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Maintained equipment can be subject to random failures. If failures are evident, they can
be detected immediately when they occur. On the other hand, hidden failures that are not
revealed during the performance of regular duties may be detected by inspection process.
If concerned equipment has hidden failures, loss is assumed to incur from the moment its
failure until the time when it is detected. Optimal inspection schedule should be consid-
ered when inspection is costly. In this study, optimal inspection schedules for equipment
are derived by the variational method employing the inspection density function. For the
case in which the time-to-failure distribution of equipment is given, a conditional equa-
tion that optimal inspection schedules should satisfy is derived. Furthermore, when the
time-to-failure distribution is unknown, an ordinary differential equation that optimal
inspection schedules should satisfy is obtained. Optimal inspection schedules in a closed
form and numerical examples are shown for some potential loss rate functions.

Copyright © 2006 Susumu Okumura. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Inspection is one of the means to confirm whether maintained equipment operates nor-
mally, or whether it works correctly when required for operation, and identify deterio-
ration level of equipment. Cost of inspection increases when the inspection interval is
shortened since inspection is a cost element. On the contrary, loss or risk caused by fail-
ures will increase when the inspection interval is lengthened. Therefore, an appropriate
setting of inspection schedules is important with consideration of a tradeoff between in-
spection cost and loss due to failure of equipment.

If equipment deteriorates gradually and the operational condition of equipment can
be identified by inspection process based on condition monitoring techniques using mea-
surement of vibration or wear, the deterioration trend plot can be useful for determining
the optimal inspection schedule [10]. On the other hand, if equipment has a nature of
sudden malfunction such as cracks of materials, frequent inspection will be effective since
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2 Determination of inspection schedules

deterioration of maintained equipment is difficult to predict. When the reliability func-
tion of the time to failure of equipment is identified, the optimal inspection schedule can
be determined based on a mathematical inspection model employing the reliability func-
tion. Barlow and Proschan [1] formulated an inspection model, in which the time-to-
failure distribution is known, and obtained the recursive relation between two successive
inspection times. The literature on maintenance and replacement models was surveyed
[2, 9, 11, 12]. Leung [7] discussed basic models for the detection of system failures by
inspection.

Optimal inspection schedules for a single-unit system whose time to failure is de-
scribed by a probability distribution were derived based on the variational method [5–7].
Time-to-failure distribution may be difficult to identify when few data for the distri-
bution are available. Therefore, Keller [6] and Leung [7] examined optimal inspection
schedules under the assumption that a probability distribution of the time to failure is
unknown. However, loss caused by a failure is limited to a simple linear loss rate func-
tion [5–7]. Okumura and Okino [8] studied optimal inspection schedules when failed
equipment has a general type of loss rate function.

In this study, a method for determining optimal inspection schedules is discussed,
in which failures of equipment are detected only by inspection. The inspection density
function proposed by Keller [6], which generates inspection schedules, is employed in
a minimization problem of the incurred cost per cycle. An optimal inspection density
function is derived by the variational method. The optimal inspection schedules in a
closed form are shown for some potential failure distributions and loss rate functions.
Then, optimal inspection density functions, optimal sequences of inspection times, and
the conditions that inspection is effective are obtained explicitly for the case that failure
distributions are unknown.

2. Formulation and optimal inspection density function

2.1. Assumptions. The following assumptions are made.
(1) Equipment is a single-unit system.
(2) When a system fails, the failed state is detected only by inspection with proba-

bility 1.
(3) Inspection is conducted at time tk (k = 1,2, . . .) with negligible time for an in-

spection.
(4) A probability density function and a cumulative distribution function of the time

to failure of a system exists, which are denoted by f (t) and F(t) (t ≥ 0), re-
spectively. A failure rate function is denoted by λ(t) = f (t)/F(t) (t ≥ 0), where
F(t)≡ 1−F(t).

(5) The time-to-failure distribution is not influenced by inspection.
(6) Loss, which is characterized by a loss rate function L(t), is incurred from the

moment the system fails until the time when it is detected.
(7) A continuous inspection density function n(t) exists, which gives the approxi-

mate number of inspections per unit time [6]. Herewith, the inspection interval
is approximately given by 1/n(t). If n(t) is identified, tk are determined since we
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have the relation
∫ tk

0 n(t) , dt = k [5]. Here, inspection time is given by

tk =N−1(N(0) + k
)
, k = 1,2, . . . , (2.1)

where N(t) is the primitive function of n(t).
(8) An inspection cost is denoted by c.

2.2. Expected incurred cost. The expected incurred inspection cost until the failure of a
system is detected is given by

c
∫∞

0

(∫ t

0
n(x)dx

)
f (t)dt. (2.2)

Equation (2.2) is transformed to

c
∫∞

0
F(t)n(t)dt (2.3)

since F(0) = 0 and F(∞) = 1. Then, the sum of approximate loss caused by failure of a
system and replacement cost is written as

∫∞

0

(
n(t)

∫ 1/n(t)

0
L(x)dx

)
f (t)dt. (2.4)

Therefore, the sum of the expected costs E[C], whose elements are inspection cost and
loss cost, is approximately given by

E[C]= c
∫∞

0
F(t)n(t)dt+

∫∞

0

(
n(t)

∫ 1/n(t)

0
L(x)dx

)
f (t)dt, (2.5)

which arises in a sequence of time: an as-good-as-new state that begins at t = 0, a failed
state whose time of occurrence is characterized by F(t), and duration of the failed state
until the failure is detected by inspection.

2.3. Optimal inspection density function when time-to-failure distribution is given.
The Euler equation is derived in order to find n(t) which minimizes (2.5):

1
n(t)

L
(

1
n(t)

)
−
∫ 1/n(t)

0
L(x)dx = c

λ(t)
. (2.6)

Then, we solve nonlinear equations for n(t), which are derived by substituting poten-
tial L(t) into (2.6). Here, optimal inspection density functions are shown for three types
of L(t).

(1) L(t)= c1tp + c2 (p, c1, c2: positive constant).
Equation (2.6) gives

n∗1 (t)=
(

c1p

c(p+ 1)
λ(t)

)1/(p+1)

. (2.7)
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Figure 2.1. The real values of the Lambert W function: the solid line shows W0(x) and the dashed
line W−1(x).

(2) L(t)= c1t2 + c2t+ c3 (c1, c2, c3: positive constant).
The following optimal inspection density function is obtained:

n∗2 (t)= k1λ(t)
G
(
λ(t)

) +G
(
λ(t)

)
, (2.8)

where G(x)= {x(k2 + (k2
2 − k3

1x)1/2)}1/3, k1 = c2/6c, k2 = c1/3c.
(3) L(t)= c1(exp[c2t]− 1) + c3 (c1, c2, c3: positive constant).

From (2.6),

n∗3 (t)=
[

1
c2

{
1 +W

(
1
e

(
cc2

c1λ(t)
− 1
))}]−1

(2.9)

is derived, where W(·) is the Lambert W function as shown in Figure 2.1, which is the
complex-valued function that satisfies W(x)exp[W(x)]= x for all x ∈ C.

Note that (2.7)–(2.9) are irrelevant to absolute terms c2 and c3 in L(t). The increasing
and decreasing properties of n∗i (t) (i = 1,2, and 3) correspond to those of λ(t) at every
L(t).

Remark 2.1. Keller [6] derived the Euler equation from the functional in which the right-
hand side of the first term in (2.5) is given by (2.2), and under the conditions that L(t) is
linear, that is,

c
∫∞

0

(∫ t

0
n(x)dx

)
f (t)dt+

∫∞

0
L
(

1
2n(t)

)
f (t)dt. (2.10)
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The Euler equation for (2.10) yields

d

dt

{
f (t)

∂

∂n(t)
L
(

1
2n(t)

)}
= c f (t). (2.11)

Then, the following equation for n(t) is derived:

1
{
n(t)

}2 L
′
(

1
2n(t)

)
= 2c

(
u−F(t)

)

f (t)
, (2.12)

where u is an integration constant. When L(t) = c1t, after finding n(t) which satisfies
(2.12) and substituting it into (2.10), a minimization problem of u is obtained.
Finally, the optimal inspection density function yields

n∗(t)=
{
c1

2c
λ(t)

}1/2

. (2.13)

On the other hand, the functional derived by Kaio and Osaki [5] and Leung [7] was
based on the condition that L(t)= c1t:

c
∫∞

0
F(t)n(t)dt+

c1

2

∫∞

0

f (t)
n(t)

dt. (2.14)

From the Euler equation,

{
n(t)

}2 = c1

2c
λ(t), (2.15)

which minimizes (2.14) for n(t), is obtained. Then, (2.13) is derived.
Note that (2.13) in [5–7] corresponds to the result of p = 1 in (2.7).

Remark 2.2. When L(t) is approximated by a second-order equation, we obtain

∫∞

0

(
n(t)

∫ 1/n(t)

0
L(x)dx

)
f (t)dt =

∫∞

0

{
L
(

1
2n(t)

)
+

1

24
{
n(t)

}2 L
′′
(

1
2n(t)

)}
f (t)dt.

(2.16)

Then, the Euler equation for finding n(t) that minimizes (2.5) satisfies

1

2
{
n(t)

}2 L
′
(

1
2n(t)

)
+

1

12
{
n(t)

}3 L
′′
(

1
2n(t)

)
+

1

48
{
n(t)

}4 L
(3)
(

1
2n(t)

)
= c

λ(t)
. (2.17)

Equation (2.8) can be obtained by solving the equation for n(t) after substituting L(t)=
c1t2 + c2t+ c3 into (2.17).

Sufficient condition. Equation (2.5) is written as

E[C]=
∫∞

0
H
(
t,n(t)

)
dt, (2.18)
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in which the Legendre-Hadamard condition [3] yields Hn′n′ = 0 and Hnn′ = 0. When
H(t) +αξ(t) is the admissible function, the second variation of E[C] follows

δ2E[C]=
∫∞

0

{
ξ(t)

}2
Hnndt

=
∫∞

0

{
ξ(t)

}2
f (t)

{
n(t)

}3 L′
(

1
n(t)

)
dt.

(2.19)

Therefore, if L(t) is nondecreasing, the second variation satisfies δ2E[C] > 0, which is
apparent in every loss ratio function treated in this paper.

2.4. Optimal inspection density function when time-to-failure distribution is un-
known. When λ(t) is given, optimal inspection density function n∗(t) which minimizes
E[C] is derived from (2.6). If λ(t) or F(t) is unknown, a minimax solution, that is,
maxF(t) minn(t)E[C], is considered, by which conservative inspection schedules can be
obtained.

From (2.6) we can see that the optimal inspection density function is a function of
λ(t), that is, n∗(t)= q(λ(t)), then

max
F(t)

min
n(t)

E[C]⇐⇒max
λ(t)

min
n(t)

E[C]. (2.20)

Since we have the relations F(t) = 1− exp[−∫ t0 λ(t)dt] and f (t) = λ(t)exp[−∫ t0 λ(t)dt],
the Euler equation yields

{(
λ2− 2λ′

)
q′ − λλ′q′′

}{
q
∫ 1/q

0
L(x)dx−L

(
1
q

)}

− cq
(
q− λq′ + λ′q′′

)− λλ′
(
q′

q

)2

L′
(

1
q

)
= 0,

(2.21)

where q and λ are abbreviations of q(λ(t)) and λ(t), respectively.
When L(t)= c1tp + c2,

q1(x)=
(

c1p

c(p+ 1)
x
)1/(p+1)

(2.22)

from (2.7). Then (2.21) becomes

λ′1(t)− (p+ 1)
{
λ1(t)

}2 = 0. (2.23)

If λ1(0)= a is assumed to be an integration constant,

λ1(t)= a

1− (p+ 1)at
(2.24)
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is derived from (2.23). Then, we have

n∗∗1 (t)= q1
(
λ1(t)

)
(2.25)

=
(

c1p

c(p+ 1)
· a

1− (p+ 1)at

)1/(p+1)

for 0≤ t <
1

a(p+ 1)
, (2.26)

max
λ(t)

min
n(t)

E[C]=
{

c1

p+ 1

(
c

ap

)p}1/(p+1)

+ c2. (2.27)

When L(t)= c1t2 + c2t+ c3, (2.21) becomes

Z5
21−

(
λ2Z22− λ′2Z23

)
Z4

21 +
(
3k1Z21 + 2k2

){(
λ2

2− 2λ′2
)
Z22− λ2λ

′
2Z23

}
Z21

+ 6λ2λ
′
2

(
k1Z21 + k2

)
Z2

22 = 0,
(2.28)

where

λ2 := λ2(t), q2 :=G
(
λ2
)
, Z21 := k1λ2

q2
+ q2,

Z22 := k1
(
1− λ2q

′
2/q2

)

q2
+ q′2,

Z23 := 2k1λ2
(
q′2
)2

q3
2

− k1
(
λ2q

′′
2 + 2q′2

)

q2
2

+ q′′2 .

(2.29)

For L(t)= c1(exp[c2t]− 1) + c3,

λ2
3Z31

(
Z32 + 1

)2
{
Z31 +

(
Z2

32 +Z32 + 1
)

exp
[
Z32 + 1

]}

− λ′3Z32
(
Z31 + 1

){
2Z31 +

(
Z32 + 1

)
exp

[
Z32 + 1

]}= 0
(2.30)

is derived from (2.21), where

λ3 := λ3(t), Z31 := cc2

c1λ3
− 1, Z32 :=W

(
Z31

e

)
. (2.31)

A numerical method is appropriate for solving (2.28) and (2.30).

Remark 2.3. Keller [6] and Leung [7] obtained their minimax solution by maximizing
the expected cost with regard to F(t). Their solution is a special case of (2.26) and (2.27)
derived in this paper, by substituting p = 1, a= λ/2 (constant), and c2 = 0 into the equa-
tions.

Sufficient condition. When L(t) = c1tp + c2, the extremal resulting from the Euler equa-
tion is (2.24) under the conditions that λ(0)= 0 and λ(1/a(p+ 1))=∞. The extremal has
a proper field but does not have a central field in the range of {t | 0≤ t ≤ 1/a(p+ 1)}. The
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Table 3.1. Summary of results obtained when time-to-failure distribution is given. L1: L(t) = c1tp +
c2, L2: L(t) = c1t2 + c2t + c3, L3: L(t) = c1(exp[c2t]− 1) + c3; C1: number of inspections, C2: optimal
inspection time, C3: condition that the number of inspections is m (m= 1,2, . . .), C4: condition that
inspection is effective;©: explicit form solution, ×: no explicit form solution.

Loss rate L1 L2 L3

Classification C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Weibull distribution © © © © × × × × × × × ×
Exponential distribution © © © © © © © © © © × ×
Uniform distribution © © © © × × × × © © © ©

Legendre-Hadamard condition for arbitrary λ(t) �= 0 is negative:

− cexp
[− ∫ t0 λ(x)dx

]

(p+ 1)
{
λ(t)

}2

(
c1p

c(p+ 1)
λ(t)

)1/(p+1)

< 0. (2.32)

When λ(t)= 0, the Legendre-Hadamard condition has singularity. Therefore, (2.24) is a
weak maximizer.

When L(t) = c1t2 + c2t + c3 and L(t) = c1(exp[c2t]− 1) + c3, the Legendre-Hadamard
condition is negative for arbitrary λ(t). However, optimal λ(t) cannot be obtained explic-
itly; therefore, it is difficult to check the Jacobi condition for both loss rate functions.

3. Some explicit results

3.1. When time-to-failure distribution is given. The Weibull distribution, a negative
exponential distribution, and a uniform distribution are considered for the solution of
optimal inspection schedules. Equations in a closed form for (1) the number of inspec-
tions, (2) optimal inspection time, (3) the condition that the number of inspections is m
(m= 1,2, . . .), and (4) the condition that inspection is effective are derived. The obtained
equations are arranged in Table 3.1.

3.1.1. Failure distribution: the Weibull distribution. When L(t) = c1tp + c2 and the time
to failure is provided by the Weibull distribution λ(t) = β/η · (t/η)β−1, the following is
obtained in the range of {t | F(t)≤ 1− ε} ⇐⇒ {t | 0≤ t ≤ η(lnε−1)1/β}, where ε is a small
positive constant.

(i) Number of inspections:

nI =
⌊∫ η(lnε−1)1/β

0
n∗1 (t)dt

⌋

(3.1)

=
⌊
η(p+ 1)
(p+β)

(
c1p

c(p+ 1)
· β
η

(
lnε−1)p/β+1

)1/(p+1)
⌋

, (3.2)

where x� denotes the greatest integer less than or equal to x.
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(ii) Optimal inspection time:

tk =
{

ηβ−1
(

c1p

c(p+ 1)
· β
η

)−1(k(p+β)
p+ 1

)p+1
}1/(p+β)

, k = 1, . . . ,nI . (3.3)

(iii) Condition that the number of inspections is m:

r1(m+ 1) <
c1

c
≤ r1(m), (3.4)

where

r1(m)=
(
m(p+β)
η(p+ 1)

)p+1( p

p+ 1
· β
η

(
lnε−1)p/β+1

)−1

. (3.5)

(iv) Condition that inspection is effective, that is, nI ≥ 1:

c1

c
≥ r1(1). (3.6)

For L(t)= c1t2 + c2t + c3 and L(t)= c1(exp[c2t]− 1) + c3, when λ(t) is the Weibull dis-
tribution, it is difficult to derive explicit results. However, if the time-to-failure distri-
bution is a negative exponential, that is, β = 1, λ(t) = 1/λ, it is possible to derive some
equations in a closed form.

3.1.2. Failure distribution: negative exponential distribution. When L(t) = c1tp + c2, the
results are the same as those substituted β = 1 into (3.2), (3.3), and (3.5):

nI =
⌊

η
(

lnε−1)
(

c1p

ηc(p+ 1)

)1/(p+1)
⌋

,

tk = k
(
ηc(p+ 1)

c1p

)p+1

,

r1(m)= η(p+ 1)
p

(
m

η lnε−1

)p+1

.

(3.7)

When L(t)= c1t2 + c2t+ c3 and λ(t)= 1/η, the following equations are derived.
(i) Number of inspections:

nI =
⌊∫ η lnε−1

0
n∗2 (t)dt

⌋

=
⎢
⎢
⎢
⎢
⎣

{
k1 +η

{
G(1/η)

}2
}

lnε−1

G(1/η)

⎥
⎥
⎥
⎥
⎦ .

(3.8)

(ii) Optimal inspection time:

tk = k

G(1/η) + k1/ηG(1/η)
, k = 1, . . . ,nI . (3.9)
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(iii) Condition that the number of inspections is m:

r2(m)≤ η < r2(m+ 1), (3.10)

where

r2(m)=
m
{(

9k2
1 lnε−1 + 8k2m

)1/2− 3k1
(

lnε−1
)1/2
}

4k2
(

lnε−1
)3/2 . (3.11)

(iv) Condition that inspection is effective:

η ≥ r2(1). (3.12)

If L(t)= c1(exp[c2t]− 1) + c3, the following are obtained.
(i) Number of inspections:

nI =
⌊∫ η lnε−1

0
n∗3 (t)dt

⌋

=
⌊[

1
c2η lnε−1

{
1 +W

(
1
e

(
cc2η

c1
− 1
))}]−1

⌋

.

(3.13)

(ii) Optimal inspection time:

tk = k

c2

{
1 +W

(
1
e

(
cc2η

c1
− 1
))}

, k = 1, . . . ,nI . (3.14)

The condition that the number of inspections is m and the condition that inspection
is effective cannot be easily derived in a closed form.

3.1.3. Failure distribution: uniform distribution. When L(t)= c1tp + c2 and time-to-failure
distribution is provided with a uniform distribution in the range of [0,T], the following
results are obtained.

(i) Number of inspections:

nI =
⌊∫ T

0
n∗1 (t)dt

⌋

=
⌊{

c1

c
T p
(

p

p+ 1

)p+2}1/(p+1)
⌋

.

(3.15)

(ii) Optimal inspection time:

tk = T −
[

Tp/(p+1)− k
{
c

c1

(
p+ 1
p

)p+2}1/(p+1)
](p+1)/p

, k = 1, . . . ,nI . (3.16)

(iii) Condition that the number of inspections is m:

r3(m)≤ T < r3(m+ 1), (3.17)
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where

r3(m)=
{
c

c1

(
p+ 1
p

)p+2

mp+1

}1/p

. (3.18)

(iv) Condition that inspection is effective:

T ≥ r3(1). (3.19)

When L(t)= c1t2 + c2t + c3, every result is difficult to write in a closed form; however,
when L(t)= c1(exp[c2t]− 1) + c3, the following are derived.

(i) Number of inspections:

nI =
⌊∫ T

0
n∗3 (t)dt

⌋

=
⌊
c1

c

{
exp

[
1 +W

(
cc2T − c1

ec1

)]
− 1
}⌋

.

(3.20)

(ii) Optimal inspection time:

tk = c1

cc2

(
w− ck

c1

){
1− ln

(
w− ck

c1

)}
+
(
T − c1

cc2

)
, k = 1, . . . ,nI , (3.21)

where

w = exp
[

1 +W
(
cc2T − c1

ec1

)]
. (3.22)

(iii) Condition that the number of inspections is m:

r4(m)≤ T < r4(m+ 1), (3.23)

where

r4(m)= 1
cc2

{
(
mc+ c1

)
ln
(
mc

c1
+ 1
)
−mc

}
. (3.24)

(iv) Condition that inspection is effective:

T ≥ r4(1). (3.25)

3.2. When time-to-failure distribution is unknown. Obtained equations in a closed
form are summarized in Table 3.2. When L(t) = c1tp + c2 and a = λ(0), the following
results are derived.

(i) Number of inspections:

nI =
⌊∫ 1/a(p+1)

0
n∗∗1 (t)dt

⌋

=
⌊(

c1

c(p+ 1)
· 1

(ap)p

)1/(p+1)
⌋

.

(3.26)
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Table 3.2. Summary of results obtained when time-to-failure distribution is unknown. L1: L(t) =
c1tp + c2, L2: L(t)= c1t2 + c2t + c3, L3: L(t)= c1(exp[c2t]− 1) + c3; C1: number of inspections, C2: op-
timal inspection time, C3: condition that the number of inspections is m (m= 1,2, . . .), C4: condition
that inspection is effective;©: explicit form solution, ×: no explicit form solution.

Loss rate L1 L2 L3

Classification C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

© © © © × × × × × × × ×

(ii) Condition that inspection is effective:

a≤ 1
p

(
c1

c(p+ 1)

)1/p

. (3.27)

(iii) Condition that the number of inspections is m:

r5(m+ 1) < a≤ r5(m), (3.28)

where

r5(m)= 1
p

(
c1

c(p+ 1)

)1/p

m−(p+1)/p. (3.29)

(iv) Optimal inspection time:

tk = 1
a(p+ 1)

[

1−
{

1− k
{
c(p+ 1)

c1
(ap)p

}1/(p+1)
}(p+1)/p]

, k = 1, . . . ,nI . (3.30)

In some actual situations, the maximum life span of an inspected system may be given
instead of the initial failure rate. Thus, the condition of inf{t | F(t)= 1} = tM is consid-
ered, from which the following equations are derived:

n∗∗1 (t)=
(

c1p

c(p+ 1)2
· 1
tM − t

)1/(p+1)

for 0≤ t < tM. (3.31)

(i) Number of inspections:

nI =
⌊∫ tM

0
n∗∗1 (t)dt

⌋

=
⌊{

c1

c

(
tM
p

)p

(p+ 1)p−1
}1/(p+1)

⌋

.

(3.32)

(ii) Condition that the number of inspections is m:

r6(m+ 1) < tM ≤ r6(m), (3.33)
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Table 4.1. Optimal inspection schedules when time-to-failure distribution is given. c.v.: coefficient
of variation.

Loss rate c.v. Optimal inspection time

1/3 {11,15,18}
L1(t) 2/3 {7,13,17}

1 {5,11,16}
1/3 {7,10,13,15,17,19}

L2(t) 2/3 {4,7,10,13,15,18,20}
1 {3,6,8,11,14,17,20}
1/3 {7,10,12,14,16,18,20}

L3(t) 2/3 {4,7,9,12,14,17,19}
1 {3,5,8,10,13,16,18}
1/3 {3,6,8,10,11,13,14,15,17,18,19,20}

L4(t) 2/3 {2,4,6,7,9,11,12,14,15,17,18,20}
1 {2,3,5,7,8,10,11,13,15,16,18,20}

where

r6(m)= p
(
c

c1
· mp+1

(p+ 1)p−1

)1/p

. (3.34)

(iii) Optimal inspection time:

tk = tM

[

1−
{

1− k
{
c

c1

(
p

tM

)p

· 1
(p+ 1)p−1

}1/(p+1)
}(p+1)/p]

, k = 1, . . . ,nI . (3.35)

(iv) Condition that inspection is effective:

tM ≥ r6(1). (3.36)

When L(t) = c1t2 + c2t + c3 and L(t) = c1(exp[c2t]− 1) + c3, it is difficult to derive re-
sults in a closed form.

4. Numerical examples of a virtual system

Optimal inspection schedules to a virtual maintained system are discussed. Table 4.1
shows the optimal inspection schedules when density function f (t) is the Weibull dis-
tribution (mean 15 [year], coefficient of variation: c.v.= 1/3 and 2/3) and a negative ex-
ponential distribution (mean 15 [year], c.v.≡ 1) on the condition of c = 1, L1(t)= t+ c2,
L2(t)= t2 + c2, L3(t)= t2 + t + c3, and L4(t)= (exp[2t]− 1)/2 + c3. The optimal solutions
are calculated in the range of min(20,{t | F(t) ≤ 1− 10−6}), and rounded to the near-
est integer. We can see that the inspection interval shortens with time when c.v. = 1/3,
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Table 4.2. Optimal inspection schedules when time-to-failure distribution is unknown. I(x) satisfies
inf{t | F(t)= 1} = x.

Loss rate Condition Optimal inspection time

λ(0)= 10−2 {13}
λ(0)= 10−3 {∅}
λ(0)= 10−4 {∅}

L1(t) I(5) {3,5}
I(10) {5,9,10}
I(15) {7,11,15}
I(20) {8,14,18,20}
λ(0)= 10−2 {5,10,15,19}
λ(0)= 10−3 {11}
λ(0)= 10−4 {∅}

L2(t) I(5) {3,5}
I(10) {3,6,8,10}
I(15) {4,7,10,13,15}
I(20) {4,8,12,15,17,20}
λ(0)= 10−2 {5,10,14,18}
λ(0)= 10−3 {11}
λ(0)= 10−4 {∅}

L3(t) I(5) {2,4,5}
I(10) {3,6,8,9,10}
I(15) {4,7,10,12,14,15}
I(20) {4,8,11,14,16,18,20}
λ(0)= 10−2 {2,5,7,9,11,13,15,16,18,19}
λ(0)= 10−3 {3,7,10,13,16,20}
λ(0)= 10−4 {4,9,13,17}

L4(t) I(5) {2,3,4,5}
I(10) {2,4,6,7,9,10}
I(15) {2,4,6,8,10,12,13,14,15}
I(20) {2,5,7,9,11,13,15,16,18,19,20}

whereas the interval is a constant value when c.v. = 1 and optimal inspection times are
not rounded. The first inspection time becomes earlier in proportion to Li(t) (i= 1,2,3,
and 4).

The optimal inspection schedules when the time-to-failure distribution is unknown
are shown in Table 4.2 in the range of min(20,{t | F(t) ≤ 1− 10−6}), where (2.28) and
(2.30) are numerically solved using LSODE [4]. When the initial failure rate is given, the
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following can be seen in proportion to Li(t) (i = 1,2,3, and 4): (1) the number of in-
spections increases, (2) the first inspection time shortens, and (3) the inspection interval
shortens. If the maximum life span of an inspected system is given instead of the initial
failure rate, a long duration life and a severe loss rate function cause the need for fre-
quent inspection. If the loss rate function has a mild property as in L1(t), inspection is
conducted in the neighborhood of the maximum life span. On the other hand, if the loss
rate function has a severe property, the first inspection is carried out at an earlier time.

5. Conclusions

Optimal inspection schedules for equipment of a single-unit system were discussed in this
paper. The approximate expected cost per cycle is the objective where the loss rate func-
tion is treated in a general form. The variational method was used to optimize inspection
schedules. Optimization problems were classified from the point of whether failure distri-
bution of a system is given or not. When the time-to-failure distribution is given, optimal
inspection densities and inspection schedules were derived in a closed form for some loss
rate functions. When the failure distribution is unknown, an ordinary differential equa-
tion that the optimal inspection density function satisfies and inspection schedules were
derived. Then, numerical examples were shown and characteristics of optimal solutions
were discussed.

The objective of the optimization problem in this paper is the expected cost per cycle,
in which the functional is nonfractional. If a criterion is the expected incurred cost per
unit time over an infinite time horizon, in which the functional is fractional, the optimal
inspection schedules may differ. Our future work is to examine the effect of the objectives
on optimal schedules.
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