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This paper deals with the problems of robust stability and stabilization for uncertain con-
tinuous descriptor systems. We propose a new necessary and sufficient condition in terms
of a strict linear matrix inequality (LMI) for a nominal continuous descriptor system to
be admissible (stable, regular, and impulse-free). Based on this, the state-feedback admis-
sibility problem is solved and the solution is extended to the case of uncertain descriptor
systems. Finally, numerical examples are given to illustrate the results.
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1. Introduction

Intuitively, singular state-space description of linear systems is more general than con-
ventional state-space description. In particular, a descriptor form includes information
about static as well as dynamic constraints. Singular systems, both continuous and dis-
crete, have been of interest in the literature since they have many applications (see [5]),
for instance in electrical circuits network, robotics, and economics. It is fair to say that
descriptor models give a more complete class of dynamical models than the conventional
state-space systems.

Many classical concepts and results obtained for conventional systems have been ex-
tended to descriptor systems. Let us quote for instance controllability and observability,
pole assignment, stability analysis [8, 10], and stabilization techniques as well as results
including robustness aspects [9, 12, 17].

The natural generalized Lyapunov equation (GLE) [10] was proven in [8] to fail unless
the system is in its Weirstrass form and they proposed a new GLE equivalent to that
given in [14]. In [12], the authors modified the GLE from [14] and proposed a matrix
inequality equivalent condition.

In the available literature on descriptor systems, there are two kinds of stabilization
problems for singular continuous-time systems. One consists in designing a state-feed-
back controller in such a way that the closed-loop system is regular, impulse-free, and
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stable or equivalently admissible. The other is to design a state-feedback controller in
order to make the closed-loop system regular and stable.

In a number of approaches, the system model is transformed into a special form and it
is understandable that this way of doing is not assuming very appropriate in the presence
of uncertainty.

Concerning the stability analysis and the stabilization problem, a number of ap-
proaches assuming or not assuming the regularity of the descriptor system have been
proposed in the literature let us quote for instance [3, 5, 15] among those assuming the
regularity and [5, 15] without assuming the regularity.

Robust control of linear state-space systems has been the focus of much attention dur-
ing the past decades and various aspects and approaches for analysis and control design
for linear uncertain systems have been investigated, see, for instance, [20]. In the available
literature, we easily note that quadratic stability and stabilization approaches have taken a
lion’s share. The quadratic stability or stabilization is characterized by a determination of
a unique so-called Lyapunov matrix which gives the approach an inherent conservatism.
Many results have been reported in quadratic stability analysis and/or stabilization, see,
for instance, [2, 19, 20] and the references therein.

Recently the parameter dependent Lyapunov (PDL) approach has been introduced to
reduce the conservatism of the quadratic approach. The PDL approach consists in ex-
pressing the Lyapunov matrix as a function of the uncertainty, and with the help of some
slack additional variables, the approach yields a significant reduction of conservatism
[1, 4, 6].

In this paper, a linear matrix inequality (LMI) formulation is adopted to express nec-
essary and/or sufficient conditions for the admissibility of continuous-time descriptor
systems. The proposed approach can be understood as the LMI-correspondent formula-
tion of the proposed GLE in [8]. It is known that strict inequality conditions are tractable
and reliable especially with the available LMI software solver. Note that the conditions in
[8] includes a nonstrict inequality associated with a standard Lyapunov inequality with
the restriction that the solution is no longer symmetric and must satisfy an equality con-
dition (see Remark 3.2). The admissibility property includes the stability as well as the
regularity and the absence of impulses.

The state-feedback stabilization problem is solved by means of the admissibility of
the closed loop. When the system contains uncertainties, the present method is extended
to solve the robust state-feedback admissibility problem particularly through a PDL ap-
proach.

This paper is organized as follows. Section 2 gives the problem formulation and some
preliminary definitions. Section 3 gives the result on admissibility for continuous-time
descriptor systems. In Section 4, main result to solve the static feedback problem for the
nominal descriptor systems is given, whereas Section 5 presents the result for uncertain
singular systems. Section 6 presents illustrative examples. Section 7 concludes the paper.

2. Problem formulation

Consider the following continuous-time descriptor system:

Eẋ(t)=Ax(t) +Bu(t), (2.1)
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where x(t)∈Rn is the state, u(t)∈Rm is the control input. The matrix E may be singu-
lar, we will assume that rank E = r ≤ n. A and B are known real constant matrices with
appropriate dimensions.

Definition 2.1 [5]. (1) The pair (E,A) is said to be regular if det(sE−A) is not identically
zero.

(2) The pair (E,A) is said to be impulse-free if deg(det(sE−A))= rankE.

In the rest of the paper, the notation is standard unless it is otherwise specified. L > 0
(L < 0) means that the matrix L is a symmetric and positive definite matrix (a symmetric
and negative definite). In the sequel, Sym{·} is defined as Sym{X} = (X +X�) for any
matrix X .

It is worth noting that the stability property for conventional systems is no more suf-
ficient for singular systems but completed by the regularity and the absence of impulses
and this lead us to introduce the notion of admissibility.

Definition 2.2 [5, 9]. The continuous-time singular system (2.1) is said to be admissible
if it is regular, impulse-free, and stable.

In order to characterize the admissibility of a singular system, let us recall that for a
pair (E,A), there exists a transformation couple (U ,V) such that

E =UEV =
[
I 0

0 0

]
, A=UAV =

[
A11 A12

A21 A22

]
. (2.2)

It comes then that the singular system is said to be admissible if there exist a symmetric
and positive matrix X11 and a nonsingular matrix Y 22 such that the conditions

Sym
{((

A11−A12A
−1
22 A21

)
X11

)}
< 0, (2.3)

Sym
{
A22Y 22

}
< 0 (2.4)

hold.
Indeed, condition (2.4) means that the matrix A22 is nonsingular, whereas condition

(2.3) states that the matrix (A11−A12A
−1
22 A21) is stable. Notice that conditions (2.3)–(2.4)

are not tractable for uncertain system and it is preferable to use directly the system ma-
trices. Both conditions will be combined in a unique condition as in [8]. The associated
Lyapunov matrix will be neither symmetric nor positive definite. The positivity will be
required only on a fraction of the Lyapunov matrix in order to satisfy condition (2.3).

To solve the admissibility problem, we propose a Lyaponuv-type admissibility condi-
tion, which is expressed by a strict LMI as given in Theorem 3.1. The goal of this paper
is to find a static state-feedback controller u(t)= Kx(t) such that the closed-loop system
(E,A+BK) is admissible. This is defined as the static feedback admissibility problem of
descriptor systems in this paper. The solvability of the above problems will be charac-
terized by some LMI conditions. If the derived LMI conditions are feasible, the feedback
gain matrix can be obtained. If the system contains polytopic uncertainties, the results
can be modified to find the static state-feedback gain in such a way that the closed-loop
uncertain system is admissible.



4 Descriptor systems: stability and stabilization

3. Stability analysis

Consider the singular system described by the pair (E,A) and define E⊥ and E† as follows:

E⊥ =V(I −UEV)U , E† =U−1(I −UEV)U (3.1)

with U and V two nonsingular matrices satisfying

UEV =
[
I 0

0 0

]
. (3.2)

Theorem 3.1. The continuous-time singular system (E,A) is admissible if and only if there
exist some matrices X , Y , and Z such that the matrix

EXE� + Sym
{
E†Z

}
(3.3)

is positive definite and

M = Sym
{(
AXE�

)}
+ Sym

{(
AE⊥Y

)}
< 0. (3.4)

Remark 3.2. Note that in [12] the Lyapunov inequality has a solution which is no longer
symmetric and must satisfy the condition (V−1PU�)12 = 0 and this comes from the
equality constraint EP = PE� ≥ 0. In Theorem 3.1 we have two strict LMI conditions,
and (3.4) is in fact similar to the condition in [12] when we put P = XE� + E⊥Y and
we get EP = EXE� which is symmetric, and the positivity condition in EP = PE� ≥ 0 is
insured by (3.3) as a strict condition. Note also that a software as Matlab can not deal
directly with nonstrict condition nor equality constraints.

Proof of Theorem 3.1

Sufficiency. First transform M as follows:

M =UMU�

= Sym
{
UAXE�U�}+ Sym

{
UAE⊥YU�}

= Sym
{
AXE

�}
+ Sym

{
AE

⊥
Y
}

,

(3.5)

with

A=UAV =
[
A11 A12

A21 A22

]
, E=UEV=

[
I 0

0 0

]
, X=V−1XV−�=

[
X11 X12

X21 X22

]
,

E
⊥ =V−1E⊥U−1 =

[
0 0

0 I

]
, Y =UYU� =

[
Y 11 Y 12

Y 21 Y 22

]
.

(3.6)
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It comes then that

M = Sym

⎧⎨
⎩
⎡
⎣
(
A11X11 +A12X21

)
0(

A21X11 +A22X21
)

0

⎤
⎦
}

+ Sym

{⎡
⎣
(
A12Y 21

) (
A12Y 22

)
(
A22Y 21

) (
A22Y 22

)
⎤
⎦
⎫⎬
⎭ (3.7)

which shows that M < 0 necessarily implies

Sym
{
A22Y 22

}
< 0, (3.8)

and this means that A22 is invertible or in other words that the system is regular and
impulse-free.

Moreover, consider the two matrices

Σ=
⎡
⎣ I 0

−A−1
22 A21 A22

⎤
⎦ , Γ=

⎡
⎣I −A12A

−1
22

0 I

⎤
⎦ (3.9)

that transform the matrix A in a diagonal form as

A= ΓAΣ=
⎡
⎣A11 0

0 I

⎤
⎦ (3.10)

with

A11 = A11−A12A
−1
22 A21, (3.11)

and transform M into M as

M = ΓMΓ� = Sym
{
AXE

�}
+ Sym

{
AE

⊥
Y
}

(3.12)

with

E = ΓEΣ= E,

X = Σ−1XΣ�−1 =
[
X11 ∗
∗ ∗

]
,

E
⊥ = Σ−1E

⊥
Γ−1 = E

⊥
,

Y = ΓYΓ�.

(3.13)

It comes then that

M = Sym

{[
A11X11 0
∗ 0

]}
+ Sym

{[
0 0
∗ ∗

]}
, (3.14)
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where the ∗ corresponds to entries with no much relevance at this step of arguments.

Note that if M is negative definite, then necessarily we have

Sym
{
A11X11

}
< 0. (3.15)

Condition (3.15) means that the singular system is stable if matrix X11 is symmetric and
positive definite and this comes from condition (3.3) as follows: notice that

U
(
EXE� + Sym

{
E†Z

})
U� =UEV V−1XV−� (UEV)� + Sym

{
UE†U−1UZU�}

= EXE
�

+ Sym
{
E
†
Z
}

=
[
I 0
0 0

][
X11 ∗
∗ ∗

][
I 0
0 0

]
+ Sym

{[
0 0
0 I

][
∗ ∗
∗ Z22

]}
,

(3.16)

which means that condition (3.3) is equivalent to

X11 > 0, (3.17)

and this ends the proof of the sufficiency part.

Necessity. Assume that the system is stable, regular, and impulse-free or in other words

there exist two matrices X11 > 0 and Y 22 such that

Sym
{(

A11X11

)}
< 0,

Sym
{
A22Y 22

}
< 0,

(3.18)

then one can surely find two matrices X21 and Y 21 in such a way that the LMI

Sym

⎧⎨
⎩
⎡
⎣(A11X11

)
0(

A22X21
)

0

⎤
⎦
⎫⎬
⎭+ Sym

{[
0 0(

A22Y 21
) (

A22Y 22
)
]}

< 0 (3.19)

is satisfied. Indeed, if X21 and Y 21 satisfy the condition

Sym
{(

A11X11

)}
−
(
X21 +Y 21

)�
A
�
22

(
Sym

{
A22Y 22

})−1
A22

(
X21 +Y 21

)
< 0, (3.20)

then (3.19) holds. Note that condition (3.19) is in fact

Sym
{(

AXE
�)}

+ Sym
{(

AE
⊥
Y
)}

< 0. (3.21)

Then with similar arguments as in the sufficiency part one can recover condition (3.3)
which closes the proof of the theorem. �
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4. Stabilization by state feedback

In this section, we address the problem of stabilization by state feedback for the singular
system given by

Eẋ(t)=Ax(t) +Bu(t), (4.1)

where x(t)∈Rn is the state and u(t)∈Rm is the control input.
The control law given by a state feedback is then

u(t)= Kx(t), (4.2)

where the gain K of appropriate dimension is computed in such a way that the singular
closed-loop system is admissible.

Theorem 4.1. If the LMI problem

EXE� + Sym
{
E†Z

}
> 0, (4.3)

Sym
{(
XE� +E⊥Y

)}
> 0, (4.4)

⎡
⎣ 0

(
XE� +E⊥Y

)�
(
XE� +E⊥Y

)
0

⎤
⎦+ Sym

{[
AG+BR

−G

][
I I

]}
< 0 (4.5)

is feasible in the variables X , Y , Z, R, and G, then the closed-loop singular system is admis-
sible with the state feedback

K = RG−1. (4.6)

Remark 4.2. It is fair to mention that the result in [7] combined with the criterion in [2]
leads also to a condition where the Lyapunov matrix is decoupled.

Proof of Theorem 4.1. The closed-loop singular system is admissible if (and only if ) there
exist two matrices X and Y and a state feedback K with matrix X satisfying condition
(4.3) and

Sym
{(
A+BK

)(
XE� +E⊥Y

)}
< 0. (4.7)

The above equation can be written as

[
I A+BK

][ 0
(
XE� +E⊥Y

)�(
XE� +E⊥Y

)
0

][
I

(A+BK)�

]
< 0, (4.8)

and in the same way we note that (4.4) can be rewritten as

Sym
{− (XE� +E⊥Y

)}= [I −I
][ 0

(
XE� +E⊥Y

)�(
XE� +E⊥Y

)
0

][
I
−I
]
< 0.

(4.9)
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Thus, according to the elimination lemma [13, Theorem 2.3.12], conditions (4.8) and
(4.9) hold if and only if there exists a matrix G satisfying the condition

[
0

(
XE� +E⊥Y

)�(
XE� +E⊥Y

)
0

]
+ Sym

{[
(A+BK)G

−G
][

I I
]}

< 0, (4.10)

and it becomes clear that a change of variable R= KG yields condition (4.5).
It is worth noting that condition (4.4) has been added in Theorem 4.1 in order to

obtain condition (4.5) which has the consequence to eliminate the necessity of the con-
dition.

From Theorem 4.1, we can easily be aware that this approach has the advantage to
be nicely applicable in the case the system is uncertain with a polytopic description of
uncertainty which is the subject of the next section. �

Remark 4.3. Theorem 4.1 can easily be extended to system with decentralized control
described by the model [18]

Eẋ(t)= Ax(t) +
N∑
i

Biui(t) (4.11)

with the control law

ui(t)= Kix(t). (4.12)

In Theorem 4.1, only condition (4.5) has to be replaced by

[
0

(
XE� +E⊥Y

)�(
XE� +E⊥Y

)
0

]
+ Sym

{[
AG+ ��
−G

][
I I

]}
< 0 (4.13)

with

�=
[
B1 B2 ··· BN

]
, �=

[
R�1 R�2 ··· R�N

]�
, (4.14)

and the controller will be given by

Ki = RiG
−1, i= 1, . . . ,N. (4.15)

5. Robust stabilization

In this section, we consider the feedback stabilization problem for systems containing un-
certainties. The descriptor system is characterized by the pair (E,A(α,Δ),B(α,Δ)), where
matrices A(α,Δ) and B(α,Δ) are given as

[
A(α,Δ) B(α,Δ)

]
=
[
A(α) B(α)

]
+ J(α)Δ

[
La(α) Lb(α)

]
(5.1)

with matrix Δ representing the norm-bounded uncertainty satisfying the constraint

Δ�Δ < ρ2I , (5.2)
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and ρ corresponds to the norm-bounded uncertainty radius which, in fact, has to be
maximized.

Matrices A(α), B(α), J(α), La(α), and Lb(α) belong to a polytope, that is

[
A(α) B(α) J(α) La(α) Lb(α)

]
=

p∑
i=1

αi
[
Ai Bi Ji Lai Lbi

]
(5.3)

with

αi ≥ 0, i= 1, . . . , p,
p∑

i=1

αi = 1, α=
[
α1 . . . αp

]
.

(5.4)

The problem for a system corrupted by uncertainty is to preserve its performances for
all admissible uncertainties or in other terms for every instance of matrices A(α,Δ) and
B(α,Δ).

Definition 5.1. The uncertain singular system is robustly admissible if the eigenvalues of
the pencil matrix (E,A(α),Δ) lie in the open left half-plane for all admissible uncertainty
α and Δ.

Definition 5.2. The uncertain singular system is said to be quadratically admissible if there
exist a symmetric and positive definite matrix X11 and a nonsingular matrix Y 22 such that

Sym
{((

A11(α,Δ)−A12(α,Δ)A
−1
22 (α,Δ)A21(α,Δ)

)
X11

)}
< 0,

Sym
{
A22(α,Δ)Y 22

}
< 0

(5.5)

hold.

Recall that quadratic stability implies robust stability but the converse is, in general,
false. This comes from the fact that for quadratic stability there exists a single couple
of matrices (X11,Y 22) for all admissible uncertainties. If quadratic admissibility is only
sufficient for robust admissibility, it matters to find (sufficient) conditions for robust ad-
missibility that are less conservative than quadratic admissibility. In other words, it is
important to derive conditions implicitly involving matrices X and Y that are not con-
stant but dependent on the uncertainty. One possibility is that matrices X and Y comply
with

[
X Y

]
=

p∑
i=1

αi
[
Xi Yi

]
, (5.6)

where Xi and Yi are valid to assess the admissibility of extreme models. Based upon these
notions, the next theorem for Δ = 0, that is without the norm-bounded uncertainty, is
proposed.
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Theorem 5.3. The uncertain singular system is robustly admissible if there exist matrices
Xi, Yi, vZi, for i= 1, . . . , p, and two matrices G and R such that the LMI problem

EXiE
� + Sym

{
E†Zi

}
> 0,

Sym
{(
XiE

� +E⊥Yi
)}

> 0,

⎡
⎣ 0

(
XiE� +E⊥Yi

)�
(
XiE� +E⊥Yi

)
0

⎤
⎦+ Sym

{[
AiG+BiR
−G

][
I I

]}
< 0

(5.7)

is feasible in the variables Xi, Yi, V , and R, then the admissible feedback gain is given by

K = RG−1. (5.8)

Remark 5.4. In [11], the authors propose a proportional and derivative (PD) controller.
This PD controller allows them to use an augmented system for which the corresponding
matrix E is in the form

[
I 0
0 0

]
(5.9)

yielding a single LMI condition, whereas in the present work we restrict ourselves to a
simple proportional controller.

Proof of Theorem 5.3. Let matrices X and Y be defined as in (5.6), then multiplying con-
ditions (5.7) by αi and summing up from 1 to p, one gets the same conditions as in
Theorem 4.1. �

In the case where we consider norm-bounded uncertainties, we need the following
lemma [16].

Lemma 5.5. Let Z, E, F, and Δ be matrices of appropriate dimensions. Assume that Z is
symmetric, and Δ�Δ≤ I , then

Z +EΔF +F�Δ�E� < 0 (5.10)

if and only if there exists a scalar λ > 0 satisfying

Z + λEE� + λ−1F�F < 0. (5.11)

Lemma 5.5 enables us to propose the following theorem in the case of both uncertain-
ties, that is, polytopic and norm bounded.

Theorem 5.6. The uncertain singular system is robustly admissible if there exist matrices
Xi, Yi, Zi, for i = 1, . . . , p, and two matrices G and R and a positive scalar λ such that the
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LMI problem

EXiE
� + Sym

{
E†Zi

}
> 0, (5.12)

Sym
{(
XiE

� +E⊥Yi
)}

> 0, (5.13)

⎡
⎢⎢⎢⎢⎢⎢⎣

0
(
XiE� +E⊥Yi

)� (
LaiG+LbiR

)�
λρJi(

XiE� +E⊥Yi
)

0
(
LaiG+LbiR

)�
0

LaiG+LbiR LaiG+LbiR −λI 0

λρJ�i 0 0 −λI

⎤
⎥⎥⎥⎥⎥⎥⎦

+Sym

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
AiG+BiR

−G
0

0

⎤
⎥⎥⎥⎥⎦
[
I I 0 0

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
< 0

(5.14)

is feasible in the variables Xi,Yi,G, and R; then the admissible feedback gain is given by

K = RG−1. (5.15)

Remark 5.7. Note that we can take λ = 1 in condition (5.14) and in fact all the decision
variables will comply to the following change of variable given here only for Xi : λ−1Xi.

Proof of Theorem 5.6. The proof of the previous theorem is straightforward from Theo-
rem 2.1 and Lemma 5.5. That is, in the case of both polytopic and norm-bounded un-
certainties we take X and Y according to (5.6) and apply Theorem 4.1 where conditions
(4.3) and (4.4) remain unchanged and condition (4.5) becomes

�(α,Δ)=
⎡
⎣ 0

(
X(α)E� +E⊥Y(α)

)�
(
X(α)E� +E⊥Y(α)

)
0

⎤
⎦

+ Sym

{[(
A(α) + J(α)ΔLa(α)

)
G+

(
B(α) + J(α)ΔLb(α)

)
R

−G

][
I I

]}
< 0

=
⎡
⎣ 0

(
X(α)E� +E⊥Y(α)

)�
(
X(α)E� +E⊥Y(α)

)
0

⎤
⎦

+ Sym

{[
A(α)G+B(α)R

−G

][
I I

]}

+ Sym

{[
J(α)

0

]
Δ
[
La(α)G+Lb(α)R La(α)G+Lb(α)R

]}
< 0,

(5.16)
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and according to Lemma 5.5, this holds if there exists a positive scalar λ such that we have

⎡
⎢⎢⎢⎢⎢⎣

0
(
X(α)E� +E⊥Y(α)

)� (
La(α)G+Lb(α)R

)�
λρJ(α)(

X(α)E� +E⊥Y(α)
)

0
(
La(α)G+Lb(α)R

)�
0

La(α)G+Lb(α)R La(α)G+Lb(α)R −λI 0
λρJ�(α) 0 0 −λI

⎤
⎥⎥⎥⎥⎥⎦

+ Sym

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
A(α)G+B(α)R

−G
0
0

⎤
⎥⎥⎥⎦
[
I I 0 0

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ < 0

(5.17)

from which we get easily condition (5.14) and this ends the proof. �

Remark 5.8. It is worth noting that we can also extend Remark 4.3 to the case of uncertain
decentralized control systems with both polytopic and norm-bounded uncertainty.

6. Illustrative example

Example 6.1. Consider a continuous-time descriptor system as in (4.1) described by the
parameters (see [9])

E =
⎡
⎢⎣

1 0 0
0 1 1
−1 1 1

⎤
⎥⎦ , A=

⎡
⎢⎣

0 1 0
−1 3 3
−1 2 3

⎤
⎥⎦ , B =

⎡
⎢⎣

0.0 0.2
1.0 0.0
0.9 0.8

⎤
⎥⎦ . (6.1)

The finite poles are located at 0.3820 and 2.6180 which implies that the open loop is not
admissible.

By Theorem 4.1 and using the Matlab LMI solver, we obtain

X=

⎡
⎢⎢⎣

0.0024 −0.3093 0.3100

−0.3093 −1.8084 1.1614

0.3100 1.1614 −0.5117

⎤
⎥⎥⎦× 104,

Y=

⎡
⎢⎢⎣
−1.0360 1.9258 3.1217

−2.0579 −1.4776 −0.1499

2.0579 3.0883 0.1034

⎤
⎥⎥⎦× 103,

G=

⎡
⎢⎢⎣

16.4377 88.2391 341.4507

−92.8939 7.7904 −261.7340

−341.2044 263.9527 14.5597

⎤
⎥⎥⎦ ,

R=
[

1.3960 −0.7423 1.3427

0.4106 −0.3908 −0.5017

]
× 103,

(6.2)
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and the state-feedback gain

K = RG−1 =
[−0.0293 −5.3153 −2.6456

2.3622 4.8644 −2.4139

]
(6.3)

which renders the resulting closed-loop system admissible with the finite closed-loop
poles located at −0.3517 + 0.1969i and −0.3517− 0.1969i.

Example 6.2. Consider the uncertain singular system defined by

E =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦ (6.4)

with matrices A and B belonging to a polytope whose vertices are given by the state ma-
trices

[
A1 A2

]
=

⎡
⎢⎢⎣

0.7918 0.0792 0.1362 0.6318 0.0680 0.1162

0.6900 0.6762 2.3232 0.7500 0.6162 2.3632

0 0 0.6688 0 0 0.6088

⎤
⎥⎥⎦ ,

[
A3 A4

]
=

⎡
⎢⎢⎣

0.7918 0.0800 0.1362 0.6318 0.0672 0.1162

0.8900 0.6762 2.5632 0.5500 0.6162 2.1232

0 0 0.6688 0 0 0.6088

⎤
⎥⎥⎦ .

(6.5)

The input matrices

[
B1 B2 B3 B4

]

=

⎡
⎢⎢⎣

0.0122 0.0422 0.0122 0.0402 0.0122 0.0422 0.0122 0.0402

0.3468 0.1230 0.3628 0.1230 0.3868 0.1230 0.3228 0.1230

0.1945 0.2141 0.2085 0.2461 0.2225 0.2541 0.1805 0.2061

⎤
⎥⎥⎦ .
(6.6)

According to Theorem 5.3, the robust state-feedback gain

K =
[

1.8265 −6.6699 −7.2433

−11.7288 5.8273 2.1016

]
(6.7)

will robustly render the uncertain closed-loop system stable, regular, and impulse free.

7. Conclusion

The problem of stability and stabilization for continuous-time descriptor systems has
been studied. In terms of a strict LMI, a necessary and sufficient condition for continuous
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descriptor systems to be admissible has been proposed. This condition is an LMI twin for-
mulation of the well-known improved generalized Lyapunov equation. LMI conditions
are obtained to ensure the admissibility of the closed loop via a state-feedback control
law. A robust admissible state feedback control law is proposed for polytopic uncertain
continuous descriptor systems. Numerical examples are given to illustrate the usefulness
of the proposed methods.
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