
A MATHEMATICAL MODEL AND NUMERICAL
SOLUTION OF INTERFACE PROBLEMS FOR STEADY
STATE HEAT CONDUCTION

Z. MURADOGLU SEYIDMAMEDOV AND EBRU OZBILGE

Received 28 March 2006; Revised 1 July 2006; Accepted 16 July 2006

We study interface (or transmission) problems arising in the steady state heat conduc-
tion for layered medium. These problems are related to the elliptic equation of the form
Au :=−∇(k(x)∇u(x))= F(x), x ∈Ω⊂ R2, with discontinuous coefficient k = k(x). We
analyse two types of jump (or contact) conditions across the interfaces Γ−δ = Ω1 ∩Ωδ

and Γ+
δ = Ωδ ∩Ω2 of the layered medium Ω := Ω1 ∪Ωδ ∪Ω2. An asymptotic analysis

of the interface problem is derived for the case when the thickness (2δ > 0) of the layer
(isolation) Ωδ tends to zero. For each case, the local truncation errors of the used conser-
vative finite difference scheme are estimated on the nonuniform grid. A fast direct solver
has been applied for the interface problems with piecewise constant but discontinuous
coefficient k = k(x). The presented numerical results illustrate high accuracy and show
applicability of the given approach.

Copyright © 2006 Z. M. Seyidmamedov and E. Ozbilge. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Interface problems arise in the setting of various physical and engineering problems
(see [1–3, 7–9]) and references therein. Mathematical modelling of such steady state
problems leads to the following elliptic problem with discontinuous coefficient k(x)=
(k1(x),k2(x)):

Au :=−∇(k(x)∇u)= F(x), x = (x1,x2
)∈Ω⊂R2,

u(x)= 0, x ∈ ∂Ω,
(1.1)

where Ω := {(x1,x2) ∈ R2 : x1 ∈ (−l1, l1), x2 ∈ (0, l2), li > 0}. The discontinuity of the
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2 Numerical analysis of steady state interface problems

coefficient k = k(x) necessitates the consideration of the weak solution u∈
0

H1 ∈ (Ω) :=
{u ∈H1(Ω) : u(x) = 0, x ∈ ∂Ω} of problem (1.1), which satisfies the following integral
identity [6]:

∫

Ω
k(x)∇u∇vdx =

∫

Ω
F(x)v(x)dx, ∀v ∈

0

H1(Ω). (1.2)

Here H1(Ω) is the Sobolev space [6]. The existence and uniqueness of the weak solution

u∈
0

H1(Ω) of the Dirichlet problem (1.1) are outlined, for example, in [6]. In the classical
formulation of problem (1.1), the solution u(x) satisfies the elliptic equation (1.1) in
Ω, Dirichlet condition (1.1) on ∂Ω, and the following transmission conditions “(ideal
contact)” on the interface Γξ := {x1 = ξ} ⊂Ω:

[u]x1=ξ := u(ξ + 0,x2
)−u(ξ − 0,x2

)= 0, ξ ∈ (− l1, l1
)
,

[
k1
∂u

∂x1

]

x1=ξ
:=
(
k(2)

1
∂u

∂x1

)
(
ξ + 0,x2

)−
(
k(1)

1
∂u

∂x1

)
(
ξ − 0,x2

)= 0.
(1.3)

The above conditions mean continuity of the temperature and the flux across the inter-
face Γξ := {x1 = ξ}. Throughout this paper, the superscripts indicate the two limits from
opposite sides of the interface Γξ . Note that the transmission conditions (1.3) are not
possible unique ones, that arise in practice. Most of the other physically possible situa-
tions for the elliptic problem (1.1) correspond to the following transmission conditions
[9–11, 13]:

[u]x1=ξ = 0,
[
k1
∂u

∂x1

]

x1=ξ
=−α(x), (1.4)

σ[u]x1=ξ =
(
k1
∂u

∂x1

)
(
ξ,x2

)
,

[
k1
∂u

∂x1

]

x1=ξ
= 0. (1.5)

In the first case, the flux is discontinuous at the contact surface (interface Γξ), although
the potential (or temperature) is continuous. The function α = α(x) here corresponds
to the distributed sources on the interface Γξ . In the case of conditions (1.5), the flux
is continuous, whereas the function u = u(x) has discontinuity across the contact line
x1 = ξ.

Such problems arise frequently in physical and engineering applications, in particular,
in steady state heat conduction, diffusion or electrostatic problems in layered nonhomo-
geneous medium [13]. The main distinguished feature of these problems is the disconti-
nuity of the heat conduction coefficient k1(x) in the elliptic equation (1.1).

The second-order homogeneous finite difference schemes for one-dimensional prob-
lems with discontinuous coefficients on uniform meshes using the jump conditions have
been given first in [12]. Later, various immersed methods have been developed for nu-
merical solution of such interface problems (see [5, 9–11, 14] and references therein).
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In one of the previous studies (see [4]), an immersed finite element space is used to
solve the elliptic interface problems by a finite volume element method. Special nodal
basis functions are introduced in a triangle whose interior intersects with the interface so
that the jump conditions are satisfied. Further, finite difference methods for elliptic equa-
tions of the form∇(β(x)∇u) + κ(x)u(x)= f (x) in a region Ω in 1 or 2 space dimensions
are developed in [9]. Here Ω is assumed to be a simple region (e.g., a rectangle) and a uni-
form rectangular grid is used. Across the irregular surface Γ of codimension 1 contained
in Ω the functions β, κ, and f are assumed to be discontinuous, and along Γ, the source
f may have a delta function. An immersed interface elliptic problem with discontinuities
and singularities in a circular domain has been studied in [10]. On the contact surface,
the flux and the potential (or temperature) here are taken discontinuous.

We consider more general problem where the domain consists of the following three
parts: conductor-isolator-conductor (see, Figure 2.1(b)). Evidently, the interface prob-
lem is a limit case of this problem. We provide an asymptotic analysis of the problem
conductor-isolator-conductor and show which interface problem is a limit case. Then we
consider an interface problem with ideal contact conditions. Since thickness of the isola-
tion is small enough with respect to the dimension of the domain isolation, our approach
is based on conservative finite difference schemes not on uniform, but on a nonuniform,
mesh with the same order of accuracy.

In this paper, we consider the following three types of interface problems:
(P1) the interface problem for two-layered nonhomegeneous medium with ideal con-

tact conditions (1.3),
(P2) the interface problem for nonhomegeneous three-layered medium (conductor-

isolation-conductor) with ideal contact conditions (1.3),
(P3) the interface problem for two-layered nonhomegeneous medium with continu-

ous flux and discontinuous temperature across the interface.
In the first part of the paper, we prove that the problem (P3) is a limit case of the prob-

lem (P2), when the thickness of the isolation tends to zero. In the second part, we derive
the conservative finite difference schemes of a nonuniform mesh, which has a trunca-
tion error of order O(h2). Then we obtain the finite difference schemes of orders O(h)
and O(h2) on the interface for Neumann transmission conditions. In the final part, we
illustrate numerical results related to considered problems.

2. The mathematical model of layered conductivities without isolation: ideal contact

Let us consider the steady state heat conduction problem

− ∂

∂x1

(
k1(x)

∂u

∂x1

)
− ∂

∂x2

(
k2(x)

∂u

∂x2

)
= F(x), x ∈Ωi, (2.1)

[u]x1=ξ = 0,
[
k1
∂u

∂x1

]

x1=ξ
= 0, x ∈ Γξ , (2.2)

u(x)= 0, x ∈ ∂Ω, (2.3)
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Figure 2.1. The geometry of layered conductivities without isolation and with thin isolation is given
in part (a) and part (b), respectively.

in the domain Ω=Ω1∪ Γξ ∪Ω2, occupied by the homegeneous bodies Ω1 and Ω2, with
different heat conductivities

k1(x)=
⎧
⎪⎨

⎪⎩

k(1)
1 , x ∈Ω1,

k(2)
1 , x ∈Ω2, k(i)

1 = const,
(2.4)

along the Ox1-axis and k2(x) along the Ox2-axis. The piecewise constant coefficient k1(x)

is assumed to be discontinuous (k(1)
1 �= k(2)

1 ) and the coefficient k2(x) > 0 is assumed to be
continuously differentiable function. The source function F(x) is assumed to be contin-
uous. The contact conditions between the bodies Ω1 and Ω2 are assumed to be ideal ones
via the interface

Γξ := {(ξ,x2
)∈R2 : ξ ∈ (− l1, l1

)
, x2 ∈

(
0, l2

)}
. (2.5)

Hence we assume that the layered body occupies the domain Ω with the boundary ∂Ω :=
Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 (Figure 2.1(a)), where Γ1 = (−l1, l1)×{x2 = 0}, Γ2 = {x1 = l1}× (0, l2),
Γ3 = (−l1, l1)× {x2 = l2}, and Γ4 = {x1 =−l1}× (0, l2).

Then we can prove that the solution u ∈ C2(Ω1 ∪Ω2)∩C(Ω) of the interface prob-
lem is also the solution of the variational problem (1.2) given by (2.4) for discontinuous
coefficient k1(x).

Theorem 2.1. Let u∈ C2(Ω1∪Ω2)∩C0(Ω) be the solution of the interface problem (2.1)–
(2.3). Then u(x) is also the solution of the variational problem (1.2), for the discontinuous
coefficient k1(x) given by (2.4).
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Proof. Let us multiply the both sides of (2.1) by v = v(x), integrate them on Ω1 and Ω2

seperately, then apply integration by parts,

∫ l2

0

∫ ξ

−l1
k(x)∇u∇vdx1dx2 =

∫ l2

0

(
k(1)

1 (x)
∂u

∂x1
v
)x1=ξ−0

x1=−l1+0
dx2 +

∫ ξ

−l1

(
k2(x)

∂u

∂x2
v
)x2=l2−0

x2=+0
dx1

+
∫ l2

0

∫ ξ

−l1
F(x)v(x)dx1dx2,

∫ l2

0

∫ l1

ξ
k(x)∇u∇vdx1dx2 =

∫ l2

0

(
k(2)

1 (x)
∂u

∂x1
v
)x1=l1−0

x1=ξ+0
dx2 +

∫ l1

ξ

(
k2(x)

∂u

∂x2
v
)x2=l2−0

x2=+0
dx1

+
∫ l2

0

∫ l1

ξ
F(x)v(x)dx1dx2.

(2.6)

Taking into account the homogeneous Dirichlet condition (2.3) and summing up the
identities, we get

∫ l2

0

∫ l1

−l1
k(x)∇u∇vdx1dx2

=
∫ l2

0

[(
k(1)

1 (x)
∂u

∂x1
v
)

x1=ξ−0
−
(
k(2)

1 (x)
∂u

∂x1
v
)

x1=ξ+0

]

dx2

+
∫ l2

0

∫ l1

−l1
F(x)v(x)dx1dx2,

(2.7)

for all v = v(x). Since u= u(x) satisfies the Dirichlet transmission condition [u]x1=ξ = 0,
it is natural to require that arbitrary function v = v(x) also satisfies this condition. Using
this condition in the first integral on the right-hand side, we obtain

∫ l2

0

∫ l1

−l1
k(x)∇u∇vdx1dx2 =

∫ l2

0

(
k1(x)

∂u

∂x1

)x1=ξ−0

x1=ξ+0
v
(
ξ,x2

)
dx2 +

∫

Ω
F(x)v(x)dx. (2.8)

This integral idenditity with the Neumann transmission condition completes the proof.
�

This theorem shows the equivalence of problem (1.1), with the discontinuous coeffi-
cient k1(x) given by (2.4), and the transmission problem (2.1)–(2.3), although problem
(1.1) does not contain any transmission condition. This suggests a possibility of con-
struction of such a finite difference analogue of the interface problem, which has the sim-
ilar structure. Specifically, the problem is to construct the homogeneous finite difference
scheme, which has the same form for all mesh points, including ones on the interface Γξ .
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3. The interface problem for layered conductivities with isolation: asymptotic analysis

Consider now the steady state heat conduction problem

− ∂

∂x1

(
k1(x)

∂u

∂x1

)
− ∂

∂x2

(
k2(x)

∂u

∂x2

)
= F(x), x ∈Ωi, (3.1)

−γ
(
∂2u

∂x2
1

+
∂2u

∂x2
2

)

= F(x), x ∈Ωδ , (3.2)

[u]x1=−δ = 0,
(
γ
∂u

∂x1

)

x1=−δ+0
−
(
k(1)

1
∂u

∂x1

)

x1=−δ−0
= 0, (3.3)

[u]x1=+δ = 0,
(
k(2)

1
∂u

∂x1

)

x1=+δ+0
−
(
γ
∂u

∂x1

)

x1=+δ−0
= 0, (3.4)

u(x)= 0, x ∈ ∂Ω, (3.5)

in the domain Ω :=Ω1∪Ωδ ∪Ω2, formed by the homogeneous conductive bodies occu-
pying the domains

Ω1 := {(x1,x2
)∈R2 : x1 ∈

(− l1,−δ), x2 ∈
(
0, l2

)}
,

Ω2 := {(x1,x2
)∈R2 : x1 ∈

(
+ δ, l1

)
, x2 ∈

(
0, l2

)}
, li > 0, δ > 0,

(3.6)

with conductivities k(1)
1 (x) and consider k(2)

1 (x), respectively, and the isolation between
Ω1 and Ω2 occupying the domain (Figure 2.1(b)),

Ωδ := {(x1,x2
)∈R2 : x1 ∈ (−δ,δ), x2 ∈

(
0, l2

)}
. (3.7)

It is assumed that the conductivity of the isolation, with the thickness 2δ > 0, is small
enough, γ = const	 1.

We assume that heat transfers between conductivities and the isolation across the in-
terfaces

Γ−δ =
{(− δ,x2

)
: x2 ∈

(
0, l2

)}
, Γ+

δ =
{(
δ,x2

)
: x2 ∈

(
0, l2

)}
, (3.8)

according to ideal contact conditions (3.3)-(3.4).
Introducing the piecewise continuous coefficient

k1(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k(1)
1 (x), x ∈Ω1,

γ, x ∈Ωδ ,

k(2)
1 (x), x ∈Ω2,

(3.9)

we can show, as in the proof of Theorem 2.1, that the solution u(x) ∈ C2(Ω1 ∪Ω2)∩
C(Ω) of problem (3.1)–(3.5) is also the solution of the variational problem (1.2), for
given coefficient (3.9).
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In the case of the finite thickness isolation Ωδ , problem (3.1)–(3.5) represents an in-
terface problem with two ideal contact conditions across the interfaces Γ−δ and Γ+

δ . In
practice, the isolator can be given as a thin boundary layer with small enough thickness
δ > 0. If the value of the thickness is less than the mesh size h1 along the direction Ox1,
that is, 2δ < h1, then the interface conditions (3.3)-(3.4) cannot be approximated on this
mesh. To derive a finite difference approximation of the interface problem (3.1)–(3.5) for
this case, one needs to derive an asymptotic analysis of this problem, when δ→ 0.

Proposition 3.1. The limit case, when δ→ 0, of the transmission problem (3.1)–(3.5) with
ideal contact conditions, is the following transmission problem with nonideal contact condi-
tions:

− ∂

∂x1

(
k1(x)

∂u

∂x1

)
− ∂

∂x2

(
k2(x)

∂u

∂x2

)
= F(x), x ∈Ωi,

σ[u]x1=0 =
(
k(1)

1 (x)
∂u

∂x1

)

x1=−0
,

(
k(1)

1 (x)
∂u

∂x1

)

x1=−0
=
(
k(2)

1 (x)
∂u

∂x1

)

x1=+0
, x ∈ Γ0,

u(x)= 0, x ∈ ∂Ω.
(3.10)

Proof. Let us assume that u = u(x) is the solution of the transmission problem (3.1)–
(3.5). Integrating (3.1) on Ω1, and (3.2) on Ω−

δ := {(x1,x2) ∈ Ωδ : x1 ∈ (−δ,ξ),ξ ∈
(−δ,δ)}, where ξ ∈ (−δ,δ) and δ > 0 is an arbitrary small parameter and summing up
the obtained integral identities imply

∫ l2

0

{∫ −δ

−l1

∂

∂x1

(
k(1)

1 (x)
∂u

∂x1

)
dx1 +

∫ ξ

−δ
γ
∂2u

∂x2
1
dx1

}

dx2

+
∫ l2

0

{∫ −δ

−l1

∂

∂x2

(
k2(x)

∂u

∂x2

)
dx1 +

∫ ξ

−δ
γ
∂2u

∂x2
2
dx1

}

dx2 +
∫

Ω−δ ∪Ω1

F(x)dx = 0.

(3.11)

We apply here the mean value theorem, dividing first the both sides of the above integral
identity by l2 �= 0. Then we have

k(1)
1

(− δ− 0, x̃2
) ∂u

∂x1

(− δ− 0, x̃2
)− k(1)

1

(− l1 + 0, x̃2
) ∂u

∂x1

(− l1 + 0, x̃2
)

+ γ
∂u

∂x1

(
ξ − 0, x̃2

)

− γ ∂u
∂x1

(− δ + 0, x̃2
)

+
1
l2

∫ l2

0

{∫ −δ

−l1

∂

∂x2

(
k2(x)

∂u

∂x2

)
dx1 +

∫ ξ

−δ
γ
∂2u

∂x2
2
dx1

}

dx2

+
1
l2

∫

Ω−δ ∪Ω1

F(x)dx = 0,

(3.12)
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where x̃2 ∈ (0, l2). We use here the second interface condition (3.3) for the flux on Γ−δ :

γ
∂u

∂x1

(
ξ − 0, x̃2

)− k(1)
1

(− l1 + 0, x̃2
) ∂u

∂x1

(− l1 + 0, x̃2
)

+
1
l2

∫ l2

0

{∫ −δ

−l1

∂

∂x2

(
k2(x)

∂u

∂x2

)
dx1 +

∫ ξ

−δ
γ
∂2u

∂x2
2
dx1

}

dx2 +
1
l2

∫

Ω−δ ∪Ω1

F(x)dx = 0.

(3.13)

Going to the limit as −l1 →−δ− 0 (the first integral drops), we obtain

γ
∂u

∂x1

(
ξ − 0, x̃2

)− k(1)
1

(− δ− 0, x̃2
) ∂u

∂x1
k(1)

1

(− δ− 0, x̃2
)

+
1
l2

∫ l2

0

[∫ ξ

−δ

(
γ
∂2u

∂x2
2

+F
(
x1,x2

)
)

dx1

]

dx2 = 0.
(3.14)

Since the parameter ξ ∈ (−δ,δ) is an arbitrary one, integrating the both sides of the above
identity with respect to this parameter on (−δ,δ), we obtain

γ
[
u
(

+ δ, x̃2
)−u(− δ, x̃2

)]− 2δk(1)
1

(− δ− 0, x̃2
) ∂u

∂x1

(− δ− 0,x2
)

+
∫ δ

−δ

{
1
l2

∫ l2

0

∫ ξ

−δ

(
γ
∂2u

∂x2
2

+F
(
x1,x2

)
)
dx1dx2

}

dξ = 0.

(3.15)

Let us divide now the both sides by 2δ �= 0. Then going to the limit as δ,γ→ 0 and requir-
ing σ := γ/(2δ)= const, we get

σ
[
u
(

+ 0, x̃2
)−u(− 0, x̃2

)]= k(1)
1

(− 0, x̃2
) ∂u

∂x1

(− 0, x̃2
)
, x̃2 ∈

(
0, l2

)
, (3.16)

where ξ → 0 as δ→ 0. This condition can be rewritten in the following form:

σ[u]x1=0 =
(
k(1)

1
∂u

∂x1

)

x1=−0
. (3.17)

Integrating (3.1) and (3.2) on Ω2 and Ω+
δ := {(x1,x2)∈Ωδ : x1 ∈ (ξ,δ)}, respectively,

by the same way, we can obtain the second limit condition

σ[u]x1=0 =
(
k(2)

1
∂u

∂x1

)

x1=+0
. (3.18)

Conditions (3.17)-(3.18) imply the transmission conditions (3.10). This completes the
proof. �

Conditions (3.17) and (3.18) imply that the flux

ϕ0
(
x2
)

:=
[
k1(x)

∂u

∂x1

]

x1=0
(3.19)
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across the interface Γ0 = {(0,x2)∈R2 : x2 ∈ (0, l2)} remains continuous, when the thick-
ness tends to zero. However, as these conditions show, the temperature u(x) becomes
discontinuous across the interface Γ0. The jump of the function u(x) across the interface
is expressed via the flux ϕ0(x2) on Γ0 by formula (3.19).

The above asymptotic analysis shows that the limit case δ→ 0 of the interface problem
(3.1)–(3.5) with ideal contact conditions (3.3)-(3.4) is the interface problem (3.10) whose
solution has discontinuity across the interface. In practice, this analysis is necessary, espe-
cially for the class of problems, in which the conductivity γ > 0 and the thickness 2δ > 0
are of the same order of small parameters.

4. Conservative finite difference schemes for interface problems on nonuniform mesh

Our goal here is a finite difference approximation of transmission problems (2.1)–(2.3)
and (3.10). For simplicity, we assume ξ = 0, so the interface Γξ of the domain Ω, shown
in Figure 2.1(a), lies on Ox2-axis. The most existing numerical approaches use a uniform
mesh and the interface points (ξ,x2), x2 ∈ (0, l2) are assumed to be between mesh points
xi0 − j < ξ < xi0 + j (see, e.g., [9]). We will develop here finite difference equations on a
nonuniform mesh, assuming that the interface lies on mesh points.

Let us denote by

ŵh :=
{(
x(i1)

1 ,x(i2)
2

)
∈Ω : x(i1)

1 =−l1 + i1h
(i1)
1 , x(i2)

2 = i2h(i2)
2 , i1= 0,N1 + 1, i2 = 0,N2 + 1

}

(4.1)

a nonuniform rectangular mesh with mesh steps h
(ip)
j > 0, j = 1,2, assuming that x(0)

1 =
−l1, x(N1+1)

1 = l1, x(0)
2 = 0, x(N2+1)

2 = l2. Then, according to the above assumption, the in-

terface mesh points are defined as follows: (0,x(i2)
2 ) : (

0
x

(i1)

1 ,x(i2)
2 )∈ Γξ , i2 = 1,N2.

Below, we will use the following notations without index at the mesh point (x(i1)
1 ,x(i2)

2 ):

hp := h(ip)
p = x(ip)

p − x(ip−1)
p , h±p := h(ip±1)

p , �p = 0.5
(
h−p +h+

p

)
, p = 1,2. (4.2)

For the first left and right finite differences, we will use the standard notations

ux1 := u(+11)−u
h+

1
≡ u

(
x1 +h+

1 ,x2
)−u(x1,x2

)

h+
1

,

ux1 := u−u(−11)

h−1
≡ u

(
x1,x2

)−u(x1−h−1 ,x2
)

h−1
.

(4.3)

In a similar way, ux2 and ux2 can also be defined. The first finite difference corresponding
to the mesh step �p = 0.5(h−p + h+

p) will be denoted as follows: ux̂p := (u(+1p)−u)/�p, p =
1,2.

We define the mesh point (x(i1)
1 ,x(i2)

2 )∈ ŵh to be a regular mesh point, if the interface
Γξ does not come between any points in the standard five-point stencil (Figure 4.1). In
view of these definitions, the standard five-point conservative finite difference scheme
approximating the elliptic operator (1.1) at the regular mesh point (x(i1)

1 ,x(i2)
2 ), with the
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x2

x1

(i, j + 1)

(i� 1, j) (i, j) (i+ 1, j)

(i, j� 1)

Γξ

Figure 4.1. Standard five-point stencil near the interface Γξ .

coefficient k1(x), x ∈Ω, is defined as follows [9, 11]:

Ahy :=−(a1yx1

)
x̂1
− (a2yx2

)
x̂2
. (4.4)

Here the coefficients ap are defined, for example, by the formulas

a1(x)= k1

(
x1− h1

2
,x2

)
, a2(x)= k2

(
x1,x2− h2

2

)
, x =

(
x(i1)

1 ,x(i2)
2

)
∈ ŵh. (4.5)

This scheme has the local truncation error of O(h2), h2 = h2
1 +h2

2, hp =maxh
(ip)
p , p = 1,2,

if u∈ C4(Ω1∪Ω2) [10].

4.1. Approximation of the Neumann transmission condition (2.2) on nonuniform
mesh. We begin by the consideration of the finite difference approximation of the trans-
mission problem (2.1)–(2.3) with ideal contact conditions.

To approximate the Neumann interface condition (2.2), we use first the simplest finite
difference equation

a1
(
h1,x2

)
yx1 − a1

(
0,x2

)
yx1 = 0, x ∈ Γhξ ⊂ ŵh, (4.6)

where Γhξ is the set of interface mesh points. Taking into account formulas (2.4) and (4.5),
we get the following:

a1
(
h1,x2

)= k1

(
h1

2
,x2

)
, a1

(
0,x2

)= k1

(
− h1

2
,x2

)
. (4.7)
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Let us now calculate the truncation error

ψh := a1
(
h1,x2

)
ux1 − a1

(
0,x2

)
ux1 (4.8)

of the finite difference approximation (4.6). For this aim, we use Taylor’s formula on the
right-hand side of (4.8):

ψh|x1=0 = k(2)
1

(
+ 0,x2

) ∂u

∂x1

(
+ 0,x2

)− k(1)
1

(− 0,x2
) ∂u

∂x1

(− 0,x2
)

+
h1

2
∂

∂x1

(
k(2)

1 (x)
∂u

∂x1

)∣∣
∣
∣
x1=+0

+
h1

2
∂

∂x1

(
k(1)

1 (x)
∂u

∂x1

)∣∣
∣
∣
x1=−0

+O
(
h2

1

)
.

(4.9)

Taking into account the Neumann interface condition (2.2), we can eliminate the first
and the second terms on the right-hand side. Hence

ψh|x1=0 = h1

2

[
∂

∂x1

(
k(2)

1 (x)
∂u

∂x1

)∣∣
∣
∣
x1=+0

+
∂

∂x1

(
k(1)

1 (x)
∂u

∂x1

)∣∣
∣
∣
x1=−0

]

+O
(
h2

1

)
, (4.10)

and we get an O(h) truncation error along the interface Γξ .
Consider now the spectral case on an orthotropic material, when the heat conduction

equation (2.1) has the form

− ∂

∂x1

(
k1(x)

∂u

∂x1

)
− ∂

∂x2

(
k2(x)

∂u

∂x2

)
= F(x), x ∈Ω, (4.11)

where k2(x)∈ C(Ω) and k1(x) has the same form (2.4), that is, the heat conduction co-
efficient k(i)

1 (x) is continuous, but the coefficient is discontinuous. In this case, by using
(4.11) on the right-hand side of (4.10), we get

ψh|x1=0 =−h1

[
∂

∂x2

(
k2(x)

∂u

∂x2

)
+F

(
x1,x2

)
]

x1=0
+O

(
h2

1

)
. (4.12)

Taking into account the right-hand side of this expression, we consider the following
approximation of the Neumann transmission condition:

a1
(
h1,x2

)
yx1 − a1

(
0,x2

)
yx1 +h1

(
a2yx2

)
x̂2

+h1F(x)= 0, x ∈ Γhξ , (4.13)

instead of (4.6). Here a2(x)= k2(x1,x2−h2/2), according to (4.5).
This scheme has the local truncation error O(h2

1), as formula (4.12) shows. To anal-
yse scheme (4.13), we divide both sides by h1 �= 0 and use the above notations for finite
derivatives. Then the finite difference equation has the following canonical form:

−(a1yx1

)
x̂1
− (a2yx2

)
x̂2
= F(x), x ∈ Γhξ . (4.14)
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This is identical to the scheme (4.4). Thus, due to the conservativeness of the finite differ-
ence schemes, even in the case of discontinuous coefficient k1(x), the scheme (4.14) has
the same form (4.4) at the interface mesh points.

4.2. Approximation of the transmission conditions (3.10). Due to the discontinuity of
the solution u(x) across the interface, we introduce the following:

y− := y−
(− 0,x2

)
, y+ := y+(+ 0,x2

) (
y− �= y+) (4.15)

on the mesh points along the interface Γξ . We approximate the interface conditions (3.10)
by the following finite difference equations:

σ
(
y+− y−

)= a1
(− 0,x2

)
yx1 , σ

(
y+− y−

)= a1
(
h1,x2

)
yx1 , x ∈ Γhξ ⊂ ŵh, (4.16)

where the coefficients are defined by (4.5). To estimate the truncation error, we use the
above Taylor formula:

ψh := σ[u]− a1
(
0,x2

)
ux1 = σ[u]−

(
k(1)

1
∂u

∂x1

)

x1=−0
+
h1

2

[
∂

∂x1

(
k(1)

1
∂u

∂x1

)]

x1=−0
+O

(
h2

1

)
.

(4.17)

By the first Neumann transmission condition (3.10), the local truncation error on the
mesh points of the interface is of O(h1). The same error has the second scheme (4.16).

In the case of the elliptic equation (4.11), we can use the above technique to construct
the following schemes:

σ
(
y+− y−

)− a1
(− 0,x2

)
yx1 +

h1

2

(
a2
(
0,x2

)
yx2

)
x̂2

+
h1

2
F
(
0,x2

)= 0,

σ
(
y+− y−

)− a1
(
h1,x2

)
yx1 −

h1

2

(
a2
(
h1,x2

)
yx2

)
x̂2
− h1

2
F
(
h1,x2

)= 0, x ∈ Γhξ .

(4.18)

Both schemes (4.18) have a local truncation error of O(h2) on the mesh points of the
interface Γξ .

5. Numerical examples

The series of computational experiments are done to confirm the mathematical model of
layered conductivities without isolation and with thin isolation with ideal contact condi-
tions, as well as the expected accuracy of the presented finite difference approximations.
We illustrate some results by the following two examples in which k2(x)= 1 is taken.
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Example 5.1. In this example, we study the verification of the finite difference scheme
(4.4) approximating the elliptic problem (2.1)–(2.3) with discontinuous coefficient k1(x).
For this problem, we use the following exact solution:

u
(
x1,x2

)=
⎧
⎨

⎩

(
x2

1 + 1
)
ex2 ,

(
x1,x2

)∈Ω1
(
x2

1 + x1 + 0.5
)
ex2 ,

(
x1,x2

)∈Ω2,
(5.1)

with appropriate Dirichlet condition, and the piecewise constant coefficient k1(x) is given
by

k1(x)=
⎧
⎨

⎩
2,

(
x1,x2

)∈Ω1,

1,
(
x1,x2

)∈Ω2,
(5.2)

where Ω :={(x1,x2)∈R2 : x1 ∈ (0,1), x2 ∈ (0,1)} and ξ=0.5. For the function u(x1,x2),
u(x1,0.5)|x1=ξ− = u(x1,0.5)|x1=ξ+ = 2.0609 and

[

k(1)
1
∂u
(
x1,0.5

)

∂x1

]

x1=ξ−
=
[

k(2)
1
∂u
(
x1,0.5

)

∂x1

]

x1=ξ+

= 3.297. (5.3)

Numerical solution of the problem is obtained by using the transmission condition (1.5).
The relative errors of the values uh(x1,0.5)|x1=ξ = 2.0773 and [k1∂uh(x1,0.5)/∂x1]x1=ξ =
3.293, obtained numerically, are found to be 0.8% and 0.2%, respectively. The problem is
solved on the uniform mesh 41× 41 and the figures of the obtained solution and relative
error are given in Figures 5.1(a) and 5.1(b).

Example 5.2. In this example, we study the verification of the asymptotic analysis and
compare the solutions of problem (3.1)–(3.5). We use the following exact solution, for
the transmission problem (3.1)–(3.5) in Figure 5.2(a):

u
(
x1,x2

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(− 1.0499x2
1 + x1 + 1

)
ex2 ,

(
x1,x2

)∈Ω1,
(
10.0364x2

1 − 4.266x1 + 1
)
ex2 ,

(
x1,x2

)∈Ωδ ,
(− 1.8988x2

1 + 2x1 + 1
)
ex2 ,

(
x1,x2

)∈Ω2,

(5.4)

with appropriate Dirichlet condition, and the discontinuous coefficient (3.9) is given by

k1(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2,
(
x1,x2

)∈Ω1,

0.001,
(
x1,x2

)∈Ωδ ,

1,
(
x1,x2

)∈Ω2,

(5.5)

where Ω = Ω1 ∪Ωδ ∪Ω2. The domains Ω1, Ωδ , and Ω2 are taken as Ω1 := {(x1,x2) ∈
R2 : x1 ∈ (0,0.475), x2 ∈ (0,1)}, Ωδ := {(x1,x2) ∈ R2 : x1 ∈ (0.475,0.525), x2 ∈ (0,1)},
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�10�3

(b)

Figure 5.1. For the first example, the obtained solution and the relative error are given in part (a) and
part (b), respectively.

and Ω2 := {(x1,x2) ∈ R2 : x1 ∈ (0.525,1), x2 ∈ (0,1)}. In this case, Γ−δ := {(0.475,x2) :
x2 ∈ (0,1)} and Γ+

δ := {(0.525,x2) : x2 ∈ (0,1)}. For the function u(x1,x2), the evalua-
tions u(x1,x2)|(x1,x2)∈Γ−δ = 2.0413, u(x1,x2)|(x1,x2)∈Γ+

δ
= 2.517, [k1∂u(x1,x2)/∂x1](x1,x2)∈Γ−δ =

0.008686, and [k1∂u(x1,x2)/∂x1](x1,x2)∈Γ+
δ
= 0.010345 are obtained. The results of the nu-

merical solution on different meshes are given in Table 5.1. The fourth and fifth columns
of the table show the values of the fluxes on the interfaces Γ−δ and Γ+

δ , respectively, for
δ = 0.025. These results are in agreement with Proposition 3.1. Relative error of the ob-
tained numerical solution is given in Figure 5.2(b). The figures of the cross sections of the
approximate solution and relative error with the plane x2 = 0.5 are given in Figures 5.3(a)
and 5.3(b), respectively. The geometry of the behaviour of the relative error at the cross
section x2 = 0.5 for different thickness δ = h;2h;3h of the layer (isolation) is illustrated
in Figure 5.4. The minimum relative error, in all cases, corresponds to the central point
x1 = 0.5 of the isolation, is as expected.



Z. M. Seyidmamedov and E. Ozbilge 15

1
0.8

0.6
0.4

0.2
0 x0

0.2
0.4

0.6
0.8

1

y

1
1.5

2
2.5

3
3.5

4
4.5

(a)

10.90.80.70.60.50.40.30.20.10
x

0
0.2
0.4
0.6
0.8

1

y

0

0.5

1

1.5

2

2.5

3
�10�3

(b)

Figure 5.2. For the second example, the exact solution and the relative error of the obtained numerical
solution are given in part (a) and part (b), respectively.

Table 5.1. Results of the numerical solution on different meshes.

Mesh uh(0.475,0.5) uh(0.525,0.5)
[
k1
∂uh

∂x1

]

(0.475,0.5)

[
k1
∂uh

∂x1

]

(0.525,0.5)
Max. Rel. Err.

41× 41 2.0236 2.4903 0.00957 0.00910 0.0107

81× 81 2.0326 2.5039 0.00932 0.00946 0.0053

161× 161 2.0370 2.5105 0.00907 0.00981 0.0026
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Figure 5.3. For the second example, the cross section of the approximate solution and the relative
error with the plane x2 = 0.5 are given in part (a) and part (b), respectively.

To have an overview of p, the order of convergence (experimentally) of each scheme,
we chose two different step sizes h1 and h2. Then we calculated the corresponding errors,
say E1 and E2, respectively. We assumed that E1 = ch

p
1 and E2 = ch

p
2 .
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δ = h
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Figure 5.4. Geometric behaviour of the relative error at x2 = 0.5.

Thus

p = ln
(
E1
/
E2
)

ln
(
h1
/
h2
) . (5.6)

The above formula was used to estimate the order of convergence for each finite difference
method. The results were obtained via various values of h. We observed that the order of
convergence in the domain Ωδ and Ω1∪Ω2 were 1 and 2, respectively for Example 5.2.
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