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This paper discusses the effect of viscosity and viscous dissipation (due to a high ve-
locity gradient) on the steady flow of a viscous liquid in a symmetrically heated chan-
nel. The coupled nonlinear differential equations arising in the planar Poiseuille flow are
not amendable to analytical solutions. Therefore, numerical solutions based on finite-
difference scheme are presented. The effects of various flow controlling parameters such
as temperature difference α, dimensionless pressure gradient, and the dimensionless vis-
cous heating parameter δ on the dimensionless velocity and temperature are analyzed.
The analysis reveals that when viscous heating parameter δ = 0, we obtained zero solu-
tion for the dimensionless temperature.

Copyright © 2006 K. S. Adegbie and F. I. Alao. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The study of flow of viscous fluid with temperature-dependent properties is of great im-
portance in lubrication and tribology, food processing, instrumentation, and viscometry.
However, viscous heating is always a possible, and frequently significant, source of error
in viscometric measurement at high shear rates in instrumentation and viscometry. Bird
et al. [2], Turian and Bird [8], and Turian [7] have presented a methodology for obtain-
ing approximate analytical solutions to the problem of combine flow and heat transfer
in planar Couette flow when both the viscosity and thermal conductivity are polyno-
mial functions of temperature. Papathanasiou [5] developed second-order series solution
for flow in circular Couette with walls maintained at constant temperature, for material
whose viscosity and thermal conductivity can be expressed as polynomial functions of
temperature with arbitrary coefficients. Pinarbasi and Imal [6] investigated the pressure-
gradient-flow relationship for steady-state nonisothermal pressure-driven flow of a non-
Newtonian fluid in a channel and the effect of viscous heating is taken into account. The
fluid is modeled as Carreau model, which reflects the characteristics of most polymers
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Figure 1.1. Schematic description of physical model.

adequately, with an exponential temperature dependence of viscosity. Momentum and
energy balance equations, which govern the flow, are coupled and the nonlinear bound-
ary value problems are solved numerically using a pseudospectral method based on the
Chebyshev polynomials. The effects of various flows controlling parameters are analyzed.
Davis et al. [3] studied steady parallel flows of Newtonian liquids that have temperature-
dependent viscosities and substantial viscous heat generation. They presented shear stress
versus shear rate characteristics and found that activation energy parameter affects the
results considerably. They observed that shear-stress rate graphs are either monotonic
or there exists large jump in shear rate and heat transfer at the walls. Adler [1] inves-
tigated the thermal stability of a reactive viscous flow. He considered the steady devel-
oped flow between symmetrically heated parallel walls and used a power series in a de-
fined viscous heating parameter to obtain an expression for critical Frank-Kamenestkii
parameter in series form. Yürüsoy and Pakdemirli [9] considered the flow of a third-
grade fluid in a pipe with heat transfer. Constant viscosity, Reynold’s model viscosity,
and Vogel’s model viscosity cases are treated separately. Approximate analytical solutions
are presented for each case using perturbations. The criteria for which the solutions are
valid are determined for the dimensionless parameters involved. The analytical solutions
are contrasted to the finite-difference solutions given by Massoudi and Christiein [4].
The present contribution studies steady-state flow of Newtonian viscous liquid with ex-
ponential temperature-dependent viscosity and substantial viscous heat generation in a
symmetrically heated channel. The coupled nonlinear momentum and energy equations
arising in planar Poiseuille flow are solved numerically using finite-difference scheme
techniques. The effects of flow controlling parameters such as viscous heating parameter,
temperature difference, and pressure-gradient parameter on the velocity and temperature
profiles are analyzed.

2. Mathematical formulation

We consider steady flow of Newtonian liquids characterized by temperature-dependent
viscosity and viscous dissipation due to a high velocity gradient of the flow in a channel.
The main physical assumptions of the suggested problem are the following. The flow is
incompressible and fully developed. The body forces are negligible. We presuppose that
there is no-slip at the boundary, and pressure changes influence is taken into account. The
dependence of thermal conductivity on temperature is neglected. The viscosity depends
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on temperature in an exponential manner, Reynold’s model viscosity,

μ(T)= exp(−T). (2.1)

Under these assumptions, the system of governing dimensionless momentum balance
and energy balance equations take the following form:

d

dr

[
exp(−αθ)

du

dr

]
= K , (2.2)

d2θ

dr2
+Brm exp(−αθ)

(
du

dr

)2

= 0, (2.3)

subject to the following boundary conditions:

u(−1)= 0, u(1)= 1,

θ(−1)= 0, θ(1)= 0.
(2.4)

The above coupled nonlinear flow governing equations were made dimensionless using

θ = T −T0

Tb−T0
, u= u

U0
, r = y

h
, μ= μ

μ0
, P = Ph

μ0U0
. (2.5)

The dimensionless parameters involved in (2.2)–(2.3) are

K = hexp
(
T0
)dP
dx

, α= TS−T0, Brm =
(
μ0U

2
0

αλ

)
exp

(−T0
)
, (2.6)

where Brm is the modified Brinkman number, Br = (μ0U
2
0 /αλ) is Brinkman number,

which is a measure of heat generated by viscous heating as compared to the heat con-
ducted from the impressed temperature difference α between the outer and inner sur-
faces, respectively, through the viscous liquid, K is the pressure-gradient parameter, θ is
the dimensionless temperature, u is the velocity parallel to the planes, U0 is the constant
velocity at moving surface, μ0 is the viscosity at T0, and P is the pressure.

3. Method of solution

Here, we consider the solutions of flow of viscous liquid with a high velocity gradient in
presence of pressure gradient when its viscosity is an exponential function of tempera-
ture. For Poiseuille flow, the pressure gradient is constant, K �= 0. Thus, (2.2) and (2.3)
are solved with the symmetric boundary conditions

u(1)= 0,
du(0)
dr

= 0,

θ(1)= 0,
dθ(0)
dr

= 0.
(3.1)

Integration of (2.2) using (3.1) yields

du

dr
= Kr exp(αθ). (3.2)
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Table 4.1. Variation of maximum velocity with pressure gradient for various values of temperature
difference α when value of δ =−2.

α
umax

K =−1 K =−2 K =−3 K =−4 K =−5

1 0.6375 1.2750 1.1925 2.5500 3.1875

2 0.7702 1.5405 2.3107 3.0809 3.8512

3 0.9946 1.9892 2.9838 3.9784 4.9730

5 2.7516 5.5031 8.2547 11.0063 13.7578

6 13.8306 27.6611 41.4917 55.3222 69.1528

Then, substitution of (3.2) into (2.3) gives

d2θ

dr2
+ δr2 exp(αθ)= 0, (3.3)

where δ = K2Brm. The dimensionless parameter δ is a measure of
(i) the extent to which viscous heating is important relative to heat flow resulting

from impressed temperature difference α;
(ii) the effect of pressure gradient on the system;

(iii) the effect of inner temperature on the system;
(iv) what the dimension of the system involves.

Now, the nonlinear boundary value problems (3.2) and (3.3) with conditions in (3.1)
above are solved numerically using finite-difference scheme techniques.

4. Numerical analysis and discussion

In this section, numerical solutions of plane Poiseuille flow are presented. Table 4.1 shows
the variation of maximum velocity with the value of applied pressure gradient for vari-
ous values of temperature difference α when the values of dimensionless viscous heating
parameter δ = −2. It is obvious from Table 4.1 that the increase in maximum velocity
with decreasing pressure gradient is monotonic for all values of α. However, there is a
sudden jump from umax = 0.9946 to umax = 2.7516 when α is increased from α = 3 to 5
for K = −1. This jump in the maximum velocity is more pronounced as K decreases.
When K = −5, a sharp sudden jump from umax = 13.7578 to umax = 69.1528 occurs
when α is increased from α= 5 to 6. Conclusively, the liquids whose viscosity is not very
temperature-sensitive do not experience large jumps in the maximum velocity as applied
pressure gradient decreases.

We show in Table 4.2 typical variations of maximum temperature θmax and maximum
velocity umax with various values of δ when K = −1. It is seen from Table 4.2 that for
α = 1, the characteristic curves are monotonically increasing, and there are no jumps
in both θmax and umax. However, when α = 3 and α = 4, the temperature and velocity
increase smoothly as δ decreases until a critical point is reached, there is a large jump in
θmax and umax, respectively.
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Table 4.2. Variation of maximum temperature and maximum velocity with dimensionless parameter
δ for various values of α when K =−1.

δ
θmax umax

α= 1 α= 2 α= 3 α= 4 α= 1 α= 2 α= 3 α= 4

−0.1 0.0303 0.0304 0.0305 0.0306 0.5537 0.5574 0.5613 0.5650

−0.5 0.1535 0.1559 0.1585 0.1612 0.5690 0.5897 0.6125 0.6375

−1 0.3118 0.3225 0.3341 0.3477 0.5897 0.6375 0.6963 0.7702

−2 0.6446 0.6953 0.7641 0.8661 0.6375 0.7702 0.9946 1.4479

−3 1.0024 1.1461 1.4115 2.4540 0.6963 0.9946 1.8967 13.8306

−5 1.8170 2.6193 4.0726 19.8964 0.8660 2.7516 12.3479 88.4611
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Figure 4.1. Variation of velocity profile with various temperature difference parameters α when K =
−1 and δ =−2.

Figure 4.1 shows the dimensionless velocity profile for various temperature difference
parameters α for δ = −2 and K = −1. It is apparent that the velocity profiles are sym-
metric with respect to the midpoint, and the two inflection points that are symmetrically
located are seen in Figure 4.1. For α = 1 and α = 3 shown in Figure 4.1, there is a small
jump and therefore the values of the velocity are small. However, when α = 5, velocity
values are high due to the jump that occurred in the maximum velocity. Therefore, an
increase in α signifies the sensitivity of the liquid to temperature. Since the viscosity of
the liquids decreases with increasing α, the dimensionless velocity profile takes higher
values as α increases. In Figures 4.2 and 4.3, the results in Table 4.2 are ascertained. As
expected, the dimensionless maximum temperature and velocity increase monotonically
as δ decreases.
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Figure 4.2. Variation of temperature profile with the values of temperature difference parameter α= 2
for various values of δ when K =−1.
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Figure 4.3. Variation of dimensionless velocity profile with the value of temperature difference pa-
rameter α= 2 for various values of δ when K =−1.
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5. Conclusion

Steady flow of Newtonian fluid with exponential temperature-dependent viscosity and
viscous dissipation in a symmetrically heated channel is investigated. The numerical so-
lutions of the coupled nonlinear equations arising from planar Poiseuille flow are also
presented. The effects of various flow controlling parameters such as temperature dif-
ference α, dimensionless pressure gradient, and the dimensionless parameter δ on the
dimensionless velocity and temperature are analyzed. The graphical representations of
these effects feature promptly. It is found that the behavior of the solutions is replica of
some of the problems in lubrication, viscometry, and engineering flows such as pumping
of oil in pipes, flow of liquids in open channels, and extrusion of plastics through dies.
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[9] M. Yürüsoy and M. Pakdemirli, Approximate analytical solutions for the flow of a third-grade fluid
in a pipe, International Journal of Non-Linear Mechanics 37 (2002), no. 2, 187–195.

K. S. Adegbie: Department of Mathematical Sciences, School of Sciences,
Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
E-mail address: kolasade33@yahoo.com

F. I. Alao: Department of Mathematical Sciences, School of Sciences,
Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
E-mail address: dupsan65@yahoo.com

mailto:kolasade33@yahoo.com
mailto:dupsan65@yahoo.com


Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


