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In the solution of boundary value problems, usually zero eigenvalue is ignored. This case
also happens in calculating the eigenvalues of matrices, so that we would often like to find
the nonzero solutions of the linear system AX = λX when λ �= 0. But λ = 0 implies that
detA = 0 for X �= 0 and then the rank of matrix A is reduced at least one degree. This
comment can similarly be stated for boundary value problems. In other words, if at least
one of the eigens of equations related to the main problem is considered zero, then one
of the solutions will be specified in advance. By using this note, first we study a class of
special functions and then apply it for the potential, heat, and wave equations in spherical
coordinate. In this way, some practical examples are also given.

Copyright © 2006 M. Masjed-Jamei and M. Dehghan. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Let us consider the following sequences:

Cn
(
z;a(z)

)=
(
a(z)

)n
+
(
a(z)

)−n

2
= Ch

(
n ln

(
a(z)

))
,

Sn
(
z;a(z)

)=
(
a(z)

)n− (a(z)
)−n

2
= Sh

(
n ln

(
a(z)

))
(1.1)

in which a(z) can be a complex (or real) function and n is a positive integer number.
It is not difficult to verify that both of these sequences satisfy a unique second-order

differential equation in the form

a2(z)a′(z)y′′ +
(
a(z)

(
a′(z)

)2− a2(z)a′′(z)
)
y′ −n2(a′(z)

)3
y = 0, (1.2)
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2 Zero Eigenvalue in Potential, Heat, and Wave Equations

provided that a2(z)a′(z) �= 0. Hence, we face only one class of special functions, which is
in fact the solution of (1.2). The functions Cn(z;a(z)) and Sn(z;a(z)) have several sub-
cases that can be useful to study. The first subcase is the Chebyshev polynomials if one
takes a(z)= exp(iArccosz) and uses the well-known Euler relation. In this case, the fol-
lowing sequences will be derived:

Cn
(
z; exp(iArccosz)

)= Cos(nArccosz)= Tn(z),

Sn
(
z; exp(iArccosz)

)= iSin(nArccosz)= i
√

1− z2Un−1(z),
(1.3)

where Tn(z) and Un(z) are, respectively, the first and second kinds of Chebyshev polyno-
mials [1]. Moreover, if the selected a(z) is replaced in (1.2), the differential equation of
the first-kind Chebyshev polynomials

(
1− z2)y′′ − zy′ +n2y = 0 (1.4)

will be obtained. Rational Chebyshev functions are the second subcase that can be gener-
ated by choosing a(z)= exp(iArccotgz). So, for this case we get

Cn
(
z; exp(iArccotgz)

)= Cos(nArccotgz),

Sn
(
z; exp(iArccotgz)

)= iSin(nArccotgz).
(1.5)

But replacing the assigned a(z) in (1.2) yields

a2(z)a′(z)=− iexp(3iArccotgz)
1 + z2

, a(z)
(
a′(z)

)2 =−exp(3iArccotgz)
(
1 + z2

)2 ,

a2(z)a′′(z)= (2iz− 1)exp(3iArccotgz)
(
1 + z2

)2 ,
(
a′(z)

)3 = iexp(3iArccotgz)
(
1 + z2

)3 .

(1.6)

Therefore the functions (1.5) eventually satisfy the equation

(
1 + z2)2

y′′ + 2z
(
1 + z2)y′ +n2y = 0. (1.7)

Note that the explicit forms of the real functions Cn(z; exp(iArccotgz)) and −iSn(z; exp
(iArccotgz)) can be extracted by the Moivre’s formula directly. To reach this purpose, let
us substitute θ = Arccotgx in the mentioned formula to get

(x+ i)n
(√

1 + x2
)n = Cos(nArccotgx) + iSin(nArccotgx). (1.8)
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Consequently we have

Cn
(
x; exp(iArccotgx)

)=
∑[n/2]

k=0 (−1)k
( n

2k

)
xn−2k

(√
1 + x2

)n = T∗n (x),

−iSn+1
(
x; exp(iArccotgx)

)=
∑[n/2]

k=0 (−1)k
(

n+1
2k+1

)
xn−2k

(√
1 + x2

)n+1 =U∗
n (x).

(1.9)

Here one can observe that the Chebyshev rational functions T∗n (x) and U∗
n (x) are or-

thogonal with respect to the weight function W(x)= 1/(1 + x2) on (−∞,∞) and have the
following orthogonality properties, respectively,

∫∞

−∞
T∗n (x)T∗n (x)

1 + x2
dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if m �= n,

π if m= n,

2π if m= n= 0,

∫∞

−∞
U∗

n (x)U∗
n (x)

1 + x2
dx =

⎧
⎨

⎩
0 if m �= n,

π if m= n.

(1.10)

Let us point out that Boyd in [2] applied the rational functions T∗n ((x1/2− x−1/2)/2) on a
semi-infinite interval [0,∞) for using in spectral methods, and here we mention that the
foresaid functions can be derived only by replacing a(z) = exp(2iArccotg

√
z) in (1.1).

But it is known that the Legendre (or associated Legendre) differential equation [1]

(
1− x2)y′′(x)− 2xy′(x) +

(
p− q

1− x2

)
y(x)= 0 (1.11)

has been solved in the three following cases in the Cartesian coordinate:
(a) p �= 0, q �= 0 that generates the associated Legendre functions;
(b) p �= 0, q = 0 that generates the Legendre polynomials;
(c) p = 0, q = 0 that is reduced to the simple equation (1− x2)y′′(x)− 2xy′(x)= 0,

which has the solution y(x)= c1Ln((1 + x)/(1− x)) + c2.
Hence, a fourth case p = 0, q �= 0 remains, which is different from the three above-men-
tioned cases and should be solved. To reach the solution, let us substitute a(z)= ((1− z)/
(1 + z))1/2 in (1.2). This leads to arrive at the differential equation:

(
1− z2)y′′ − 2zy′ − n2

1− z2
y = 0, (1.12)

which is a particular case of (1.11) for p = 0, q = n2. According to (1.1), the solutions of
this equation are, respectively,

Cn

(

z;
(

1− z

1 + z

)1/2
)

= 1
2

((
1− z

1 + z

)n/2
+
(

1− z

1 + z

)−n/2)

,

Sn

(

z;
(

1− z

1 + z

)1/2
)

= 1
2

((
1− z

1 + z

)n/2
−
(

1− z

1 + z

)−n/2)

.

(1.13)
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Now, we would like to recall that these functions will be useful if they are considered in
the Helmholtz equation in spherical coordinate. In other words, if the equation∇2U(r,θ,
Φ)= k2U(r,θ,Φ) is separated to ordinary equations, then one of the separate equations
takes the form

1
Sinθ

d

dθ

(
Sinθ

dy

dθ

)
+
(
m(m+ 1)− n2

Sin2 θ

)
y(θ)= 0, (1.14)

which is the same as (1.11) for x = Cosθ. Thus, if z = Cosθ is considered in (1.12) or
equivalently a(z)= tg(z/2) in (1.2), then the special case of (1.14) for m= 0, that is,

y′′ + (Cotgz)y′ − n2

Sin2 z
y = 0, (1.15)

has the following solutions:

Cn

(
z; tg

z

2

)
= 1

2

((
tg
z

2

)n
+
(
tg
z

2

)−n)

,

Sn

(
z; tg

z

2

)
= 1

2

((
tg
z

2

)n
−
(
tg
z

2

)−n)

.

(1.16)

These sequences will be used in the given problems of the next section.

2. Application of functions (1.16) for the potential, heat, and
wave equations in spherical coordinate

Usually most of the boundary value problems related to the wave, heat, and potential
equations in spherical coordinate are reduced to the Helmholtz partial differential equa-
tion [1], which is mentioned in the form ∇2U(r,θ,Φ) = k2U(r,θ,Φ). But k = 0 in this
relation implies

∂2U

∂r2
+

2
r

∂U

∂r
+

1
r2

∂2U

∂θ2
+

cotgθ
r2

∂U

∂θ
+

1

r2 Sin2 θ

∂2U

∂Φ2
= 0 (2.1)

to be the potential (Laplace) equation in spherical coordinate [3]. Now, if the related vari-
ables are separated asU(r,θ,Φ)= R(r)A(θ)B(Φ), then the ordinary differential equations
of (2.1) will appear as follows:

r2R′′ + 2rR′ − λ1R= 0,

B′′ − λ2B = 0,

A′′ + CotgθA′ +
(
λ1 +

λ2

Sin2 θ

)
A= 0.

(2.2)

As it is known, the solution of Laplace equation is generally determined when the bound-
ary conditions are known. Nevertheless, if in (2.2) λ1 = 0 and λ2 =−k2 �= 0 are supposed,
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then for the variable r we must have R(r)=−c2
1(1/r) + c2 (c1, c2 are constant) and for the

third equation the same form as (1.15). Hence, the general solution corresponding to the
third equation would be

A(θ)=A1Cn

(
θ; tg

θ

2

)
+A2Sn

(
θ; tg

θ

2

)
= a1tg

k
(
θ

2

)
+ a2tg

−k
(
θ

2

)
, (2.3)

where A1 and A2, and a1 and a2 are all constant values. (2.3) implies to have the gen-
eral solution of the potential equation ∇2U(r,θ,Φ) = 0, with predetermined condition
R(r)=−c2

1(1/r) + c2, as

U(r,θ,Φ)=
(
− c2

1

r
+ c2

)
(
b1 CoskΦ+ b2 SinkΦ

)
(
a1tg

k
(
θ

2

)
+ a2tg

−k
(
θ

2

))
. (2.4)

The solution (2.4) shows the sensitivity of the potential equation with respect to the vari-
able r, so that we have Limr→0U(r,θ,Φ)=∞.

As an example, let us consider the Laplace equation ∇2U(r,θ,Φ) = 0, 0 < r < a (in
spherical coordinate) when the variable r takes the preassigned form R(r) = −c2

1/r + c2

and the following initial and boundary conditions hold:

Lim
r→0

U(r,θ,Φ)=∞, (2.5a)

U
(
a

2
,θ,Φ

)
= 0, (2.5b)

U
(
r,
π

2
,Φ
)
= 0, (2.5c)

U
(
a,
π

3
,Φ
)
=Φ. (2.5d)

The general solution of this problem, according to the given conditions and assuming
Ak = a1b1c2, Bk = a2b1c2 would be finally

U(r,θ,Φ)=
∑

k

Uk(r,θ,Φ),

Uk(r,θ,Φ)=
(

1− a

2r

)(
tgk
(
θ

2

)
− tg−k

(
θ

2

))(
Ak CoskΦ+Bk SinkΦ

)
.

(2.6)

On the other hand, putting the last condition (2.5d) in the above relation yields

2Φ=
∑

k

(√
3
−k −√3

+k)(
Ak CoskΦ+Bk SinkΦ

)
, (2.7)
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where Ak and Bk are calculated by

(√
3
−k −√3

+k)
Ak = 4

π

∫ π

0
ΦCoskΦdΦ= 4

(
(−1)k − 1

)

πk2
,

(√
3
−k −√3

+k)
Bk = 4

π

∫ π

0
ΦSinkΦdΦ= 4(−1)k

k
.

(2.8)

Thus, the specific solution of the potential equation under the given conditions is

U(r,θ,Φ)=
(

1− a

2r

) ∞∑

k=1

(
4
(
(−1)k − 1

)
k−2

π
(
3−k/2− 3k/2

) CoskΦ+
4(−1)kk−1
(
3−k/2− 3k/2

) SinkΦ

)

×
(
tgk

θ

2
− tg−k

θ

2

)
.

(2.9)

As we see, a special case of the functions (1.1) appeared in the above solution.
Similarly one can propound application of zero eigenvalue for the heat and wave equa-

tions, respectively. For instance, if the heat equation ∇2U = ∂U/∂t is considered, then
separating the variables as U(r,θ,Φ, t)= S(r,θ,Φ)T(t), where S(r,θ,Φ)= R(r)A(θ)B(Φ),
yields

∇2U =∇2(ST)= T∇2S

∂U

∂t
= ∂(ST)

∂t
= S

∂T

∂t

=⇒ T∇2S= T′(t)S=⇒
∇2S−αS= 0

T′ −αT = 0,
(2.10)

which gives the ordinary differential equations:

T′ −αT = 0,

r2R′′ + 2rR′ − (αr2 + λ1
)
R= 0,

B′′ − λ2B = 0,

A′′ + CotgθA′ +
(
λ1 +

λ2

Sin2 θ

)
A= 0.

(2.11)

Again, if λ1 = 0, λ2 = −n2 �= 0, and α = −k2 �= 0 are assumed in (2.11), then the general
solution, when R(r)= (c1J1/2(kr) + c2J−1/2(kr))/

√
kr is preassigned, takes the form

U(r,θ,Φ, t)= e−k2t
√
kr

(
c1J1/2(kr) + c2J−1/2(kr)

)
(
b1tg

n
(
θ

2

)
+ b2tg

−n
(
θ

2

))

× (a1 CosnΦ+ a2 SinnΦ
)
,

(2.12)
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in which J1/2(x) and J−1/2(x) are two particular cases of the Bessel functions Jp(x) [3]. Here
is a good position to consider the heat equation ∇2U(r,θ,Φ, t) = ∂U/∂t, 0 < r < a (in
spherical coordinate) when the variable r takes the preassigned form R(r) = (c1J1/2(kr)
+ c2J−1/2(kr))/

√
kr and the following conditions hold:

Lim
r→0

U(r,θ,Φ, t) <M, (2.13a)

U
(
r,
π

2
,Φ, t

)
= 0, (2.13b)

U(r,θ,0, t)= 0, (2.13c)

U
(
r,
π

3
,Φ,0

)
= f (r,Φ), arbitrary. (2.13d)

By referring to (2.12) and using the given conditions we get c2 = a1 = 0 and b1 + b2 = 0.
Hence, if Ak,n = a2b1c1 is taken, then

U(r,θ,Φ, t)=
∑

k

∑

n

Uk,n(r,θ,Φ, t),

Uk,n(r,θ,Φ, t)= Ak,n
e−k2t
√
kr

J1/2(kr) ·
(
tgn

θ

2
− tg−n

θ

2

)
· SinnΦ

(2.14)

would be the general solution. On the other hand, since the orthogonality relation of
Bessel functions Jp(x) is represented as [3]

∫ a

0
Jp

(
Z(p,m)

x

a

)
Jp

(
Z(p,n)

x

a

)
xdx = a2

2
J2
p+1

(
Z(p,m)

)
δn,m, (2.15)

where Z(p,m) is mth zero of Jp(x) (i.e., Jp(Z(p,m))= 0), so it is better for the eigenvalues k
to be considered as k = Z(1/2,m)/a, p = 1/2. Therefore, the general solution of the problem
becomes

U(r,θ,Φ, t)=
∑

n

∑

m

A∗n,m
exp

(− (Z(1/2,m)/a
)2
t
)

√
Z(1/2,m)r/a

J1/2
(
Z(1/2,m)r/a

)

×
(
tgn

θ

2
− tg−n

θ

2

)
SinnΦ

(2.16)

in which A∗n,m = An,Z(1/2,m)/a. Now, it is sufficient to compute the coefficients A∗n,m. To do
this, substituting the last condition (2.13d) in the above relation yields

√
r

a
f (r,Φ)=

∑

n

∑

m

A∗n,m

(
3−n/2− 3n/2

)

√
Z(1/2,m)

J1/2

(
Z(1/2,m)

r

a

)
Sin(nΦ). (2.17)

So, by applying the orthogonality relation of Bessel functions and using the orthogonality
property of the sequence {Sin(nΦ)}∞n=1 on [0,π], A∗n,m are obtained as

A∗n,m =
4
√
Z(1/2,m)

∫ a
0

∫ π
0 f (r,Φ)J1/2

(
Z(1/2,m)(r/a)

)
Sin(nΦ)r3/2dr dΦ

π(3−n/2− 3n/2)a3/2J2
3/2

(
Z(1/2,m)

) . (2.18)
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Finally, the problem can be stated for the wave equation∇2U = ∂2U/∂t2 according to the
following stages. First we have

∇2U =∇2(ST)= T∇2S

∂2U

∂t2
= ∂2(ST)

∂t2
= S

∂2T

∂t2

=⇒ T∇2S= T′′(t)S=⇒
∇2S−αS= 0

T′′ −αT = 0
(2.19)

which results in the ordinary equations:

T′′ −αT = 0,

r2R′′ + 2rR′ − (αr2 + λ1
)
R= 0,

B′′ − λ2B = 0,

A′′ + CotgθA′ +
(
λ1 +

λ2

Sin2 θ

)
A= 0.

(2.20)

Now, if λ1 = 0, λ2 = −k2 �= 0 and α = −n2 �= 0 are assumed in (2.20), then the general
solution of the wave equation when R(r) = (c1J1/2(nr) + c2J−1/2(nr))/

√
nr would be as

follows:

U(r,θ,Φ, t)= (d1 Cosnt+d2 Sinnt
)(
b1 CoskΦ+ b2 SinkΦ)

×
(
a1tg

k θ

2
+ a2tg

−k θ
2

)(
c1J1/2(nr) + c2J−1/2(nr)√

nr

)
.

(2.21)

Here let us consider a sample problem regarding the wave equation in spherical coor-
dinate when the variable r has the form R(r) = (c1J1/2(nr) + c2J−1/2(nr))/

√
nr and the

conditions

LimUr→0(r,θ,Φ, t) <M,

U
(
r,
π

2
,Φ, t

)
= 0,

U(r,θ,0, t)= 0,

U(r,θ,Φ,0)= 0,

U
(
r,
π

3
,Φ,q

)
= g(r,Φ), arbitrary,

(2.22)

are established. To solve this problem, replacing the given conditions in general solution
(2.21) gives c2 = b1 = d1 = 0 and a1 + a2 = 0. If Bk,n = a1b2c1d2 is supposed, then (2.21)
becomes

U(r,θ,Φ, t)=
∑

k

∑

n

Uk,n(r,θ,Φ, t),

Uk,n(r,θ,Φ, t)= Bk,n Sin(nt)
J1/2(nr)√

nr

(
tgk

θ

2
− tg−k

θ

2

)
· SinkΦ.

(2.23)
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But similar to the previous problem, if n= Z(1/2,m)/a is taken, then

U(r,θ,Φ, t)=
∑

k

∑

m

B∗k,m Sin
(
Z(1/2,m)

t

a

)
J1/2
(
Z(1/2,m)r/a

)

√
Z(1/2,m)r/a

(
tgk

θ

2
− tg−k

θ

2

)
SinkΦ,

(2.24)

where B∗k,m = Bk,Z(1/2,m)/a. By substituting the last condition of the problem in the above
relation, that is,

√
r

a
g(r,Φ)=

∑

k

∑

m

B∗k,m

(
3−k/2− 3k/2

)
Sin

(
Z(1/2,m)(q/a)

)

√
Z(1/2,m)

J1/2
(
Z(1/2,m)(r/a)

)
Sin(kΦ),

(2.25)

and using the orthogonality relation of Bessel functions J1/2(Z(1/2,m)(r/a)) on [0,a], the
unknown coefficients B∗k,m will be derived as follows:

B∗k,m =
4
√
Z(1/2,m)

∫ a
0

∫ π
0 g(r,Φ)J1/2

(
Z(1/2,m)(r/a)

)
Sin(kΦ)r3/2dr dΦ

π Sin
(
Z(1/2,m)(q/a)

)(
3−k/2− 3k/2

)
a3/2J2

3/2

(
Z(1/2,m)

) . (2.26)

This will give the final solution of the given problem straightforwardly.
Finally we mention that the defined functions Cn(z;a(z)) and Sn(z;a(z)) in this paper

are special cases of a main class of special functions having several important subclasses
and a general differential equation of second order. This comment is in preparation.
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