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A numerical procedure for an inverse problem concerning diffusion equation with source
control parameter is considered. The proposed method is based on shifted Legendre-tau
technique. Our approach consists of reducing the problem to a set of algebraic equations
by expanding the approximate solution as a shifted Legendre function with unknown
coefficients. The operational matrices of integral and derivative together with the tau
method are then utilized to evaluate the unknown coefficients of shifted Legendre func-
tions. Illustrative examples are included to demonstrate the validity and applicability of
the presented technique.
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1. Introduction

In this paper, we will consider an inverse problem of finding a source parameter p(t) in
the following semilinear parabolic equation:

ut = uxx + p(t)u+ q(x, t), 0≤ x ≤ �, 0 < t ≤ τ, (1.1)

with initial condition

u(x,0)= f (x), 0≤ x ≤ �, (1.2)

and boundary conditions

u(0, t)= g0(t), 0 < t ≤ τ,

u(�, t)= g1(t), 0 < t ≤ τ,
(1.3)
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and subject to the overspecification over a portion of the spatial domain

∫ s(t)

0
u(x, t)dx = k(t), 0 < t ≤ τ, 0 < s(t) < �, (1.4)

where f , g0, g1, s, q, and k are known functions, while the functions u(x, t) and p(t) are
unknown.

The existence and uniqueness and continuous dependence of the solution to this prob-
lem is discussed in [1–5, 15, 18].

Certain types of physical problems can be modeled by (1.1)–(1.4). For example, if u
represents a temperature distribution, then (1.1)–(1.4) can be interpreted as the control
problem with source control. We want to identify the function p(t) that will yield a de-
sired energy prescribed in a portion of the spatial domain. This kind of problem has many
important applications [13, 17, 20, 22].

The presence of an integral term in a boundary condition can greatly complicate the
application of standard numerical techniques such as finite difference, finite elements,
spectral methods, and so forth. It is therefore important to be able to convert the non-
classical boundary value problems to a more desirable form, to make them more widely
applicable to problems of practical interest. In many cases, this is a hard task [7, 12].

Several numerical procedures for solution of the problem (1.1)–(1.4) are given in [3,
9–11]. Recent publications also involved finite-difference approach [8]. In this work a
different approach is used. Our approach consists of reducing the problem to a set of
algebraic equations by expanding the approximate solution u and p as a shifted Legendre
function with unknown coefficients. The operational matrices of integral and derivative
are given. These matrices together with the tau method are then utilized to evaluate the
unknown coefficients of shifted Legendre functions. The tau method was invented by
Lanczos [16]. Recently there has been work on applications of the tau method published
in literature, for instance, see [16, 19, 21]. The method consists of expanding the required
approximate solution as the elements of a complete set of orthogonal functions. In the tau
method, unlike the Galerkin approximation, the expansion functions are not required to
satisfy the boundary constraint individually [6].

The rest of this paper is structured in the following way. In Section 2, we describe
the basic formulation of shifted Legendre polynomials required for our subsequent de-
velopment. Section 3 summarizes the application of shifted Legendre-tau method to the
solution of problem (1.1)–(1.4). As a result a set of algebraic equations is formed and a
solution of the considered problem is introduced. In Section 4, the proposed method is
applied to three numerical examples. Section 5 ends this paper with a brief summary.

2. Properties of shifted Legendre polynomials

The well-known Legendre polynomials are defined on the interval [−1,1] and can be
determined with the aid of the following recurrence formulae:

L0(z)= 1, L1(z)= z,

Li+1(z)= 2i+ 1
i+ 1

zLi(z)− i

i+ 1
Li−1(z), i= 1,2, . . . .

(2.1)
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In order to use these polynomials on the interval [0,h], we define the so-called shifted
Legendre polynomials by introducing the change of variable

z = 2x−h

h
, 0≤ x ≤ h. (2.2)

The shifted Legendre polynomials in x are then obtained as follows:

Lh0(x)= 1, Lh1(x)= 2x−h

h
,

Lhi+1(x)= (2i+ 1)(2x−h)
(i+ 1)h

Lhi (x)− i

i+ 1
Lhi−1(x), i= 1,2, . . . .

(2.3)

The orthogonality condition is

∫ h

0
Lhi (x)Lhj (x)dx =

⎧⎪⎨
⎪⎩

h

2i+ 1
for i= j,

0 for i �= j.
(2.4)

A function u(x, t) of two independent variables defined for 0 ≤ x ≤ � and 0 ≤ t ≤ τ
may be expanded in terms of double shifted Legendre polynomials as

u(x, t)=
n∑
i=0

m∑
j=0

ai jL
τ
i (t)L�j(x)=ΨT(t)AΦ(x), (2.5)

where the shifted Legendre coefficient matrix A and the shifted Legendre vectors Φ(x)
and Ψ(t) are given by

A=

⎛
⎜⎜⎝
a00 ··· a0m

...
...

an0 ··· anm

⎞
⎟⎟⎠ , (2.6)

Φ(x)= [L�0(x),L�1(x), . . . ,L�m(x)
]T

, (2.7)

Ψ(t)= [Lτ0(t),Lτ1(t), . . . ,Lτn(t)
]T
. (2.8)

The derivative of the vector Φ(x) can be expressed by

dΦ(x)
dx

=DΦ(x), (2.9)

where D is the (m+ 1)× (m+ 1) operational matrix of derivative given by

D= (di j)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(2 j + 1)
�

, for j = i− k, k =
⎧⎨
⎩

1,3, . . . ,m, if m odd,

1,3, . . . ,m− 1, if m even,

0, otherwise.

(2.10)
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For example, for odd m, we have

D= 2
�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ··· 0 0 0
1 0 0 0 ··· 0 0 0
0 3 0 0 ··· 0 0 0
1 0 5 0 ··· 0 0 0
...

...
...

...
...

...
...

...
0 3 0 7 ··· 2m− 3 0 0
1 0 5 0 ··· 0 2m− 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

The shifted Legendre polynomials satisfy the following recurrence relationship [6]:

L̇hr+1(t)− L̇hr−1(t)= 2(2r + 1)
h

Lhr (t), r = 1,2, . . . , (2.12)

in which · denotes the derivative with respect to t.
Integrating (2.12) from 0 to t, we have

∫ t

0
Lhr
(
t′
)
dt′ = h

2r + 1

[
Lhr+1(t)−Lhr−1(t)

]
, r = 1,2, . . . . (2.13)

In view of (2.13), the integration of Ψ(t) defined in (2.8) from 0 to t can be approximated
by

∫ t

0
Ψ
(
t′
)
dt′ � PΨ(t), (2.14)

where P is an (n+ 1)× (n+ 1) operational matrix of integration given as

P= τ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ0 δ0

−δ1 0 δ1

. . .
. . .

. . .
−δN−1 0 δN−1

−δN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.15)

with δk = 1/2(2k+ 1).
Obviously similar to (2.14) we have

∫ x

0
Φ(x′)dx′ �GΦ(x), (2.16)

where G is an (m+ 1)× (m+ 1) matrix and is defined similar to (2.15).
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3. The shifted Legendre-tau method

Integrating (1.1) from 0 to t and using (1.2) we have

u(x, t)− f (x)=
∫ t

0
uxx
(
x, t′

)
dt′ +

∫ t

0
p
(
t′
)
u
(
x, t′

)
dt′ +

∫ t

0
q
(
x, t′

)
dt′. (3.1)

Similar to (2.5) we expand q(x, t) as

q(x, t)=ΨT(t)QΦ(x), (3.2)

where Q is an (n+ 1)× (m+ 1) known matrix.
Expanding f (x) by (m+ 1) terms of shifted Legendre series, we get

f (x)=
m∑
k=0

fkL
�
k(x)=ΨT(t)FΦ(x), (3.3)

where F is a known (n+ 1)× (m+ 1) matrix and can be shown by

F=

⎛
⎜⎜⎜⎜⎝

f0 f1 ··· fm−1 fm
0 0 ··· 0 0
...

... ··· ...
...

0 0 ··· 0 0

⎞
⎟⎟⎟⎟⎠ . (3.4)

The function p(t) may be expanded in terms of n+ 1 shifted Legendre series as

p(t)=
n∑

k=0

bkL
τ
k(t)= BTΨ(t), (3.5)

where BT = [b0, . . . ,bn]T is an unknown vector.
Using (2.5), (2.9), and (2.14), we get

∫ t

0
uxx
(
x, t′

)
dt′ =

(∫ t

0
ΨT(t′)dt′

)
A
(
d2Φ(x)
dx2

)
=ΨT(t)PTAD2Φ(x), (3.6)

and by using (2.5), (2.14), and (3.2) we have

∫ t

0
q
(
x, t′

)
dt′ =

(∫ t

0
ΨT(t′)dt′

)
AΦ(x)=ΨT(t)PTAΦ(x). (3.7)

Employing (2.5), (2.14), and (3.5), we get

∫ t

0
p
(
t′
)
u
(
x, t′

)
dt′ =

(∫ t

0
BTΨ

(
t′
)
ΨT
(
t′
)
dt′
)

AΦ(x). (3.8)

Now suppose

wk, j,i =
∫ τ

0
Lτk(t)Lτj (t)L

τ
i (t)dt, k, j, i= 0,1, . . . ,n, (3.9)
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by using (3.9) and (2.4) we can easily see that

BTΨ(t)ΨT(t)=ΨT(t)H, (3.10)

where H is an (n+ 1)× (n+ 1) matrix given as

Hi j =
(

2i+ 1
τ

)
·

n∑
k=0

bkwk, j,i, i, j = 0,1, . . . ,n. (3.11)

By using (3.10) and (2.14), (3.8) can be written as

∫ t

0
p
(
t′
)
u
(
x, t′

)
dt′ =ΨT(t)PTHAΦ(x). (3.12)

Applying (2.5), (3.3), (3.6), (3.7), and (3.12), the residual R(x, t) for (3.1) can be written
as

R(x, t)=ΨT(t)
[

A−F−PTAD2−PTHA−PTQ
]
Φ(x)=ΨT(t)EΦ(x), (3.13)

where

E= A−F−PTAD2−PTHA−PTQ. (3.14)

As in a typical tau method we generate (n+ 1)× (m− 1) algebraic equations by using the
following algebraic equations:

Ei j = 0, i= 0, . . . ,n, j = 0, . . . ,m− 2. (3.15)

Also, by substituting (2.5) in (1.3), we get

ΨT(t)AΦ(0)= g0(t),

ΨT(t)AΦ(1)= g1(t),
(3.16)

respectively. Furthermore, applying (2.5) and (2.16) in (1.4), we get

ΨT(t)AGΦ(s(t))= k(t). (3.17)

Equations (3.16) and (3.17) are collocated at n+ 1 points. For suitable collocation points,
we use the shifted Legendre roots ti, i = 1, . . . ,n+ 1, of Lτn+1(t). The number of the un-
known coefficients ai j and bi is equal to (n + 1)(m + 1) + (n + 1) and can be obtained
from (3.15), (3.16), and (3.17). Consequently u(x, t) given in (2.5) and p(t) given in (3.5)
can be calculated.

4. Numerical tests

To give a clear overview of our technique, we have chosen three test problems. These
examples are chosen such that there exist exact solutions for them. So the numerical
methods described in previous sections were applied to the following examples.
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Table 4.1. Computational results for u(x,0.5) from Test 1.

x
FTCS BTCS Crank- Peresent method

m= n= 7
[8] [8] Nicolson [8] m= n= 5

0.1 3.1× 10−3 4.8× 10−3 4.2× 10−3 2.8× 10−4 1.0× 10−6

0.2 3.1× 10−3 4.6× 10−3 4.1× 10−3 1.5× 10−4 6.2× 10−6

0.3 2.8× 10−3 4.4× 10−3 3.9× 10−3 2.0× 10−4 3.9× 10−6

0.4 2.8× 10−3 4.3× 10−3 3.7× 10−3 2.3× 10−4 1.0× 10−6

0.5 2.6× 10−3 4.1× 10−3 3.5× 10−3 1.4× 10−4 4.2× 10−6

0.6 2.4× 10−3 4.1× 10−3 3.2× 10−3 4.9× 10−4 7.1× 10−6

0.7 2.6× 10−3 4.2× 10−3 3.2× 10−3 4.1× 10−4 3.3× 10−6

0.8 2.7× 10−3 4.3× 10−3 3.5× 10−3 3.4× 10−4 9.3× 10−6

0.9 2.9× 10−3 4.5× 10−3 3.6× 10−3 2.4× 10−4 1.2× 10−6

Test 1. Consider (1.1)–(1.4) with � = 1, τ = 0.5, and

q(x, t)= (π2 + 2t
)

exp(t)cos(πx) + 2exp(t)xt,

g0(t)= exp(t),

g1(t)= 0,

f (x)= x+ cos(πx),

s(t)= 0.5
(
1 +
√
t
)
,

k(t)= exp(t)

(
sin
(
0.5π

(
1 +
√
t
))

π
+

(
1 +
√
t
)2

8

)
,

(4.1)

for which the exact solution is [8]

u∗(x, t)= exp(t)
(

cos(πx) + x
)
,

p∗(t)= 1− 2t.
(4.2)

In [8] the domain [0,�]× [0,τ] is divided into anM×N mesh with the spatial step size
h= �/M in x direction and the time step size k = τ/N , respectively. Then the author used
some finite-difference formulas such as classical FTCS formulas and BTCS scheme and
Crank-Nicolson technique to solve (1.1)–(1.4). For the purpose of comparison in Tables
4.1 and 4.2, we compare the absolute error of our method with m= n= 5 and m= n= 7
together with the methods given in [8]. From Tables 4.1 and 4.2 we see that the Legendre-
tau method is clearly reliable if compared with the finite-difference technique.

Also the absolute errors obtained for u(x,0.5) and p(t) computed for n = 4 and m =
4,6,8 using the tau method discussed in Section 3 together with exact solution are shown
in Tables 4.3 and 4.4, receptively. From Tables 4.3 and 4.4 we see that the approximation
solution computed by fixed n and different values of m converges to the exact solution.
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Table 4.2. Computational results for p(t) from Test 1.

t
FTCS BTCS Crank- Peresent method

m= n= 7
[8] [8] Nicolson [8] m= n= 5

0.1 5.3× 10−3 6.9× 10−3 6.3× 10−3 9.0× 10−3 4.4× 10−5

0.2 5.2× 10−3 6.8× 10−3 6.1× 10−3 2.3× 10−3 3.1× 10−5

0.3 5.0× 10−3 6.6× 10−3 5.8× 10−3 4.0× 10−3 7.4× 10−5

0.4 4.9× 10−3 6.4× 10−3 5.6× 10−3 2.8× 10−3 2.8× 10−5

0.5 4.7× 10−3 6.3× 10−3 5.3× 10−3 1.5× 10−2 3.2× 10−4

Table 4.3. Absolute errors for u(x,0.5) with n= 4 and m= 4,6,8 from Test 1.

x Exact
m= 4 m= 6 m= 8

Error Error Error

0.1 1.732 899 7.8× 10−3 2.0× 10−4 2.0× 10−6

0.2 1.663 588 2.3× 10−2 3.6× 10−5 1.2× 10−6

0.3 1.463 710 2.8× 10−2 3.5× 10−4 1.4× 10−6

0.4 1.168 971 1.8× 10−2 4.0× 10−4 4.1× 10−6

0.5 0.824 361 5.2× 10−4 3.6× 10−5 6.1× 10−6

0.6 0.479 750 1.9× 10−2 3.3× 10−4 2.9× 10−6

0.7 0.185 011 2.9× 10−2 2.9× 10−4 2.3× 10−6

0.8 -0.014 867 2.4× 10−2 7.8× 10−5 2.4× 10−6

0.9 -0.084 178 9.2× 10−3 2.2× 10−4 7.7× 10−6

Now we define the maximum errors for u(x, t) and p(t) as

eu =
∥∥un,m−u∗

∥∥∞ =max
{∣∣un,m(x, t)−u∗(x, t)

∣∣, 0 < x ≤ �, 0 < t ≤ τ
}

,

ep =
∥∥pn,m− p∗

∥∥∞ =max
{∣∣pn,m(t)− p∗(t)

∣∣, 0 < x ≤ �, 0 < t ≤ τ
}

,
(4.3)

respectively, where un,m(x, t) and pn,m(t) are the computed result with n and m. In Table
4.5 we give the maximum errors eu and ep for n= 4,5,6,7 and m= n.

From Table 4.5 we see that the errors decrease rapidly as n and m increase.

Test 2. Consider (1.1)–(1.4) with � = 1,τ = 0.5, and

q(x, t)= (1− t3)sin(x)− x2(t− 1)2 exp
(
t2)− 2exp

(
t2)− t2(π cos(x) + t3 + t− 3

)
,

g0(t)= π + t3,

g1(t)= t sin(1) + exp
(
t2)+π cos(1) + t3,

f (x)= x2 +π cos(x),

s(t)= t+ sin(t),

k(t)= (π sin(t)− t cos(t)
)

cos
(

sin(t)
)

+
(
t sin(t) +π cos(t)

)
sin
(

sin(t)
)

+
1
3

exp
(
t2)(sin3(t) + t3)+

(
t2 sin(t) + t sin2(t)

)
exp

(
t2)+

(
1 + t3 + t2 sin(t)

)
t,

(4.4)
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Table 4.4. Absolute errors for p(t) with n= 4 and m= 4,6,8 from Test 1.

t Exact
m= 4 m= 6 m= 8

Error Error Error

0.05 0.900 000 2.1× 10−1 1.8× 10−4 3.1× 10−6

0.10 0.800 000 4.6× 10−2 6.6× 10−4 8.3× 10−6

0.15 0.700 000 2.3× 10−2 7.4× 10−4 6.4× 10−6

0.20 0.600 000 5.2× 10−2 5.4× 10−5 2.5× 10−6

0.25 0.500 000 7.1× 10−2 3.8× 10−4 5.2× 10−7

0.30 0.400 000 5.5× 10−2 4.0× 10−4 1.2× 10−5

0.35 0.300 000 8.2× 10−3 5.5× 10−4 2.5× 10−7

0.40 0.200 000 2.8× 10−2 6.2× 10−4 1.0× 10−6

0.45 0.100 000 1.8× 10−2 2.3× 10−4 1.9× 10−6

0.50 0.000 000 2.5× 10−1 1.2× 10−3 1.4× 10−5

Table 4.5. The maximum errors for eu and ep for different values of n from Test 1.

n 4 5 6 7

eu 3.3× 10−2 6.0× 10−4 4.0× 10−4 7.0× 10−6

ep 6.5× 10−1 2.7× 10−2 3.4× 10−3 4.4× 10−4

Table 4.6. The maximum errors for eu and ep for different values of n from Test 2.

n 3 4 5 6 7

eu 7.0× 10−3 2.1× 10−4 1.9× 10−5 2.9× 10−7 2.4× 10−8

ep 5.6× 10−2 2.1× 10−3 1.1× 10−4 4.1× 10−6 8.1× 10−8

for which the exact solution is

u∗(x, t)= t sin(x) + x2 exp(t2) +π cos(x) + t3,

p∗(t)= t2 + 1.
(4.5)

The maximum errors eu and ep for n= 3,4,5,6,7 and m= n are shown in Table 4.6.

Test 3. Consider (1.1)–(1.4) with � = 1, τ = 0.5, and

q(x, t)= xexp(t)
(
1− t2− sin(t)

)
+ exp(t)

(
sin(t) + cos(t)− t2 sin(t)− sin2(t)

)
+ x2t

(
2− t3− t sin(t)

)− 2t2,

g0(t)= exp(t)sin(t),

g1(t)= (1 + sin(t)
)

exp(t) + t2,

f (x)= x,

s(t)= t+
√
t,

k(t)= 1
6

(t+
√
t)
(
2t3(t+ 1) + 4t7/2 + 3exp(t)

(
t+
√
t+ 2sin(t)

))
,

(4.6)
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Table 4.7. The maximum errors for eu and ep for different values of n from Test 3.

n 3 4 5 6 7

eu 6.1× 10−5 6.2× 10−6 1.7× 10−7 3.4× 10−9 6.2× 10−11

ep 4.5× 10−4 2.8× 10−5 5.6× 10−7 1.3× 10−8 1.6× 10−9

which is easily seen to have the exact solution

u∗(x, t)= (x+ sin(t)
)

exp(t) + x2t2,

p∗(t)= t2 + sin(t).
(4.7)

In Table 4.7 we give the maximum errors eu and ep for n= 3,4,5,6,7 and m= n.

From Tables 4.6 and 4.7 we see that the errors decrease rapidly as n and m increase. It
is clear that in Tests 1, 2, and 3 the Legendre-tau method can be considered as an efficient
method.

5. Conclusion

In this paper, we presented a numerical scheme for solving the one-dimensional inverse
parabolic problem. Our approach was based on the shifted Legendre-tau method. The
stability and convergence of the Legendre-tau approximations (see [14]) make this ap-
proach very attractive and contributed to the good agreement between approximate and
exact values for the numerical tests. The obtained results showed that this approach can
solve the problem effectively. The new described computational technique produces very
accuracy results even when employing a small number of collocation points.
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