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We focus on the issue of robust stabilization with H∞ performance for a class of lin-
ear time-invariant parameter-dependent systems under norm-bounded nonlinear un-
certainties. By combining the idea of polynomially parameter-dependent quadratic Lya-
punov functions and linear matrix inequalities formulations, some parameter-independ-
ent conditions with high precision are given to guarantee robust asymptotic stability and
robust disturbance attenuation of the linear time-invariant parameter-dependent system
in the presence of norm-bounded nonlinear uncertainties. The parameter-dependent
state-feedback control is designed based on the Hamilton-Jacobi-Isaac (HJI) method. The
applicability of the proposed design method is illustrated in a simple example.
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the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Linear time-invariant parameter-dependent (LTIPD) systems have gained a lot of interest
as they provide a systematic means of computing gain-scheduled controllers, especially
those related to vehicle and aerospace control [1, 8, 13]. Generally speaking, an LTIPD
system is a linear system in which the system matrices are fixed functions of a known
parameter vector. An LTIPD system can be viewed as a nonlinear system that is linearized
along a trajectory determined by the parameter vector. Hence, the parameter vector of an
LTIPD system corresponds to the operating point of the nonlinear system. In the LTIPD
framework, it is assumed that the parameter vector is measurable for control. In many
industrial applications, like flight control and process control, the operating point can
indeed be determined from measurement, making the LTIPD approach viable; see for
example [12, 14].

Over the last three decades, considerable attention has been paid to robustness anal-
ysis and control of linear systems affected by structured real parameters. For LTIPD sys-
tems, establishing stability via the use of constant Lyapunov functions is conservative. To
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investigate the stability of LTIPD systems one needs to resort to the use of parameter-
dependent Lyapunov functions to achieve necessary and sufficient conditions of system
stability; see for instance [2–4, 7, 9, 11, 17] and the references therein. However, Bliman
[4] proposed the problem of robust stability for LTIPD systems with scalar parameters.
He also developed some conditions for robust stability in terms of solvability of some lin-
ear matrix inequalities (LMIs) without conservatism. Moreover, the existence of a poly-
nomially parameter-dependent quadratic Lyapunov function for systems, which are ro-
bustly stable, is investigated in [5]. Recently, sufficient conditions for robust stability of
the linear state-space models affected by polytopic uncertainty have been provided in [6]
using homogeneous polynomially parameter-dependent quadratic Lyapunov functions,
which are formulated in terms of LMI feasibility tests.

In this paper, we provide a systematic way for the use of polynomially parameter-
dependent quadratic (PPDQ) Lyapunov functions in the robust asymptotic stability and
robust disturbance attenuation problem of finite-dimensional LTIPD systems in the pres-
ence of norm-bounded nonlinear uncertainties. Sufficient conditions of increasing pre-
cision for the existence of PPDQ Lyapunov functions are given using LMI formulations.
This paper is essentially an extension of the stabilization technique of the parameter-
dependent systems presented in [3] to the robust control problem with guaranteed H∞
performance. This paper makes three specific contributions. First, it suggests a PPDQ
Lyapunov function, which can be applied to derive sufficient and necessary stability con-
ditions for LTIPD systems. Second, robust stabilization and disturbance attenuation of
such systems are investigated using the Hamiltonian approach. Then, the state feedback
gain matrix can be constructed from the positive-definite solution to certain parameter-
independent inequalities. The existence proof is constructive, thus yielding a method to
compute the gain matrix. Finally, the simulation results show that the obtained state feed-
back control law can achieve the robust stability and disturbance attenuation, simultane-
ously.

The notations used throughout the paper are fairly standard. The matrices In, 0n, 0n×p
are the identity matrix and the n× n and n× p zero matrices, respectively. The symbol
∗ denotes the elements below the main diagonal of a symmetric block matrix. Also, the
symbol ⊗ denotes Kronecker product, the power of Kronecker products being used with
the natural meaning M0⊗ = I , Mp⊗ :=M(p−1)⊗ ⊗M. Let ̂Jk, ˜Jk ∈�k×(k+1), and ϑ[k] be de-
fined by ̂Jk := [Ik 0k×1], ˜Jk := [0k×1 Ik], and ϑ[k] := [1 ϑ ··· ϑk−1]T , respectively,
which have essential roles for polynomial manipulations [4]. C0(U ,V) denotes a set of
continuous functions from U to V . Finally, given a signal x(t), ‖x(t)‖2 denotes the L2

norm of x(t); that is, ‖x(t)‖2
2 =

∫∞
0 x(t)Tx(t)dt.

2. Problem description

In this section, we consider a class of LTIPD systems with norm-bounded nonlinear un-
certainties as

ẋ(t)=A(ρ)x(t)+Bu(ρ)u(t)+Bw(ρ)w(t)+Δ(x,u;ρ), z(t)=C1x(t)+C2u(t) (2.1)

whose dependency of the state-space matrices affinely on the parameter vector ρ = [ρ1,
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ρ2, . . . ,ρm]T ∈ ζ ⊂�m is shown as

[

A(ρ) Bu(ρ) Bw(ρ)
]

=
[

A0 B0u B0w

]

+
m
∑

i=1

ρi
[

Ai Biu Biw

]

, (2.2)

where x(t) ∈ �n, u(t) ∈ �l, w(t) ∈ �s, and z(t) ∈ �p are the state vector, the control
input, the disturbance vector, and the controlled output, respectively. Also, the nonlinear
term Δ(x,u;ρ) is norm-bounded function of uncertainty space, which will be defined in
Assumption 2.1. Furthermore, it is known that the vector ρ is contained in a priori given
set whereas the actual curve of the vector ρ is unknown but can be measured online for
control process. In the sequel, we will make the following assumption and definitions for
the system (2.1).

Assumption 2.1. There exist the parameter-dependent matricesG1(ρ) andG2(ρ) such that
the nonlinear uncertainty Δ(x,u;ρ) satisfy the following bounded condition:

∥

∥Δ(x,u;ρ)
∥

∥

2
2 ≤

∥

∥G1(ρ)x
∥

∥

2
2 +
∥

∥G2(ρ)u
∥

∥

2
2, ∀x ∈Rn, ρ∈ ζ , (2.3)

where the parameter-dependent matrices G1(ρ) and G2(ρ) are defined as follows:

G1(ρ)=G01 +
m
∑

i=1

ρiGi1,

G2(ρ)=G02 +
m
∑

i=1

ρiGi2.

(2.4)

Denote the corresponding uncertainty set by

Ξ(x,u;ρ)=
{

Δ(x,u;ρ) :
∥

∥Δ(x,u;ρ)
∥

∥

2
2 ≤

∥

∥G1(ρ)x
∥

∥

2
2 +
∥

∥G2(ρ)u
∥

∥

2
2

}

. (2.5)

Definition 2.2. (1) A state feedback u(t;ρ)=−K(ρ)x(t) with K(ρ)∈ C0(�m,�l×n) is said
to achieve robust global asymptotic stability of the system (2.1) if for w = 0 and any ρ ∈ ζ
and Δ(x,u;ρ)∈ Ξ(x,u;ρ) the closed-loop system

ẋ(t)= (A(ρ)−Bu(ρ)K(ρ)
)

x(t) +Δ
(

x,−K(ρ)x;ρ
)

(2.6)

is globally asymptotically stable in the Lyapunov sense.
(2) A state feedback u(t;ρ) =−K(ρ)x(t) with K(ρ)∈ C0(�m,�l×n) is said to achieve

robust disturbance attenuation if under zero initial condition there exists 0 ≤ γ <∞ for
which the performance bound is such that

∥

∥z(t)
∥

∥

2 < γ
∥

∥w(t)
∥

∥

2, ∀w ∈ L2, ρ∈ ζ , Δ(x,u;ρ)∈ Ξ(x,u;ρ). (2.7)

According to Definition 2.2, the main objective of the paper is to design the state feed-
back control for achieving both the robust global asymptotic stability and the robust
disturbance attenuation of the LTIPD system (2.1).
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Definition 2.3. A polynomially parameter-dependent quadratic (PPDQ function for
short) function is said to be any quadratic function xT(t)S(ρ)x(t) such that S(ρ) is de-
fined as

S(ρ) :=
(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In
)T

Sk
(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In
)

(2.8)

for a certain Sk ∈ �kmn. The integer k − 1 is called the degree of the PPDQ Lyapunov
function of S(ρ) [11].

3. Main results

The main approach employed here is to design the state feedback control in the presence
of the disturbance and norm-bounded nonlinear uncertainties based on the standard HJI
method. Hence, we define a quadratic energy function in the form

E
(

x(t);ρ
)= xT(t)Pρx(t), (3.1)

where Pρ := P(ρ) := (ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In)TPk(ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In) > 0, the PPDQ func-
tion of degree k− 1, is to be determined.

Suppose that there exists the following Hamilton-Jacobi-Isaac (HJI) function:

H
[

u,w,Δ(x,u;ρ)
]= dE

(

x(t);ρ
)

dt
+ zT(t)z(t)− γ2wT(t)w(t), (3.2)

where the derivative of E(x(t);ρ) is evaluated along the trajectory of the closed-loop
system (2.6). It is well known that a sufficient condition for achieving robust distur-
bance attenuation is that the inequality H[u,w,Δ(x,u;ρ)] < 0 for every w ∈ L2, ρ ∈ ζ ,
and Δ(x,u;ρ) ∈ Ξ(x,u;ρ) results in a function E(x(t);ρ), which is strictly radially un-
bounded (see, e.g., [15, 18]); E(x(t);ρ) may be regulated as a Lyapunov function for the
closed-loop system (2.6). In this paper we will establish conditions under which

Inf
u

Sup
Δ(x,u;ρ)∈Ξ(x,u;ρ)

Sup
w∈L2

H
[

u,w,Δ(x,u;ρ)
]

< 0, (3.3)

then for every T , taking the definite integral from 0 to T of both sides of (3.2) gives

∫ T

0
zT(t)z(t)dt− γ2

∫ T

0
wT(t)w(t)dt < E

(

x(0)
)−E

(

x(T)
)≤ E

(

x(0)
)= 0, (3.4)

that is, constraint of (2.7).
Noting to the expressions (3.1) and (3.2), we find

H
[

u,w,Δ(x,u;ρ)
]

= xT
(

AT(ρ)Pρ +PρA(ρ)
)

x+uTBT
u (ρ)Pρx+ xTPρBu(ρ)u

+wTBT
w(ρ)Pρx+ΔT(x,u;ρ)Pρx+ xTPρΔ(x,u;ρ)

+ xTPρBw(ρ)w+ xTPρBw(ρ)w+
(

C1x+C2u
)T(

C1x+C2u
)− γ2wTw.

(3.5)
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It is easy to show that the worst-case disturbance in (3.5) occurs when

w∗ = γ−2BT
w(ρ)Pρx. (3.6)

By substituting (3.6) into (3.5), we obtain

Sup
w∈L2

H
(

u,w,Δ(x,u;ρ)
)

=H
(

u,w∗,Δ(x,u;ρ)
)

= xT
(

AT(ρ)Pρ +PρA(ρ) +CT
1 C1 +Pρ

(

γ−2Bw(ρ)BT
w(ρ)

)

Pρ
)

x

+uT
(

BT
u (ρ)Pρ +CT

2 C1
)

x+ xT
(

PρBu(ρ) +CT
1 C2

)

u+uTCT
2 C2u

+ΔT(x,u;ρ)Pρx+ xTPρΔ(x,u;ρ).

(3.7)

Lemma 3.1. For an arbitrary positive scalar ε > 0 and a positive-definite matrix H , the
following inequality is satisfied:

ΔT(x,u;ρ)Hx(t) + xTHΔ(x,u;ρ)≤ xT
(

εH2 +
1
ε
GT

1 (ρ)G1(ρ)
)

x+
1
ε
uTGT

2 (ρ)G2(ρ)u.

(3.8)

Proof. By using Assumption 2.1 and Lemma A.2, we can conclude the inequality above.
By utilizing Lemma 3.1 and the norm-bounded condition (2.3), we eliminate the

norm-bounded nonlinear uncertainty Δ(x,u;ρ) in (3.7), and then we have

Sup
Δ(x,u;ρ)∈Ξ(x,u;ρ)

H
(

u,Δ(x,u;ρ)
)

≤ xT
(

AT(ρ)Pρ +PρA(ρ) +CT
1 C1 +

1
ε
GT

1 (ρ)G1(ρ) +Pρ
(

εIn + γ−2Bw(ρ)BT
w(ρ)

)

Pρ

)

x

+uT
(

BT
u (ρ)Pρ +CT

2 C1
)

x+ xT
(

PρBu(ρ) +CT
1 C2

)

u+uT
(

CT
2 C2 +

1
ε
GT

2 (ρ)G2(ρ)
)

u.

(3.9)

The optimal control law, which minimizes the right-hand side of (3.9), is given by

u(t;ρ)=−
(

CT
2 C2 +

1
ε
GT

2 (ρ)G2(ρ)
)−1

(

CT
2 C1 +BT

u (ρ)Pρ
)

x(t). (3.10)

As a result, we have

Inf
u

Sup
Δ(x,u;ρ)∈Ξ(x,u;ρ)

H
[

u,Δ(x,u;ρ)
]≤ xTMρx, (3.11)
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where the parameter-dependent matrix Mρ is defined as

Mρ := AT(ρ)Pρ +PρA(ρ)

− (PρBu(ρ) +CT
1 C2

)

(

CT
2 C2 +

1
ε
GT

2 (ρ)G2(ρ)
)−1

(

BT
u (ρ)Pρ +CT

2 C1
)

+Pρ
(

εIn + γ−2Bw(ρ)BT
w(ρ)

)

Pρ +CT
1 C1 +

1
ε
GT

1 (ρ)G1(ρ).

(3.12)

Consequently, if there exist positive scalars γ and ε and a positive-definite solution Pρ to
the matrix inequality Mρ < 0n, then we obtain

H
[

u,w,Δ(x,u;ρ)
]

< 0, ∀w ∈ L2, ρ ∈ ζ , Δ(x,u;ρ)∈ Ξ(x,u;ρ). (3.13)
�

Corollary 3.2. If there exist a positive scalar ε and a positive-definite matrix Pρ to the
following matrix inequality:

AT(ρ)Pρ +PρA(ρ) + εPρ
(

In−Bu(ρ)
(

GT
2 (ρ)G2(ρ)

)−1
BT
u (ρ)

)

Pρ +
1
ε
GT

1 (ρ)G1(ρ) < 0,

(3.14)

then the system (2.6) would be stabilized with a parameter-dependent state feedback u(t;ρ)=
−K(ρ)x(t), where the stabilizing state feedback K(ρ) ∈ C0(�m,�l×n) is given by K(ρ) =
ε(GT

2 (ρ)G2(ρ))−1BT
u (ρ)Pρ.

In the sequel, we provide the robust global asymptotic stability and robust disturbance
attenuation in the sense of (2.6) and (2.7) for the LTIPD system (2.1), respectively. This
may be done by converting inequality Mρ < 0n into the associated LMI and then we are
able to determine the positive-definite solution Pρ.

Using Schur’s complement lemma, the inequality Mρ < 0n holds if and only if

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎝

AT(ρ)Pρ +PρA(ρ)

+ε−1GT
1 (ρ)G1(ρ)

⎞

⎠ PρBu(ρ) CT
1 Pρ PρBw(ρ)

∗ ε−1GT
2 (ρ)G2(ρ) CT

2 0l×n 0l×s

∗ ∗ −Ip 0p×n 0p×s

∗ ∗ ∗ −ε−1In 0n×s
∗ ∗ ∗ ∗ −γ2Is

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 02n+s+l+p.

(3.15)

Lemma 3.3. Let the degree of the PPDQ Lyapunov function Pρ be k− 1. The nonquadratic
matrix PρBu(ρ) can be represented as

PρBu(ρ) :=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)T

Hk

(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)

, (3.16)
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where the matrix Hk ∈�((k+1)mn)×((k+1)ml) which depends linearly on the matrix Pk is defined
as

Hk =
(

̂Jm⊗k ⊗ In
)T
Pk

(

(

̂Jm⊗k ⊗B0u
)

+
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ ̂J (i−1)⊗

k ⊗Biu
)

)

. (3.17)

According to Lemma 3.3, the representation of the matrix PρBw(ρ) will be

PρBw(ρ) :=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)T

Fk
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Is
)

, (3.18)

where the matrix Fk ∈�((k+1)mn)×((k+1)ms) is expressed as

Fk =
(

̂Jm⊗k ⊗ In
)T
Pk

(

(

̂Jm⊗k ⊗B0w
)

+
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ ̂J (i−1)⊗

k ⊗Biw
)

)

. (3.19)

Remark 3.4.The PPDQ function of degree k for the positive-definite matrixRρ=AT(ρ)Pρ+
PρA(ρ) is defined as

Rρ :=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)T

Rk

(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)

(3.20)

and from Lemma 3.3, the matrix Rk ∈�(k+1)mn in (3.20), which depends on the matrix
Pk, is obtained as follows:

Rk =
(

(

̂Jm⊗k ⊗A0
)

+
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ ̂J (i−1)⊗

k ⊗Ai
)

)T

Pk
(

̂Jm⊗k ⊗ In
)

+
(

̂Jm⊗k ⊗ In
)T
Pk

(

(

̂Jm⊗k ⊗A0
)

+
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ ̂J (i−1)⊗

k ⊗Ai
)

)

.

(3.21)

For quadratic parameter-dependent matrices GT
1 (ρ)G1(ρ) and GT

2 (ρ)G2(ρ), the PPDQ
function representations of degree k are as follows:

GT
1 (ρ)G1(ρ) :=

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In
)T

Gk

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In
)

=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)T(

̂Jm⊗k ⊗ In
)T
Gk
(

̂Jm⊗k ⊗ In
)

×
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)

,

(3.22)

GT
2 (ρ)G2(ρ) :=

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Il
)T
˜Gk

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Il
)

=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)T(

̂Jm⊗k ⊗ Il
)T
˜Gk
(

̂Jm⊗k ⊗ Il
)

×
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)

,

(3.23)
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where the certain matrices Gk and ˜Gk are defined, respectively, as

Gk := Block diagonal

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

GT
01

GT
11

...

GT
m1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

G01 G11 ··· Gm1

]

, 0n, . . . ,0n
︸ ︷︷ ︸

(km−m−1)-elements

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

˜Gk := Block diagonal

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

GT
02

GT
12

...

GT
m2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

G02 G12 ··· Gm2

]

, 0l, . . . ,0l
︸ ︷︷ ︸

(km−m−1)-elements

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.24)

Similarly, the parameter-independent matrices C1, C2, and CT
2 C2 can be also represented

as

C1 :=
(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Ip
)T

Ck

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ In
)

=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Ip
)T(

̂Jm⊗k ⊗ Ip
)T
Ck
(

̂Jm⊗k ⊗ In
)

(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ In
)

,
(3.25)

C2 :=
(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Ip
)T
˜Ck

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Il
)

=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Ip
)T(

̂Jm⊗k ⊗ Ip
)T
˜Ck
(

̂Jm⊗k ⊗ Il
)

(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)

,
(3.26)

CT
2 C2 :=

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Il
)T
˜CT
k
˜Ck

(

ρ[k]
m ⊗···⊗ ρ[k]

1 ⊗ Il
)

=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)T(

̂Jm⊗k ⊗ Il
)T
˜CT
k
˜Ck
(

̂Jm⊗k ⊗ Il
)

(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)

,
(3.27)

where the certain matrices Ck, ˜Ck are defined, respectively, as follows:

Ck := diag
(

C1,0p×n, . . . ,0p×n
︸ ︷︷ ︸

(km−1)-elements

)

, ˜Ck := diag
(

C2,0p×l, . . . ,0p×l
︸ ︷︷ ︸

(km−1)-elements

)

. (3.28)

Remark 3.5. From (3.23) and (3.27), the parameter-dependent matrix CT
2 C2 + (1/

ε)GT
2 (ρ)G2(ρ) can be shown as

CT
2 C2 +

1
ε
GT

2 (ρ)G2(ρ)=
(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)T(

̂Jm⊗k ⊗ Il
)T
(

˜CT
k
˜Ck +

1
ε
˜Gk

)

× (̂Jm⊗k ⊗ Il
)

(

ρ[k+1]
m ⊗···⊗ ρ[k+1]

1 ⊗ Il
)

,

(3.29)
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therefore, using linear algebra properties and some matrix manipulations, the nonsingu-
larity condition of the matrix CT

2 C2 + (1/ε)GT
2 (ρ)G2(ρ) can be stated as the nonsingularity

condition of the following matrix:

˜CT
k
˜Ck +

1
ε

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

GT
02

GT
12

...

GT
m2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

G02 G12 ··· Gm2

]

. (3.30)

Theorem 3.6. Let the positive integer k − 1 as the degree of the PPDQ functions be
given. Consider the LTIPD system (2.1) with norm-bounded nonlinear uncertainties. If
there exist positive scalars γ and ε and parameter-independent positive-definite matrix Pk ∈
�kmn×kmn, and a set of parameter-independent positive-definite multipliers ( ̂Q(1)

i,k
, ̂Q(4)

i,k
)∈

�km−i+1(k+1)i−1n×km−i+1(k+1)i−1n, ̂Q(2)
i,k
∈�km−i+1(k+1)i−1l×km−i+1(k+1)i−1l, ̂Q(3)

i,k
∈�km−i+1(k+1)i−1 p×km−i+1(k+1)i−1 p,

and ̂Q(5)
i,k
∈�km−i+1(k+1)i−1s×km−i+1(k+1)i−1s for i=1,2, . . . ,m to the following parameter-independent

LMI,

(

LMIm,k
)

:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Σ11 Hk
(

̂Jm⊗k ⊗ In
)T
C
T

k

(

̂Jm⊗k ⊗ Ip
) (

̂Jm⊗k ⊗ In
)T
Pk
(

̂Jm⊗k ⊗ In
)

Fk

∗ Σ22
(

̂Jm⊗k ⊗ Il
)T
˜CT
k

(

̂Jm⊗k ⊗ Ip
)

0 0

∗ ∗ Σ33 0 0

∗ ∗ ∗ Σ44 0

∗ ∗ ∗ ∗ Σ55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

(3.31)

where ̂Ik := Block diagonal (Ip, 0p, . . . ,0p
︸ ︷︷ ︸

(km−1)-elements

), Ik := Block diagonal (In, 0n, . . . ,0n
︸ ︷︷ ︸

(km−1)-elements

), ˜Ik :=

Block diagonal
(

Is, 0s, . . . ,0s
︸ ︷︷ ︸

(km−1)-elements

), and

Σ11=Rk+ε−1(
̂Jm⊗k ⊗In

)T
Gk
(

̂Jm⊗k ⊗In
)

+
m
∑

i=1

(

̂J (m−i+1)⊗
k ⊗I(k+1)i−1n

)T
̂Q(1)

i,k

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1n

)

−
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1n

)T
̂Q(1)

i,k

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1n

)

,

Σ22 = ε−1(
̂Jm⊗k ⊗ Il

)T
˜Gk
(

̂Jm⊗k ⊗ Il
)

+
m
∑

i=1

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1l

)T
̂Q(2)

i,k

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1l

)

−
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1l

)T
̂Q(2)

i,k

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1l

)

,



10 Robust stabilization for parameter-dependent systems

Σ33 =−
(

̂Jm⊗k ⊗ Ip
)T
̂Ik
(

̂Jm⊗k ⊗ Ip
)

+
m
∑

i=1

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1 p

)T
̂Q(3)

i,k

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1 p

)

−
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1p

)T
̂Q(3)

i,k

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1 p

)

,

Σ44 =−ε−1(
̂Jm⊗k ⊗ In

)T
Ik
(

̂Jm⊗k ⊗ In
)

+
m
∑

i=1

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1n

)T
̂Q(4)

i,k

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1n

)

−
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1n

)T
̂Q(4)

i,k

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1n

)

,

Σ55 =−γ2(
̂Jm⊗k ⊗ Is

)T
˜Ik
(

̂Jm⊗k ⊗ Is
)

+
m
∑

i=1

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1s

)T
̂Q(5)

i,k

(

̂J (m−i+1)⊗
k ⊗ I(k+1)i−1s

)

−
m
∑

i=1

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1s

)T
̂Q(5)

i,k

(

̂J (m−i)⊗
k ⊗ ˜Jk ⊗ I(k+1)i−1s

)

,

(3.32)

then the parameter-dependent state feedback control law

u(t;ρ)=−
(

CT
2 C2 +

1
ε
GT

2 (ρ)G2(ρ)
)−1

(

CT
2 C1 +BT

u (ρ)Pρ
)

x(t) (3.33)

achieves both robust global asymptotic stability and robust disturbance attenuation with the
attenuation bound γ in the sense of Definition 2.2.

Proof. By substituting the relations (3.18)–(3.30) into the parameter-dependent inequal-
ity (3.15), one parameter-dependent matrix inequality is obtained which includes left-
and right-multiplication of the (LMIm,k) by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

Z⊗ In
)T

0 0 0 0

∗ (

Z⊗ Il
)T

0 0 0

∗ ∗ (

Z⊗ Ip
)T

0 0

∗ ∗ ∗ (

Z⊗ In
)T

0

∗ ∗ ∗ ∗ (

Z⊗ Is
)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.34)

and its transpose, where Z=ρ[k]
m ⊗···⊗ ρ[k]

1 . Then, it can be concluded that the (LMIm,k),
which included the positive-definite multipliers ̂Q(1)

i,k
, . . . , ̂Q(2r+3)

i,k
for i= 1,2, . . . ,m (refer to

[10]), are sufficient conditions to fulfil the parameter-dependent matrix inequality (3.15)
for any ρ ∈ ζ . �

Remark 3.7. Notice that the conditions of Theorem 3.6 are sufficient to both asymptotic
stability and H∞ performance of the LTIPD system (2.1) in the sense of Definition 2.2.
Moreover, the theorem gives a suboptimal solution to the robust H∞ control and this
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result can be reformulated as an optimal H∞ control by solving the following convex
optimization problem:

Min
subject to (LMIm,k) where δ:=γ2

δ. (3.35)

Remark 3.8. It is essential in this result that Pk is calculated independently from the pa-
rameter vector ρ and after that Pρ and the control law are found analytically. It is also

observed that the (LMIm,k) is linear in Pk, ̂Q(1)
i,k

, ̂Q(2)
i,k

, ̂Q(3)
i,k

, ̂Q(4)
i,k

, ̂Q(5)
i,k

, thus the standard
LMI techniques can be exploited to find the positive-definite solutions [10].

Remark 3.9. A new set of matrices verifying (LMIm,k+1) can be generated, with index
k + 1 instead of k. In this case, the solvability of (LMIm,k) implies the same property for
the larger values of the index k; in other words, one deduces in particular that, for any
positive integer k,

(

LMIm,k
)

is solvable = (LMIm,k′
)

is solvable for k′ ≥ k. (3.36)

Remark 3.10. The result of Theorem 3.6 may be conservative due to the use of Lemmas
3.1 and A.2. However, such conservativeness can be significantly reduced by appropriate
choice of the parameter ε in a matrix norm sense. The relevant discussion and corre-
sponding numerical algorithm can be found in [16] and the references therein.

4. Simulation results

In this section, we illustrate the proposed methodology on a simple flexible mechanical
system. The parameter-dependent plant in the state-space form is given by

ẋ(t)=
⎛

⎝

⎡

⎣

0 1

−ω2 −2ξω

⎤

⎦+ ρ1

⎡

⎣

0.1 1

0.1 0.1

⎤

⎦

⎞

⎠x(t) +

⎛

⎝

⎡

⎣

0

−4ξω

⎤

⎦+ ρ1

⎡

⎣

0.1

0.5

⎤

⎦

⎞

⎠u(t)

+

⎛

⎝

⎡

⎣

0.01

−1

⎤

⎦+ ρ1

⎡

⎣

0.1

1

⎤

⎦

⎞

⎠w(t) +

⎡

⎣

0.9sin
(

x1(t) + x2(t)
)

0.8cos
(

u(t)
)

⎤

⎦ ,

z(t)= [0 1]x(t) + 0.1u(t)

(4.1)

with initial condition x(0)= [0 1]T , natural frequency ω = 1 (rad/s), damping ξ = 0.1,
and ρ1 ∈ ζ = (−1,1) is a real parameter. The norm-bounded uncertainty set is considered
as

Ξ
(

x,u;ρ1
)=

{

Δ
(

x,u;ρ1
)

:
∥

∥Δ
(

x,u;ρ1
)∥

∥

2
2 ≤

∥

∥

(

G01 + ρ1G11
)

x
∥

∥

2
2 +
∥

∥

(

G02 + ρ1G12
)

u
∥

∥

2
2

}

,

(4.2)

where G01 = I2, G11 = 0.1× I2, G02 = 1, and G12 = 0.1.
It is clear that the single parameter ρ1 appears in the dynamic matrix. Solving the

matrix inequality (LMIm,k), using the toolbox Lmitool of the Matlab software [10], gives
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Figure 4.1. Robust stability of the controlled output.

the positive-definite matrix Pk > 0 for m= 1 and k = 3 as

P3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0674 −0.0771 −0.2551 −0.8016 0.0971 −0.0575

−0.0771 0.3692 0.0538 0.1192 0.0011 0.0107

−0.2551 0.0538 1.7732 0.1120 −0.2757 −0.8472

−0.8016 0.1192 0.1120 1.5052 0.1185 0.4343

0.0971 0.0011 −0.2757 0.1185 1.4041 0.1513

−0.0575 0.0107 −0.8472 0.4343 0.1513 1.4310

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.3)

with γ = 0.9173 and ε = 15.1150.
Robust stability and disturbance attenuation of the controlled output in the presence

of disturbance has been depicted for three different values of parameter ρ1 in Figure 4.1.
Therefore, we conclude that system (4.1) can be stabilized by the parameter-dependent
state feedback control law (3.33), which has been depicted for three different values of ρ1

in Figure 4.2. And also the correctness of the disturbance attenuation on the controlled
output, that is, ‖z(t)‖2

2− γ2‖w(t)‖2
2 < 0, has been depicted in Figure 4.3.

5. Conclusion

The issue of robust disturbance attenuation and robust asymptotic stability problem for
a class of LTIPD systems with norm-bounded nonlinear uncertainties was considered in
this paper. By combining the idea of PPDQ Lyapunov functions and LMIs formulations,
sufficient conditions with high precision were given to guarantee robust stabilization of
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Figure 4.2. Parameter-dependent state feedback control.
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Figure 4.3. The plot of ‖z(t)‖2
2− γ2‖w(t)‖2

2.
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the LTIPD system. Based on the HJI method, the parameter-dependent state feedback
control was designed. Finally, the applicability of the proposed method was illustrated in
a simple example.

Appendix

Lemma A.1 (Schur complement lemma). Given constant matrices Ψ1, Ψ2, and Ψ3 where
Ψ1 =ΨT

1 and Ψ2 =ΨT
2 > 0, then Ψ1 +ΨT

3 Ψ
−1
2 Ψ3 < 0 if and only if

[

Ψ1 ΨT
3

Ψ3 −Ψ2

]

< 0 or equivalently,

[−Ψ2 Ψ3

ΨT
3 Ψ1

]

< 0. (A.1)

Lemma A.2 [18]. For any matrices X and Y with appropriate dimensions and for any con-
stant η > 0, the following inequality holds:

XTY +YTX ≤ ηXTX +
1
η
YTY. (A.2)
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