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We consider a basic renewable duplex system characterized by cold standby and subjected
to a priority rule. Apart from a general stochastic analysis presented in the previous lit-
erature, we introduce a Markov time called the recovery time of the system. In order
to obtain the corresponding Laplace-Stieltjes transform, we employ a stochastic process
endowed with transition measures satisfying generalized coupled differential equations.
The solution is provided by the theory of sectionally holomorphic functions.
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1. Introduction

Standby provides a powerful tool to enhance the reliability, availability, quality, and safety
of operational plants, for example, [4, 8, 16]. However, in practice, standby systems are
often subjected to a priority rule. For instance, the external power supply station of a
technical plant has usually overall priority in operation with regard to an internal (local)
power generator kept in cold or warm standby, for example, [4]. The local generator is
only deployed if the external power station is down.

Cold or warm standby systems subjected to a priority rule and attended by a repair
facility have received considerable attention in the previous literature, for example, [2, 3,
5, 6, 9–15, 17–19, 21, 23, 24]. We consider a basic duplex system composed of a priority
unit (the p-unit) and a nonpriority unit (the n-unit) kept in cold standby until the p-unit
fails. The p-unit has overall (break-in) priority in operation with regard to the n-unit,
that is, the n-unit is only deployed if the p-unit is down. In order to avoid undesirable
delays in repairing failed units, we suppose that the entire system (henceforth called the
T-system) is attended by two different repairmen. Each repairman has his own particular
task. Repairman N is skilled in repairing the n-unit, whereas repairman P is an expert in
repairing the p-unit. Both repairmen are jointly busy if, and only if, both units are down.
Otherwise, at least one repairman is idle. Figure 1.1 displays a functional block diagram
of the T-system operating in standby.
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Figure 1.1. Functional block diagram of the T-system operating in standby.

Apart from a general stochastic analysis presented in the previous literature [19, 21,
23], we introduce a Markov time called the recovery time of the T-system. The recov-
ery time is the total (random) time needed to restore the T-system from a prescribed
risky state into the safe state (see the forthcoming formulation). In order to obtain the
corresponding Laplace-Stieltjes transform, we employ a stochastic process endowed with
transition measures satisfying generalized coupled partial differential equations. Our pro-
posed transient equations are extending the steady-state equations presented by Vander-
perre and Makhanov [23]. The explicit solution is provided by a refined application of
the theory of sectionally holomorphic functions.

2. Formulation

Consider the basic T-system satisfying the following conditions. The p-unit has a con-
stant failure rate λ > 0 and a general repair time distribution R(·), R(0) = 0. The cor-
responding failure-free time and repair time are denoted by f and r. The operative n-
unit has a constant failure rate λs > 0, but a zero failure rate in standby (the so-called
cold standby) and a general repair time distribution Rs(·), Rs(0)= 0. The corresponding
failure-free time and repair time are denoted by fs and rs. The random variables f , fs, r, rs
are statistically independent. Any repair is perfect [7]. The switch-over time from standby
to the operative state is instantaneous. Characteristic functions are formulated in terms
of a complex transform variable. For instance,

Eeiωr =
∫∞

0
eiωxdR(x), Imω ≥ 0. (2.1)

Note that

Ee−iωr =
∫ 0

−∞
eiωxd

{
1−R((−x)− )}, Imω ≤ 0. (2.2)

The corresponding Fourier-Stieltjes transforms are called dual transforms. Without
loss of generality (cf. [21, page 361]) we may assume that both R and Rs have bounded
density functions (in the Radon-Nikodym sense) defined on [0,∞).
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In order to analyse the random behaviour of the T-system, we employ a stochastic
process {Nt, t ≥ 0} with arbitrary discrete state space {A,B,C,D} ⊂ [0,∞) characterized
by the following events:

(i) {Nt =A}: “the p-unit is operative and the n-unit is in cold standby at time t;”
(ii) {Nt = B}: “the n-unit is operative and the p-unit is under repair at time t;”
(iii) {Nt = C}: “the p-unit is operative and the n-unit is under repair at time t;”
(iv) {Nt =D}: “both units are down at time t.”
State A is called the safe state. States B and C are called risky states and state D is

called the system down state. The non-Markovian process {Nt} is defined on a filtered
probability space {Ω,B,P,F} where the history F := {Ft, t ≥ 0} satisfies the Dellacherie
conditions:

(i) F0 contains the P-null sets of B;
(ii) for all t ≥ 0, Ft =

⋂
u>t Fu, that is, the family F is right continuous.

Consider the F-Markov time

θ := inf
{
t > 0 :Nt = A |N0 = B, Z0 = 0

}
, (2.3)

where Zt denotes the past repair time of the failed p-unit being under progressive repair at
time t. Note that we take the instant of the first failure as time origin, that is,N0 = B, Z0 =
0, P-a.s. Thus, from t = 0 onwards, θ is the total amount of time needed to restore the
T-system from the risky state B into the safe state A. θ is called the recovery time of the
T-system. In addition, note that our priority rule implies that a transition from the safe
state A into the risky state C is only possible via state D.

A (vector) Markov characterization of the process {Nt, t ≥ 0} is piecewise and condi-
tionally defined by

(i) {Nt}, if Nt =A (i.e., if the event {Nt = A} occurs);
(ii) {(Nt,Xt)}, if Nt = B, where Xt denotes the remaining repair time of the p-unit

being under progressive repair at time t;
(iii) {(Nt,Yt)}, if Nt = C, where Yt denotes the remaining repair time of the n-unit

being under progressive repair at time t;
(iv) {(Nt,Xt,Yt)}, if Nt =D.

The state space of the underlying Markov process with absorbing state A is given by

{
A
}⋃{

(B,x); x ≥ 0
}⋃{

(C, y); y ≥ 0
}⋃{

(D,x, y); x ≥ 0, y ≥ 0
}
. (2.4)

Let

pA(t) := P
{
Nt = A

}
, t ≥ 0. (2.5)

Finally, we introduce the measures:

pB(t,x)dx := P
{
Nt = B, Xt ∈ dx

}
,

pC(t, y)dy := P
{
Nt = C, Yt ∈ dy

}
,

pD(t,x, y)dx,dy := P
{
Nt =D, Xt ∈ dx,Yt ∈ dy

}
.

(2.6)
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Note that, for instance,

pD(t)=
∫∞

0

∫∞
0
dx dyP

{
Nt =D, Xt ≤ x,Yt ≤ y

}=
∫∞

0

∫∞
0
pD(t,x, y)dx dy. (2.7)

Notations 2.1. The real line and the complex plane are denoted byR and C, with obvious
superscript notations such as C+, C−. For instance, C+ := {ω ∈ C : Imω > 0}.

The indicator (function) of an event ε ∈ B is denoted by 1ε. The Heaviside unit-step
function with the unit jump at t = t0 > 0 is denoted by Ut0 (t), t ≥ 0. Finally, let [t] be the
greatest integer function.

3. Differential equations

Applying Hokstad’s supplementary variable technique in some time interval [t, t + Δ],
Δ ↓ 0, for example, Alfa and Srinivasa [1] and taking the absorbing state A into account,
yields

pA(t+Δ)= pA(t) + pB(t,0)Δ+ pC(t,0)Δ+ o(Δ),

pB(t+Δ,x−Δ)= pB(t,x)
(
1− λsΔ

)
+ pD(t,x,0)Δ+ o(Δ),

pC(t+Δ, y−Δ)= pC(t, y)(1− λΔ) + pD(t,0, y)Δ+ o(Δ),

pD(t+Δ,x−Δ, y−Δ)= pD(t,x, y) + λspB(t,x)
d

dy
Rs(y)Δ+ λpC(t, y)

d

dx
R(x)Δ+ o(Δ).

(3.1)

Invoking the definition of directional derivative entails that for t > 0, x > 0, y > 0,

d

dt
pA(t)= ρB(t,0) + pC(t,0),

(
λs +

∂

∂t
− ∂

∂x

)
pB(t,x)= pD(t,x,0),

(
λ+

∂

∂t
− ∂

∂y

)
pC(t, y)= pD(t,0, y),

(
∂

∂t
− ∂

∂x
− ∂

∂y

)
pD(t,x, y)= λspB(t,x)

d

dy
Rs(y) + λpC(t, y)

d

dx
R(x).

(3.2)

Note that the initial condition N0 = B, Z0 = 0 implies that pB(0,x) = d/dx R(x), x > 0.
Moreover, P {θ ≤ t} = pA(t).

Hence,

Ee−zθ =
∫∞

0
e−ztdpA(t), z ≥ 0. (3.3)
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4. Solution procedure

It should be noted that our differential equations are well adapted to a Laplace-Fourier
transformation. In fact, the p-functions are locally integrable with respect to t and
bounded on [0,∞). Consequently, the derivatives with respect to t are also locally in-
tegrable.

Moreover, the integrability of the p-functions and the repair time densities with re-
spect to x, y on [0,∞) implies that the corresponding partial derivatives are also inte-
grable on [0,∞). A Laplace-Fourier transform technique applied to the equations, taking
the initial condition into account, reveals that for Imω ≥ 0, Imη ≥ 0, z > 0,

Ee−zθ =
∫∞

0
e−zt pB(t,0)dt+

∫∞
0
e−zt pC(t,0)dt,

(
λs + z+ iω

)∫∞
0
e−ztE

(
eiωXt1

{
Nt = B

})
dt+

∫∞
0
e−zt pB(t,0)dt

= Eeiωr +
∫∞

0

∫∞
0
e−zteiωx pD(t,x,0)dxdt,

(λ+ z+ iη)
∫∞

0
e−ztE

(
eiηYt1

{
Nt = C

})
dt+

∫∞
0
e−zt pC(t,0)dt

=
∫∞

0

∫∞
0
e−zteiηy pD(t,0, y)dydt,

(z+ iω+ iη)
∫∞

0
e−ztE

(
eiωXt eiηYt1

{
Nt =D

})
dt

+
∫∞

0

∫∞
0
e−zteiωx pD(t,x,0)dxdt+

∫∞
0

∫∞
0
e−zteiηy pD(t,0, y)dydt

= λEeiωr
∫∞

0
e−ztE(eiηYt1

{
Nt = C

}
)dt+ λsEeiηrs

∫∞
0
e−ztE

(
eiωXt1

{
Nt = B

})
dt.

(4.1)

Adding (4.1) yields the functional equation:

(z+ iω+ iη)
∫∞

0
e−ztE

(
eiωXt eiηYt1

{
Nt =D

})
dt

+
(
z+ λ

(
1−Eeiωr

)
+ iη

)∫∞
0
e−ztE

(
eiη,Yt1

{
Nt = C

})
dt

+
(
z+ λs

(
1−Ee−iηrs

)
+ iω

)∫∞
0
e−ztE

(
eiωXt1

{
Nt = B

})
dt

= Eeiωr −Ee−zθ , Imω ≥ 0, Imη ≥ 0, z > 0.

(4.2)

Inserting ω =−τ + iz, η = τ, τ ∈R into the functional equation entails that

ψ+(τ,z)−ψ−(τ,z)= ϕ(τ,z), (4.3)
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where

ψ+(τ,z) := 1
γ+(τ)

∫∞
0
e−ztE

(
eiτYt1

{
Nt = C

})
dt,

ψ−(τ,z) := τ

τ − iz
1

γ−(τ,z)

∫∞
0
e−ztE

(
e−(iτ+z)Xt1

{
Nt = B

})
dt,

ϕ(τ,z) := Ee−(iτ+z)r −Ee−zθ

γ+(τ)γ−(τ,z)
1

iτ + z
,

(4.4)

γ+(τ) := 1 + λs
Eeiτrs − 1

iτ
, γ+(0) := 1 + λsErs,

γ−(τ,z) := 1 + λ
1−Ee−(iτ+z)r

iτ + z
, z > 0.

(4.5)

Remarks 4.1. Equation (4.3) constitutes a z-dependent Hilbert problem on the real line.
Note that z-independent Hilbert problems, related to reliability engineering, have been
solved by the theory of sectionally holomorphic functions. See [20, 21] for further details.
A similar approach shows that the z-dependent function

1
2πi

∫
Γ
ϕ(τ,z)

dτ

τ −ω , ω ∈ C, z > 0, (4.6)

is sectionally holomorphic in C, provided that the singular Cauchy integral

1
2πi

∫
Γ
ϕ(τ,z)

dτ

τ −u , u∈R, (4.7)

is defined as a Cauchy principal value in a double sense, see [21, the Appendix]. Finally,
note that our statement holds for general repair time distributions! (cf. [21, Remarks,
page 361]).

5. The tail distribution

In order to obtain Ee−zθ , we first remark that ψ+(ω,z) is analytic in C+, boundedly con-
tinuous on C+∪R and that

lim
|ω|→∞

0≤argω≤π

ψ+(ω,z)= 0. (5.1)

Hence, by the Cauchy’s theorem,

1
2πi

∫
Γ
ψ+(τ,z)

dτ

τ −ω = 0, ω ∈ C−. (5.2)

On the other hand, ψ−(ω,z) is analytic in C−, boundedly continuous on C− ∪R and

lim
|ω|→∞

π≤argω≤2π

ψ−(ω,z)= 0. (5.3)
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Hence,

ψ−(ω,z)=− 1
2πi

∫
Γ
ψ−(τ,z)

dτ

τ −ω , ω ∈ C−. (5.4)

By (4.3), (5.2), (5.4), we obtain

ψ−(ω,z)= 1
2πi

∫
Γ
ϕ(τ,z)

dτ

τ −ω , ω ∈ C−. (5.5)

However, note that

lim
ω→0

ω∈C−,z>0

ψ−(ω,z)= 0. (5.6)

So that by (4.4)

Ee−zθ = lim
ω→0
ω∈C−

N−(ω,z)
D−(ω,z)

, (5.7)

where

N−(ω,z) := 1
2πi

∫
Γ

Ee−(iτ+z)r

(iτ + z)γ+(τ)γ−(τ,z)
dτ

τ −ω , (5.8)

D−(ω,z) := 1
2πi

∫
Γ

1
(iτ + z)γ+(τ)γ−(τ,z)

dτ

τ −ω . (5.9)

Consequently, Ee−zθ is completely determined.

Example 5.1. As an example, letR(t)= 1− e−ρt, ρ > 0, andRs(t)=Ut0 (t).Clearly, Ee−iωr=
ρ/(ρ+ iω), ω 
= iρ, whereas Eeiωrs = eiωt0 .Without loss of generality, we may take t0 as time
unit. A straightforward application of the residue theorem entails that

1−Ee−zθ

z
= α(z)
β(z)

, (5.10)

where

α(z) := 1 + λs
1− e−z
z

, α(0) := 1 + λs,

β(z) := z+ ρ+ λs(1− ae−z), a := λ+ ρe−(λ+ρ)

λ+ ρ
.

(5.11)

Hence,

Eθ = 1 + λs
ρ+ λs(1− a)

. (5.12)
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Note that the tail distribution P{θ > t} is uniquely determined by the Laplace transform:

1−Ee−zθ

z
=
∫∞

0
e−ztP{θ > t}dt, z > 0. (5.13)

Moreover, P{θ > t} is Lebesgue absolutely continuous on (0,∞). Hence, by the inversion
theorem

P{θ > t} = 1
2πi

∫
Cδ
ezt
α(z)
β(z)

dz, t > 0, (5.14)

where
∫
Cδ
···dz := lim

T→∞

∫ iT+δ

−iT+δ
···dz, δ > 0. (5.15)

A straightforward evaluation of the Cauchy integral, similar to the methodology in-
troduced by Vanderperre [22], reveals that

P{θ > t} =
[t]∑
k=0

ake−(ρ+λs)(t−k)

(
λs(t− k)

)k
k!

+
[t]∑
k=0

ak
(

λs
ρ+ λs

)k+1{
1− e−(ρ+λs)(t−k)

k∑
n=0

((
ρ+ λs

)
(t− k)

)n
n!

}

−
[t]−1∑
k=0

ak
(

λs
ρ+ λs

)k+1{
1− e−(ρ+λs)(t−k−1)

k∑
n=0

((
ρ+ λs

)
(t− k− 1)

)n
n!

}
.

(5.16)

6. Conclusion

Our proposed priority system, subjected to general (bivariate) repair, can be analysed by
elegant methods provided by the theory of sectionally holomorphic functions. However,
the duplex system, subjected to general failure and repair time distributions, invokes an
open (harsh) mathematical problem in the theory of statistical reliability engineering. The
analysis of priority systems, subjected to arbitrary distributions, is far from complete.
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