a state vector, x(f) = ¢(t), —nh < t < 0, x(0) = ¢(0) = x¢, and @(¢) is an
absolutely continuous vector function on [—nh, 0], with possibly isolated bounded dis-
continuities, # > 0, is a fixed scalar (delay), u(f) € R’ is a control vector, y(f) € R”, is an
output vector and matrices are of appropriate dimensions; £, m < n. Equation (1.1) is the
general form for several physical systems, such as the Minorsky ship rolling problem [13],
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certain metal rolling systems, remote control, and pasteurization systems with interconnected
heat exchangers [14].
In the third section it will be demonstrated that the Lyapunov candidate
n !
V() = x"(0)Px(F) + ZJ xT(0)x(0) do, (1.2)
i=1 /

t—ih

is a Lyapunov function for the closed-loop regulator system (1.1), after generation
of appropriate feedback, provided that P is a symmetric positive definite matrix fulfilling
a set of conditions leading to the synthesis of a stabilizing controller. The rest of the paper
is organized as follows: Section 2 introduces some previous results. Section 3 presents
the main results. Section 4 introduces the main algorithms to be implemented in order to
synthesize the control law. Section 5 presents an illustrative example. Finally, conclusions
end the paper.

2 PREVIOUS RESULTS

Firstly we will introduce some previous results that will be useful in the sequel.

LEMMA 2.1 (Banach’s Perturbation Lemma) Let A, B € C"*". Assume A invertible. Then, if
IBll < 1/)|A~"), for any matrix norm, the following facts hold:

(a) A + B, invertible 2.1
_ A~
(b) IA+B)™ | < ———, (2.2)
1 — A~ IBY

LEMMA 2.2 Let A, B € C". Assume A nonsingular. Assume A, B, symmetric. Suppose A
positive definite. Then, a necessary condition to ensure that A + B, is positive definite is
given by the next inequality:

IBll 2.3)

1
< TAoin
1A~

Proof From (2.3), and taking into account that both A and B are symmetric and A is
positive definite, which implies their eigenvalues to be real, the following inequality holds

1

[Amax(B)| < ————
Bl < @)

= |Amin(A)] = Anin(A) = |Anax(B)] < Amin(A). (2.4)

Therefore, A(A +B) > 0 Vi=1,...,n positive definite.

Remark Note that this last Lemma can be intuitively seen in terms of the translation of
eigenvalues in the complex plane. If a symmetric matrix A is positive definite then it is
nonsingular and all its eigenvalues are positive. Thus, if by a continuous numerical change
in some of its parameters it reaches the point of not being invertible, which implies not being
positive-definite, then at least one of its eigenvalues becomes zero. This is due to the fact by
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which the eigenvalues corresponding to a symmetric matrix are real, and therefore their
transition from the right-hand halfplane to the left-hand one is done through the origin (0, 0).

LEMMA 2.3 [8] IfA = B & C, where & stands for the direct sum, then A is positive definite
if B, C, are positive definite.

3 MAIN RESULTS

RESULT 3.1 System (1) is asymptotically stabilizable by the output feedback controller
u(f) = —Ky() — »_ Kt — ih), (€RY)
i=1

if there exists a symmetric positive definite n x n matrix P such that the following
n(n+ 1) x n(n+ 1) matrix Q is negative definite

Q=
-1, 0 0 A'P - C'K'B"P
0 -1, 0
0 0o - ~1, ATP - C'K[B™P
| PA, —PBK,C --- .- PA;—C'K[B"P A"P - C'K"B"P+PA — PBKC +1l,

3.2)
where 0 is a n x n block of zeros.

Proof Consider the Lyapunov function candidate (1.2). Obviously V(#) > 0 for x(¢) # 0.
Let us differentiate V' (¢) with respect to time ¢

V(t) = xT(H)Px(7) + x" (1)Px(f) + Zn:[xT(t)x(t) — xT(t — ih)x(t — ih)). (3.3)
i=l1
By using the first of Eqgs. (1.1) one obtains

V() = x"()ATPx(r) + ixT(t — i)ATPx(?) + u" (£)BPx(f) + x" ()PAx(?)

i=1

+ zn:xT(t)PA,.x(t — ih) + x" ()PBu(?) + i[xT(t)x(t) —x"(¢ —ilx(t —ik)].  (3.4)
i=1 i

i=1
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Then, by using the second of Egs. (1.1) together with (3.1) one gets

V(f) = xT(H)ATPx(F) + Xn: x"(¢ — ih)ATPx(t) — x" () C"K"B"Px(t)

i=1

- Xn:xT(t — in)CTKB'Px(r) + x" (NPAX(r) + Xn:xT(z)PAix(t — i)

i=1 i=1

— xT(f)PBKCx(r) — Z xT(1)PBK;Cx(t — ih)

i=1

+ zn:[xT(t)x(t) — XT(t — ih)x(t — ih)]. 3.5)
i=1

This leads to
V(t) = x"()[ATP — CTK"B"P + PA — PBKC + nl]x(/)

+ ixT(t — ih)[ATP — C"K/B"Px(r) + i:xT(t)[PA,- — PBK;CIx(t — ih)

Py i=1
+3 e — ik =Dt — ih)

= [x{?tl —nh) - XT(t—h) O Q-[xT(¢t—=nh) --- xT(t—h) "]
(3.6)

But, by hypothesis, Q is negative definite matrix and, therefore, V(t) < —Anin(—Q)
oo llx(t — ih)ll% < 0, over all non-zero trajectories of (1.1). Hence, (1.2) is a Lyapunov
function for system (1.1).

RESULT 3.2 Consider matrix Q (3.2). Decompose Q = —Qq — Q,q, where —Qy =
—BlockDiag(Qy,, . .., Qq,), is n x n block diagonal, where the Qq., block matrices are
positive definite. Let || - ||, be the I, matrix norm. Providing that matrix Qq is nonsingular,
then matrix Q is negative definite if the following two conditions hold:

1
® 1Qually <7 (3.7
Qs
(ii) The associated system x = —Sx, is globally stable, with
S = C'K"B"P + PBKC — AP — PA — 71, (3.8)

Proof In order to prove that Q is negative definite, note that, by construction, Q is symmetric,
and therefore —Q is also symmetric. Decompose —Q = Qg + Q,4, being Qg n x n block
diagonal, and being Q,,4 a matrix with n x n zero blocks 0 in its n x n block diagonal. As —Q
and Q, are both symmetric, Q4 = —(Q + Q) is also symmetric. Thus, in order to ensure that
—Q is definite positive it is enough to show that Qq is positive definite and, by Lemma 2,
that |Quull, < 1/11Qg ",. As this latter inequality is ensured by assumption (3.7), it
is only necessary to prove that Qy is positive definite. Note that Q4 = I,,, ® S. Obviously I,
is positive definite. And assumption (3.8) implies that all eigenvalues of the symmetric matrix
—S are negative, and therefore —S is negative definite, which implies S positive definite.
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Then, by Lemma 2.3, Qq is positive definite. More specifically, if Amin(-) and Amax(-) denote,
respectively, the minimum and maximum eigenvalues of the (-)-square matrix, note that

Amin(—Q) = j-min(Qd) + Amin(Qnd) = /lmin(Qd) - MmaX(Qnd)'

= Amin(Qq) — 1Quall2 = = 1Quall> = = 1Quallz > 0

1
Amax(Qg ") Q3"

if (i) holds, since

1Quallz = Ao (Q4Qua) = 1Amax(Qua)l, and
lmin(Qnd) = "'/{min(_Qnd) > “lmax(—Qnd) = "'Mmax(Qnd)l*

Discussion Observe from the hypothesis implying matrix S (3.8) to be positive definite that
by the cancellation of the coefficient matrix K of the output feedback controller (3.1), the
corresponding stabilizability condition becomes an extra condition on the open-loop system
(i.e., an a priori condition on the stability of the free system). If, for instance, K = 0, then,
from (3.8) it follows that —ATP — PA — nl,,, is a stable matrix, which is a restriction on the
state matrix A, taking into account that P is positive definite. In a similar way, a proper
selection of coefficients of matrices K, .. ., K, in (3.2) could cause matrix Q to be negative
definite, although Q is not negative definite with parameters of the open-loop system only.
Therefore, in general, it is more convenient to choose the output feedback controller (3.1)
with all K, K;, i = 1,..., n, nonzero. An appropriate selection of those controlling matrix
gains will ensure asymptotic stability for the closed-loop system provided that a symmetric
positive-definite matrix P exists with Q being negative definite.

4 ALGORITHMS FOR CONTROL SYNTHESIS

In this section, the main algorithms to be implemented in order to synthesize the control
law (3.1) for a given system (1.1) are provided at a first level of abstraction. Note that
Algorithm 4.2 can be implemented by using the structure of Result 3.2.

ALGORITHM 4.1 Control_Synthesis(A, i, Ai, b, C, h)
Read system (1)
Positive_definite(—Q)
If pd = 0 then no solution
Otherwise
Select (P)
Select K(P)
Select K to K,
end

ALGORITHM 4.2 Positive_definite(—Q)
Check if matrix —Q 1is positive definite. In case —Q is defined parametrically, this
algorithm gives back ranges of parameters of —Q for which —Q is positive definite.
pd := 1 if there is solution, pd := 0 otherwise
If pd := 1 then
store parametrical ranges in the structured field PR(—Q)
end
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ALGORITHM 4.3  Select (P)
Select matrix P given by Positive_Definite(—Q) in the field PR(—Q) so that system (14)
has its poles as far as possible from the right-hand complex halfplane
end

ALGORITHM 4.4 Select K(P)
Select parameters of K for a given P positive definite fulfilling Q negative definite so that
the poles of the associated system (14) are as far as possible from the right-hand complex
halfplane
end

ALGORITHM 4.5 Select K; to K,
From PR(—Q) select those values for K|, . .., K, which cause det[—Q] to be positive and
maximum, as a measure for Q to be “more” negative definite
end

5 ILLUSTRATIVE EXAMPLES

State feedback control law can be used on a linear system to place its closed loop poles in any
desired configuration [10]. This, however, cannot be extended in general to nonlinear cases,
including linear delayed systems, which many authors consider a kind of nonlinearity. In this
section, a comparison will be established between the traditional approach for the stabili-
zation of delayed systems — i.e., state feedback control — and our approach - i.e., deducing an
output feedback control law by using a Lyapunov functional.

Example 5.1 Consider the following delay-differential system [11]:

x = Ax(t) + Ax(t — 1) + Bu(?), (5.1a)
y = Cx. (5.1b)

o0 . 12/3 23 L, |1 _
where A_[O _1], Al_[2/3 0 ], B—[O]. Assume that C=[1 1] and
7 = 0.2. According to the state-feedback approach used in [11], a stabilizing control law is

given by u = —3B'x. Although mathematically such a law can stabilize system (5.1), when
going into practicalities such an approach might become inapplicable, because the state
vector, in general, is not directly measurable. Thus an observer (also known as estimator)
must be designed in order to reconstruct the instantaneous state by using the output and a
model of the system. Although the original feedback controller is a static state feedback, in
practice the inclusion of the estimator introduces dynamics in the controller. For example,
consider the problem of the error dynamics associated to the state feedback [15]. This
procedure can lead to new kinds of unstabilities in the closed system. For instance, assume
that the following observer is constructed for system (5.1):

% = (A* + MC*)A(0) + AL3(t — ) + B*u(f) — My, (5.2)

where X(¢), stands for the estimated state, which, in general, does not coincide with the exact
state. In addition, matrices A*, C*, A}, B*, are a model of the plant, and therefore do not
contain its exact parameters. By using observer (5.2), one can interconnect the control law
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with the reconstructed state x(¢), to obtain u = —3B'x. Figure 5.1 shows the interconnection
of the plant, the observer and the control law.

This scheme can give rise to two main new problems regarding the stability of the closed-
loop systems. The first one is the open-loop stability of the observer itself, which is not
assured in principle. Differential systems with delayed state have — in general — infinite poles
because their characteristic equation is transcendent and can have infinite solutions [4]; the
observer reproduces an equation of similar nature than that of the plant, and is not simple to
guarantee its stability without a specific controller for the observer, which again would
require a second observer to reconstruct the state of the first observer, and so on. Thus, the
stability of the observer should be checked independently of the stability of the plant. The
second problem concerns the establishment of an extra loop, as can be observed in Figure 5.1.
The control law designed by using state feedback does not consider the problem of this extra
loop, but this is a great problem because in general one does not know which error is being
introduced by using the matrices corresponding to the model instead of the exact plant.

Let us now apply our approach to design a stabilizing control law for system (5.1). Such a
control law should be of the form u = —Ky — Kjy(t — 0.2). Let us postulate P =1I,.
Therefore one obtains

0 ik 2]

Q- 20 2—1 %——Kl 0 ’ (5.3)
3—21(1 -k 4-2K K
3 0 K]

which is negative definite for many values of (in this example scalar) gains K and K|,
provided that they satisfy the following inequalities:

44 8K

—9——2K——§—+2K,2 <0, (5.4)

424 , 272K, 4KK; 68K}
o7 T8K— K+ 3 5 <0 (5.5)

PLANT
u
y
X = Ax(t)+ A x(t-1) +Bu(t) >
A y =Cx

A OBSERVER
F=(A" +MC )E(t) + A" 5(t—1) +B u(t)-My

FIGURE 5.1 Interconnection of the observer and control law with the plant.
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For instance, K = 100 and K; = 1 stabilize the system. Our approach avoids the use of an
observer or estimation stage, and therefore it avoids the stability problems which are inherent
to that method.

Example 5.2 The present method may be extended to the case of non linear actuators, if
specific extra conditions are added to the output feedback controller (3.1). For instance, let us
consider a time-delay system containing a saturating actuator described by the following
differential equation

x(£) = Aox(t) + A1x(¢t — h) + B satu(?)

s (5.6)

where “sat” stands for the saturation function [12] in which the operation range is inside the
sector [w, 1]. In [12] the following state feedback control law is considered

u(t) = —Fox(¢) — Fix(t — h), 5.7

and in the mentioned work it is demonstrated that the controlled saturating time-delay system
(5.6) with control law (5.7) is stable if the following relation holds

k(AN + (1 — w)IIBI - [[Fy1l/2} 1 — k(1 —w)|B]| - |[Fy|l
< , (5.8)
n 2n
where k£ > 1, n > 0, are such that
Il exp(AoDl < kexp(—nf), >0, (5.9)
being
Aoon_(_li_g.)E&, Al___Al_(Li'_;_’)_l}.l_?l (5.10)

Let us rewrite the state feedback control law (5.7) as an output feedback control law
u(t) = —Fox(t) — Fix(t — h) = —FoC~'y(f) — F,C™'y(t — h), (5.11)
which is formally identical to (3.1) if one identifies
K=-F,C K, =-FC" (5.12)

Therefore, introducing substitutions (5.12) into condition (5.8) would lead to an extra con-
dition for control law (3.1). This extra condition should be taken into account together with
the conditions stated in Result 3.1, in the presence of saturating actuators. In such case, the
utility of our method is that it can assure stability even for time-delay systems with more than
one time-delay in the state vector, while in [12] only one time-delay in the state vector is
considered.
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6 CONCLUSIONS

This paper has introduced some results which provide sufficient conditions for the stabi-
lizability of a time-delayed system with multiple delays in its state vector, by using a
Lyapunov-candidate function. The proposed approach uses an input—output description of the
open-loop system in order to synthesize the control signal, a fact which overcomes the need
for an estimation stage.

Extra conditions on the control law deduced accordingly to the specific nonlinearities
present in the actuator may extend the method to the non linear case, as was illustrated in the
last section.
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