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This paper deals with the identification of stochastic loads applied to a nonlinear dynamical system
for which a few experimental responses are available using an uncertain computational model. Un-
certainties are induced by the use of a simplified computational model to predict the responses of
the real system. A nonparametric probabilistic approach of both parameter uncertainties and model
uncertainties is implemented in the simplified computational model in order to take into account
uncertainties. The level of uncertainties is identified using the maximum likelihood method. The
identified stochastic simplified computational model which is obtained is then used to perform the
identification of the stochastic loads applied to the real nonlinear dynamical system. A numerical
validation of the complete methodology is presented.
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1. Introduction

This paper is devoted to the identification of a stochastic load applied to a nonlinear dynamical
system for which a few measurements of its responses are available and for which an uncer-
tain simplified computational model is used. In the dynamical system, the uncertainties are
taken into account in the context of the probability theory. Consequently, the uncertain simpli-
fied computational model is in fact a stochastic simplified computational model for which the
input is a stochastic process (stochastic load) and for which the linear operators of the compu-
tational model are random. This identification is then performed using the stochastic simplified
computational model which allows the responses of the real system to be predicted and, then,
the stochastic loads to be identified in minimizing a certain distance between the experimental
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responses and the random responses calculated with the stochastic simplified computational
model. In fact, the methodology presented is developed in the context of the nonlinear dy-
namical analysis of tube bundles in pressurized water reactor. The stochastic loads applied
to the tubes which have to be identified are then induced by the turbulent flow. Since such a
nonlinear dynamical system is very complex, the computational model developed cannot ex-
actly represent the complexity of the system. Consequently, the identification is not performed
using a computational model which has the capability to accurately predict the experimental
responses but is performed using a simplified computational model containing model errors.
In order to perform a robust identification of the stochastic loads with respect to model uncer-
tainties in the nonlinear dynamical computational model, a probabilistic model of uncertainties
allowing both parameter uncertainties and model uncertaintes to be taken into account is in-
troduced. The responses of the computational model are then random and the randomness is
due to the stochastic loads and is due to the stochasticity of the system. In a first step, the prob-
ability model of uncertainties in the computational model is identified using the maximum
likelihood method. We then deduce a stochastic computational model which allows a robust
identification of stochastic loads to be carried out with respect to uncertainties in the nonlinear
computational model. The second step is devoted to the stochastic inverse problem consisting
in identifying the stochastic loads. From a theoretical and methodological point of view, we
then present a complete probabilistic construction and the associated methodology to solve
an inverse problem consisting of the identification of a Gaussian stationary stochastic process
which is the input of a continuous nonlinear dynamical system with random operators and
for which the stochastic output is measured. It should be noted that, if the parametric proba-
bilistic approach is usual to take into account system parameter uncertainties, in the present
paper, both the system parameter uncertainties and the model uncertainties are taken into ac-
count using a nonparametric probabilistic approach consisting in directly modeling the linear
operators of the dynamical system by random operators using the random matrix theory.

Section 2 deals with the construction of the mean computational model. In Section 3, the
probabilistic model of the stochastic loads is introduced. Section 4 is devoted to the identifica-
tion of the stochastic load. The last section presents a numerical validation of the methodology
proposed.

2. Mean computational model

Let Ω be the domain of the dynamical system having a nonlinear behavior due to the presence
of elastic stops located to several points of the part of the boundary of Ω. The domain Ω is
decomposed in two bounded open subdomains of R

3: the subdomain ΩA and the subdomain
ΩB. The subdomain ΩA is constituted of a three-dimensional linear viscoelastic medium with
instantaneous memory and there are elastic stops located at κ points x1, . . . , xκ in the bound-
ary ΓA of ∂ΩA. In addition, the subsystem occupying the subdomain ΩA is fixed on the part
ΓA0 of its boundary ∂ΩA. The outward unit normal of ∂ΩA is denoted by nA. The subdomain
ΩB is constituted of a three-dimensional linear viscoelastic medium with instantaneous mem-
ory, fixed on the part ΓB0 of its boundary ∂ΩB. The outward unit normal of ∂ΩB is denoted by
nB. Consequently, each uncoupled subsystem ΩA and ΩB does not have rigid body displace-
ment. These two subsystems are coupled on the common coupling interface ΓC. One then has
∂ΩA = ΓA0 ∪ΓA∪ΓC and ∂ΩB = ΓB0 ∪ΓB∪ΓC. We are interested in constructing the stationary ran-
dom responses of the nonlinear stochastic dynamical system excited by stationary stochastic
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processes. Consequently, we will not introduce the initial conditions and we will assume that
the time parameter t belongs to R.

2.1. Mean boundary value problems

2.1.1. Mean boundary value problems for the linear subsystem ΩB

Let x = (x1, x2, x3) be the cartesian coordinates and uB(x, t) be the displacement field for the
linear subsystem ΩB at time t. The external prescribed volumetric and surface forces fields ap-
plied to ΩB and to its boundary ΓB are denoted by fBvol(x, t) and fBsurf(x, t). The stress tensor σB(x)
is written as σBij (x) = a

B
ijkh

(x)εB
kh
(uB) + bB

ijkh
(x)εB

kh
(u̇B) where εB

kh
(uB) = (∂uB

k
/∂xh + ∂uBk/∂xh)/2

is the linearized strain tensor. The fourth-order tensors aB(x) and bB(x) verify the usual proper-
ties of symmetry and positiveness [1]. Then, the displacement field uB(t) verifies, for all t ∈ R

and for i = 1, 2, 3, the mean boundary value problem

ρBüBi −
∂σBij

∂xj
= fBvol,i in ΩB,

σBijn
B
j = fBsurf,i on ΓB,

σBijn
B
j = fBcoupl,i on ΓC,

uBi = 0 on ΓB0 ,

(2.1)

in which a dot means the partial time derivative and a double dot means the double partial
time derivative, where fBcoupl = (fBcoupl,1, . . . , f

B
coupl,3) is the forces induced by the subsystem ΩA

on ΩB via the coupling interface ΓC. One has used the classical convention for summations
over repeated latin indices. The parameter ρB(x) is the mass density for the subsystem ΩB.

2.1.2. Mean boundary value problems for the nonlinear subsystem ΩA

Let uA(x, t) be the displacement field for the nonlinear subsystem ΩA at time t. The exter-
nal prescribed volumetric and surface forces fields applied to ΩA and to its boundary ΓA

are denoted by fAvol(x, t) and fAsurf(x, t). Since ΩA is occupied by a linear viscoelastic material
with instantaneous memory, the stress tensor σA(x) is written as σAij (x) = aA

ijkh
(x)εA

kh
(uA) +

bA
ijkh

(x)εA
kh
(u̇A) where εA

kh
(uA) = (∂uA

k
/∂xh + ∂uA

k
/∂xh)/2 is the linearized strain tensor. The

fourth-order tensors aA(x) and bA(x) verify, as above, the usual properties of symmetry and
positiveness. Then, the displacement field uA(t) verifies, for all t ∈ R and for i = 1, 2, 3, the
mean boundary value problem

ρAüAi −
∂σAij

∂xj
= fAvol,i in ΩA,

σAij n
A
j = fAsurf,i −

κ∑

k=1

fNL,k
i

(
u
(
xk, t
))
δ0
(
x − xk

)
on ΓA,

σAij n
A
j = fAcoupl,i on ΓC,

uAi = 0 on ΓA0 ,

(2.2)
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in which fAcoupl = (fAcoupl,1, . . . , f
A
coupl,3) is the forces induced by the subsystem ΩB on ΩA via the

coupling interface ΓC. The forces—fNL,k(u(xk, t)) represent the actions exerted by the elastic
stop located at point xk on the subsystem ΩA and δ0(x − xk) is the surface Dirac measure such
that, for all continuous function g defined on ΓA, one has

∫
ΓAδ0(x − xk)g(x)ds(x) = g(xk). The

parameter ρA(x) is the mass density for the subsystem ΩA.

2.1.3. Interface conditions for the coupling of ΩA with ΩB

The coupling conditions on ΓC are written as

uA = uB on ΓC,

fAcoupl + fBcoupl = 0 on ΓC.
(2.3)

2.2. Mean finite element model

The mean finite element method [2] is applied to the variational formulation of the boundary
value problems defined in Section 2.1.

2.2.1. Mean finite element model for subsystem ΩB

The R
nB vector U

B(t) of the nB DOF of the subsystem ΩB is written as U
B(t) = (UB

p (t),U
B
c (t)),

where U
B
p (t) is the R

nBp vector of the nBp internal DOF and where U
B
c (t) is the R

nBc vector function
of the nBc coupling DOF on the interface. From (2.1), it can be deduced that the mean finite
element model of subsystem ΩB is written as

[
M

B]
Ü
B(t) +

[
D
B]

U̇
B(t) +

[
K
B]

U
B(t) = F

B(t) + F
B
coupl(t), (2.4)

in which [MB], [DB], and [KB] are, respectively, the positive-definite symmetric real positive
(nB×nB) mass, damping, and stiffness matrices. The R

nB vectors F
B(t) and F

B
coupl(t) of the exter-

nal forces and of the coupling forces are written as F
B(t) = (FBp (t), 0) and F

B
coupl(t) = (0,FBc (t)).

2.2.2. Mean finite element model for subsystem ΩA

Similarly to Section 2.2.1, the R
nA vector U

A(t) of the nA DOF of the subsystem ΩA is written as
U
A(t) = (UA

p (t),U
A
c (t)), where U

A
p (t) is the R

nAp vector of the nAp internal DOF and where U
A
c (t)

is the R
nAc -valued function of the nAc coupling DOF. From (2.2), it can be deduced that the mean

finite element model of subsystem ΩA is written as

[
M

A]
Ü
A(t) +

[
D
A]

U̇
A(t) +

[
K
A]

U
A(t) + F

NL(
U
A(t)
)
= F

A(t) + F
A
coupl(t), (2.5)

in which [MA], [DA], and [KA] are, respectively, the positive-definite symmetric real posi-
tive (nA × nA) mass, damping, and stiffness matrices. The R

nA vectors F
A(t), F

A
coupl(t), and

F
NL(UA(t)) of the external forces, of the coupling forces and of the nonlinear forces, are written

as F
A(t) = (FAp (t), 0), F

A
coupl(t) = (0,FAc (t)), and F

NL(UA(t)) = (FNL
p (UA(t)), 0).
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2.2.3. Interface conditions for the coupling of ΩA with ΩB

The finite element discretization of the interface conditions defined by (2.3) yields

U
A
c (t) = U

B
c (t) on ΓC,

F
A
coupl(t) + F

B
coupl(t) = 0 on ΓC.

(2.6)

2.3. Reduced mean matrix model

The continuous linear subsystem ΩB (linear dynamical subsystem) contains elastic modes in
the frequency band of analysis. In addition, the computational model of the continuous linear
subsystem ΩB is uncertain (presence of both the system parameter uncertainties and the model
uncertainties). As we have explained in Section 1, these uncertainties are taken into account us-
ing the nonparametric approach of uncertainties which requires a reduced matrix order model
(see [3–6]). Since we have to represent the effects of this substructure on the nonlinear sub-
structure ΩA through the coupling interface, it is natural to use the Craig Bampton method [7]
in order to reduce the finite element model of subsytem ΩB. Finally, to reduce the computa-
tional cost of the coupled system, subsystem ΩA is also reduced with the same technique.

2.3.1. Reduced mean matrix model for subsystem ΩB

The following change of coordinates is introduced:

[
U
B
p (t)

U
B
c (t)

]
=
[
HB
]
[
yB(t)
U
B
c (t)

]
,
[
HB
]
=

[
[ΦB] [SB]
[0] [I]

]
, (2.7)

in which [ΦB] is the (nBp ×NB) real matrix whose columns are the NB first elastic modes for the
subsystem ΩB with a fixed coupling interface. Those modes (φ1, . . . , φNB) are associated with
the NB first eigenvalues 0 < ω2

1 ≤ · · · ≤ ω
2
NB such that

[
K
B
pp

]
φB = ω2[

M
B
pp

]
φB, (2.8)

where [KB
pp] and [MB

pp] are the internal DOF blocks of the matrices [KB] and [MB], where

[SB] = [KB
pp]
−1[KB

pc] is an (nBp × nBc ) matrix, where [I] is the (nBc × nBc ) unity matrix and where

yB(t) is an R
NB

-vector. Let nBq =NB+nBc . Then, the R
nBq vector qB(t) = (yB(t),UB

c (t)) is a solution
of the reduced mean computational model

[
MB]q̈B(t) +

[
DB]q̇B(t) +

[
KB]qB(t) =

[
HB]T

F
B(t) +

[
HB]T

F
B
coupl(t), (2.9)

in which the matrices [MB] = [HB]T[MB][HB], [DB] = [HB]T[DB][HB], and [KB] =
[HB]T[KB][HB] are positive-definite symmetric real (nBq × nBq ) matrices.
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2.3.2. Reduced mean matrix model for subsystem ΩA

Using the same reduction method and introducing the elastic modes of the linear subsystem
ΩA with fixed interface and without elastic stops, the R

nAq -vector qA(t) = (yA(t),UA
c (t)) verifies

the following matrix equation:

[
MA]q̈A(t) +

[
DA]q̇A(t) +

[
KA]qA(t) +

[
HA]T

F
NL([HA]qA(t)

)

=
[
HA]T

F
A(t) +

[
HA]T

F
A
coupl(t),

(2.10)

in which the matrices [MA] = [HA]T[MA][HA], [DA] = [HA]T[DA][HA], and [KA] =
[HA]T[KA][HA] are positive-definite symmetric real (nAq × nAq ) matrices.

2.3.3. Transient dynamical response of the reduced nonlinear computational model

Let nU = nAp + nBp + nc be the total number of DOF for the nonlinear computational model. The
R
nU-vector U(t) = (UA

p (t),U
B
p (t),Uc(t)) of the mean nonlinear computational model is written

as

[
U(t)

]
= [H]

[
q(t)
]
, (2.11)

in which the matrix [H] is constructed by the assemblage of [HA] and [HB]. Let nq =
NA + NB + nc. Then, using the coupling conditions defined by (2.6), the R

nq-vector q(t) =
(yA(t),yB(t),Uc(t)) is a solution of the reduced nonlinear dynamical system

[M]q̈(t) + [D]q̇(t) + [K]q(t) + FNL(q(t)
)
= F(t), (2.12)

with

[M] =

⎡
⎢⎢⎣

MA
yy 0 MA

yc

0 MB
yy MB

yc

MA
cy MB

cy MA
cc +M

B
cc

⎤
⎥⎥⎦ , [D] =

⎡
⎢⎢⎣

DA
yy 0 DA

yc

0 DB
yy DB

yc

DA
cy DB

cy DA
cc +D

B
cc

⎤
⎥⎥⎦ , (2.13)

[K] =

⎡
⎢⎢⎣

KA
yy 0 KA

yc

0 KB
yy KB

yc

KA
cy KB

cy KA
cc +K

B
cc

⎤
⎥⎥⎦ , (2.14)

FNL(q(t)
)
=

⎡
⎢⎢⎢⎣

[
ΦA
]T

F
NL
p

([
HA
]
qA(t)

)

0
[
SA
]T

F
NL
p

([
HA
]
qA(t)

)

⎤
⎥⎥⎥⎦
, (2.15)

F(t) =

⎡
⎢⎢⎢⎣

[
ΦA
]T

F
A
p (t)

[
ΦB
]T

F
B
p (t)

[
SA
]T

F
A
p (t) +

[
SB
]T

F
B
p (t)

⎤
⎥⎥⎥⎦
. (2.16)
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3. Stochastic nonlinear computational model including system
uncertainties and identification

In this part, firstly the nonparametric probabilistic approach will be used to take into account
both data uncertainties and model uncertainties in the reduced mean computational model of
the linear subsystem ΩB of the computational model. This approach which has recently been
introduced consists in replacing the mass, damping, and stiffness matrices of reduced mean
computational model by random matrices for which the probability distributions are explic-
itly given by the theory and for which a generator of independent realizations is known. Such
an approach has been validated for many cases. For the details concerning the nonparamet-
ric probabilistic approach, one refers the reader, for instance, to [3–6]. In such an approach,
the levels of uncertainties for the mass, damping, and stiffness random matrices are defined
by the dispersion parameters which are defined below. Secondly, these dispersion parameters
will be identified using the maximum likelihood method. Finally, the stochastic nonlinear com-
putational model will be introduced and deduced from Section 2.2.3. It should be noted that
(2.1) only the linear subsystem ΩB is assumed to be uncertain and (2.2) the mean nonlinear
subsystem ΩA is representative and consequently, that both data uncertainties and model un-
certainties can be neglected. If such an assumption was not verified, then the nonparametric
probabilistic approach of uncertainties could always be implemented without any difficulties
in this nonlinear subsystem (see for instance [8, 9]).

3.1. Stochastic linear subsystem ΩB modeling uncertainties

Therefore, the matrices [MB], [DB], and [KB] of the reduced mean computational model are
replaced by the random matrices [MB], [DB], and [KB] defined on a probability space (Θ,T,P)
and such that

∀θ ∈ Θ,
[
MB(θ)

]
,
[
DB(θ)

]
,
[
KB(θ)

]
∈M

+
nBq
(R),

E
{[
MB
]}

=
[
MB], E

{[
DB
]}

=
[
DB], E

{[
KB
]}

=
[
KB],

E
{∥∥[MB

]−1∥∥2
F

}
< +∞, E

{∥∥[DB
]−1∥∥2

F

}
< +∞, E

{∥∥[KB
]−1∥∥2

F

}
< +∞,

(3.1)

in which M
+
n(R) is the set of all the positive-definite symmetric (n × n) matrices, where E{·}

is the mathematical expectation and where ‖·‖F is the Frobenius norm such that ‖A‖2
F =

tr{[A]∗[A]} with [A]∗ = [A]T , [A] is the conjugate of [A] and tr is the trace for matrices.
Let [PB] be the random matrix denoting [MB], [DB], or [KB]. The probability distribution of
the random matrix [PB] depends on the dispersion parameter δBP related to the coefficient of
variation δ̃BP of the random matrix [PB] by the equation

(
δ̃BP
)2

=
E{
∥∥[PB

]
−
[
PB
]∥∥2

F}∥∥[PB
]∥∥2

F

=

(
δBP
)2

n + 1

(
1 +

(
tr
[
PB
])2

tr
([
PB
]2)

)
. (3.2)

The dispersion parameter δBP allows the level of uncertainites of the random matrix [PB] to be
controlled. It can be found in [3, 5] an algebraic representation of random matrix [PB] which
allows independent realizations to be explicitly constructed in order to solve the random equa-
tions by the Monte Carlo method. For each random matrix, this random generator depends
only on the mean value, on the dimension of the matrix, and on the dispersion parameter.
Such an approach is used in this paper.
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3.2. Identification of the dispersion parameters

As explained in Section 3.1, the probability distributions of the random matrices (and then of
the random generators) depend on the vector δ = (δBM, δ

B
D, δ

B
K) of the dispersion parameters

which is identified using the measurements. The observation of the stochastic computational
model is defined introducing the nBq × nBq random complex dynamic stiffness matrix [AB(ω)]
of the linear subsystem ΩB written as

[
AB(ω)

]
= −ω2[MB] + iω

[
DB] +

[
KB]. (3.3)

Then the random condensed dynamical stiffness matrix [ZB(ω)] of the linear subsystem ΩB on
the coupling interface is such that [ZB(ω)] = [AB

cc(ω)] − [AB
cy(ω)][A

B
yy(ω)]

−1[AB
yc(ω)]. Taking

into account the properties of the probabilistic model, it can be shown that, for all ω fixed in B,
the random matrix [ZB(ω)] is invertible almost surely and the random variable J(δ) defined
by

J(δ) =
∫

B

∥∥[ZB(ω)
]−1∥∥2

Fdω (3.4)

exists and has a finite mean value. This random variable gives a measure over B of the dynam-
ical effects of subsystem ΩB on the subsystem ΩA at the coupling interface. It should be noted
that the random variable J(δ) depends on δ because the probability distributions of the ran-
dom matrices [MB], [DB], and [KB] depend on δ. Let x 	→ pJ(x,δ) be the probabilty density
function of the random variable J(δ) with respect to dx. For any x fixed in [0,+∞[ and for
any value of the vector δ belonging to the admissible set Cad of the dispersion parameters, the
value pJ(x,δ) of the probability density function is estimated by using the above probabilistic
model and the Monte Carlo simulation. The corresponding deterministic experimental value
Jexp of J(δ) is calculated using experimental data. The method used to identify vector δ is the
maximum likelihood method (see for instance [10]) for the random variable J(δ) for which
Jexp is one realization. We then have to solve the following optimization problem:

δopt = arg max
δ∈Cad

(
pJ
(
Jexp;δ

))
, (3.5)

in which δopt is the identified value of δ.

3.3. Random transient dynamical response of
the stochastic nonlinear computational model

Using the probabilistic model defined in Section 3.1, the deterministic (2.11) to (2.15) give the
following stochastic nonlinear computational model:

[
U(t)

]
= [H]

[
Q(t)

]
, (3.6)

in which, for all fixed t, the vector-valued random variable Q(t) verifies

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + FNL(Q(t)
)
= F(t), (3.7)
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and where the random matrices [M], [D], and [K] are written as

[M] =

⎡
⎢⎢⎣

MA
yy 0 MA

yc

0 MB
yy MB

yc

MA
cy MB

cy MA
cc +MB

cc

⎤
⎥⎥⎦ , [D] =

⎡
⎢⎢⎣

DA
yy 0 DA

yc

0 DB
yy DB

yc

DA
cy DB

cy DA
cc +DB

cc

⎤
⎥⎥⎦ ,

[K] =

⎡
⎢⎢⎣

KA
yy 0 KA

yc

0 KB
yy KB

yc

KA
cy KB

cy KA
cc +KB

cc

⎤
⎥⎥⎦ .

(3.8)

4. Identification of stochastic loads

The transient load F(t) defined by F(t) = (FAp (t),F
B
p (t), 0) corresponding to the displacement

vector U(t) = (UA
p (t),U

B
p (t),U

B
c (t)) is modeled by a stochastic process {F(t), t ∈ R}. Since all

the degrees of freedom of the computational model are not excited by this stochastic load, we
then introduce the usual projection operator Proj in order to extract the vector F̃(t) = Proj(F(t))
of the nonzero random components of the random vector F(t). This equation can easily be
inversed and yields F(t) = Lift(F̃(t)).

4.1. Construction of the stochastic load F̃(t)

The stochastic load is modeled by an R
m-valued Gaussian stationary centred second-order

stochastic process {F̃(t), t ∈ R} defined on a probability space (Θ′,T′,P′) different from the
probability space (Θ,T,P). In addition, it is assumed that the stochastic process is mean
square continuous on R, physically realizable (causal) and for which its matrix-valued au-
tocorrelation function τ 	→ [RF̃(τ)] = E{F̃(t + τ)F̃(t)T} is integrable on R. This stochastic
process is then completely defined by its matrix-valued spectral density function [SF̃(ω)] =
(2π)−1∫

R
e−iωτ[RF̃(τ)]dτ which is a continuous and integrable function on R and which is in

values in the set of all the positive (m × m) hermitian matrices. In addition, we will assume
that for all ω in R, the matrix [SF̃(ω)] is with values in the set M

+
m(C) of all the positive definite

(m×m) hermitian matrices. Since the stochastic process is assumed to be physically realizable,
the matrix valued spectral density function must satisfy the following usual inequality [11, 12]:

∫

R

log
(

det
[
SF̃(ω)

])

1 +ω2
> −∞. (4.1)

The numerical simulation of independent realizations {F̃(t, θ′), t ∈ R} for θ′ ∈ Θ′ (trajectories)
can easily be generated by using adapted algorithms (see, e.g., [13, 14]).

4.2. Stochastic equation for simulation of responses

We have to identify the stochastic process F̃ in presence of uncertainties in the linear subsys-
tem ΩB. This identification consists in identifying the matrix-valued spectral density function
[SF̃(ω)] which completely describes the stochastic process. This stochastic inverse problem is
formulated as a stochastic optimization problem. Such an identification is performed using the
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stochastic equation deduced from (3.6) to (3.8) with (2.15) in which the deterministic load F(t)
is replaced by the stochastic load F(t). We then have to construct the R

nU-valued stationary
solution Us(t) = (UA

s (t),U
B
s (t),U

c
s(t)) (corresponding to U(t)) which is written as

[
Us(t)

]
= [H]

[
Qs(t)

]
, (4.2)

in which subindex s is relative to the stationary solution and where the stationary stochastic
process {Qs(t), t ∈ R} satisfies the stochastic equation

[M]Q̈s(t) + [D]Q̇s(t) + [K]Qs(t) + FNL(Qs(t)
)
= [H]TF(t), (4.3)

in which Q̇s(t) and Q̈s(t) are the mean-square first and second derivative of Qs(t). For the
identification of [SF̃], for all t fixed, we introduce the R

μ-valued random variable Zs(t) =
(Zs,1(t), . . . , Zs,μ(t)) which represents the observations of the stochastic computational model
made up of components of the vector-valued random response Us(t). Thus there exists a projec-
tion Proj′ from R

nU into R
μ such that Zs(t) = Proj′(Us(t)). For all θ in Θ, the stationary stochastic

process {Zs(t, θ), t ∈ R} is such that Zs(t, θ) = Proj′([H]Qs(t, θ)), where the stationary stochas-
tic process {Qs(t, θ), t ∈ R} is such that

[M(θ)]Q̈s(t, θ) + [D(θ)]Q̇s(t, θ) + [K(θ)]Qs(t, θ) + FNL(Qs(t, θ)) = [H]T Lift (F̃(t; [SF̃])),
(4.4)

where {F̃(t; [SF̃]), t ∈ R} is a stochastic process defined in Section 4.1. Section 4.3 is devoted
to the identification of [SF̃]. In order to perform this identification, we need to introduce an
observation relative to the stochastic equation and which is useful to construct the cost func-
tion. For all θ ∈ Θ, the matrix-valued spectral density function {[SZs(ω, θ)], ω ∈ R} can be
estimated. Generating νθ independent realizations of the random matrices [M], [D], and [K],
the matrix-valued spectral density function [SZs] is estimated by the Monte Carlo simulation
method. For all ω ∈ R, one has

[
SZs(ω)

]
=

1
νθ

νθ∑

i=1

[
SZs
(
ω, θi

)]
. (4.5)

4.3. Identification of the stochastic loads

The identification [SF̃] is performed in introducing a parametric representation of this function
which is rewritten as

[
SF̃(ω)

]
=
[
S(ω, r)

]
, ω ∈ R, r ∈ Cr , (4.6)

in which Cr ⊂ R
νr is the admissible set of the parameter r with values in R

νr where νr is
the number of unknown scalar parameters which have to be identified and where (ω, r) 	→
[S(ω, r)] is a given function from R × R

νr into M
+
m(C). Therefore, the identification of the

stochastic load {F̃(t), t ∈ R)} consists in identifying the R
νr -valued vector r. Let {Zexp

s (t) =
(Zexp

s,1 (t), . . . , Zexp
s,μ (t)), t ∈ R} be the R

μ-valued stationary stochastic process which is measured
for the manufactured real system and corresponding to the observation stochastic process
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{Zs(t), t ∈ R}. The matrix-valued spectral density function {[SZexp
s
(ω)], ω ∈ R} of this stochas-

tic process is estimated using the periodogram method. Then, the parameter r is estimated in
minimizing the distance D(r) =

∫
B‖[SZs(ω, r)] − [SZexp

s
(ω)]‖2

Fdω between the matrix-valued
spectral density function calculated with the stochastic computational model and the experi-
mental matrix-valued spectral density function. We then have to solve the following optimiza-
tion problem

ropt = arg min
r∈Cr

D(r), (4.7)

in which ropt is the identified value of the vector r.

5. Application

In this section, a numerical simulation of a simple example is presented in order to validate the
methodology developed in this paper.

5.1. Data for the experimental model

The measurements are generated by an experimental model which is made up of one linear
subsystem and one nonlinear subsystem. The linear subsystem is made up of four parallel
beams fixed at their ends. The nonlinear subsystem is made up of a beam also fixed at its
ends, parallel to the other beams and with one transversal symmetric elastic stop (two identi-
cal stops, see Figure 1). The five beams are linked by three transversal grids, each grid being
modeled by four transversal springs (see Figure 1). Therefore, the coupling interface between
the two subsystems is composed of three points located in the neutral fiber of the beam of
the nonlinear subsystem. Each beam is modeled by eight Euler beam finite elements of equal
lengths for which the DOF of the two nodes at the ends of the beam are locked. The twelve
springs defining the three transversal grids are modeled by twelve spring elements. The two
elastic stops are modeled by two springs. We are only interested in the y-direction displace-
ments of the beam of the nonlinear subsystem (see Figure 1). Consequently, each beam has
14 DOF (y-translation and z-rotation). The total number of the free DOF for the linear sub-
system is then 59 and the total number of the free DOF for the nonlinear subsystem is then
14. The beam of the nonlinear subsystem is exited by seven transversal forces applied follow-
ing the y-direction. The vectors of these seven nonzero components are denoted by fexp. The
stochastic process {fexp(t), t ∈ R} is a second-order centred stationary Gaussian stochastic pro-
cess for which its matrix-valued spectral density function [Sfexp(ω)] is such that (2.1) for all i in
{1, . . . , 7}, [Sfexp(ω)]ii is a constant on the frequency band of analysis B = 2π×[−100, 100] rad/s,
and (2.2) for all i and j in {1, . . . , 7}, |[Sfexp(ω)]ij |2 = γij(ω)[Sfexp(ω)]ii[Sfexp(ω)]jj where γij(ω) =
exp(−|xi −xj |/λ) in which |xi −xj | is the distance between the two excited points and the value
of λ is equal to the quarter of the beam length. In the frequency band of analysis B, there are 21
eigenfrequencies for the linearized coupled system made up of the linear subsystem coupled
with the linear beam of the nonlinear subsystem (nonlinear subsystem without the stops), for
which the first three eigenfrequencies are 5.78 Hz, 15.9 Hz, and 31.1 Hz.

5.2. Data for the mean computational model

This part is devoted to the construction of a simplified mean computational model for the non-
linear dynamical system described in Section 5.1. This simplified mean computational model



12 Mathematical Problems in Engineering

Pobs

y

z

x

(a)

Pobs

y

x

(b)

y

z

(c)

Figure 1: (a) Experimental model: 3D view. (b) Transversal view. (c) Tranversal view in the plane of one
grid: the 6 diagonal lines represent the 12 springs.

Pobs

y

x

Figure 2: Mean model.

will be used to identify the stochastic loads. It consists in modeling (2.1) the four beams and the
three transversal grids of the linear subsystem of the experimental model by a unique equiva-
lent linear Euler beam and by three equivalent springs (see Figure 2) and (2.2) the linear beam
with elastic stops of the nonlinear subsystem of the experimental model by a linear beam with
two springs for the elastic stops. The section of the equivalent beam for the linear subsystem
is arbitrarily chosen and its Young’s modulus and its mass density are identified so that the
three first eigenfrequencies of this mean computational model are the same that the three first
eigenfrequencies of the experimental model. Note that only the three first eigenfrequencies are
correctly fitted and consequently, there are model uncertainties in this simplified mean com-
putational model, which are taken into account as explained in Section 3. It should be noted
that the objective of this paper is not to construct an accurate mean computational model in
order to exactly represent the experimental model, but to test the validity of the use of a sim-
plified mean computational model in order to represent a much more complex system. After
identification, the first three eigenfrequencies of the simplified mean computational model are
5.74 Hz, 15.3 Hz, and 30.8 Hz which have to be compared to the first three eigenfrequencies
5.78 Hz, 15.9 Hz, and 31.1 Hz of the experimental model.

5.3. Comparison between the dynamical responses of the experimental model and of
the mean computational model for the same given stochastic load

In this section, it is assumed that the stochastic load is given and the same for the experimen-
tal model and for the simplified mean computational model. Then, for the two models, the
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Figure 3: For point Pobs, power spectral density function (PSD) for (a) the y-displacement and (b) the z-
rotation. Comparison between the experimental model (thin line) and the simplified mean computational
model (thick line).

stationary stochastic responses are calculated in the time interval [0, 220] s using an explicit Eu-
ler integration scheme. Let Pobs be the point of the non-linear subsystem located at the impact
point of the elastic stops. The power spectral density functions of the stochastic y-displacement
and of the stochastic z-rotation in point Pobs (see Figure 3) is estimated using the periodogram
method. It can be seen that the prevision given by the mean simplified computational model
is good enough in the frequency band [0, 50]Hz. Nevertheless, there are significant differences
in the frequency band [50, 100]Hz induced by model uncertainties. This is the reason why the
model uncertainties are taken into account in order to extend the domain of validity of the
simplified mean computational model in the frequency band [50, 100]Hz in order to perform
a robust identification of the stochastic loads.

5.4. System uncertainties modeling and dispersion parameter identification

The nonparametric probabilistic approach of model uncertainties introduced in Section 3.1 is
used for stiffness part of the linear subsystem of the simplified mean computational model. We
then have to identify the dispersion parameter δ = (δBK). Note that the identification procedure
which is proposed is independent of the stochastic loads. The estimation of the probability
density function in (3.5) is carried out with 200 realizations for the Monte Carlo simulation.
Figure 4 shows the likelihood function calculated using (3.5) with Cad = [0,

√
22/34]. The max-

imum is reached for δopt = 0.45.

5.5. Case of an unknown stochastic load and its identification

In this section, the responses of the experimental model are given (those constructed in
Section 5.3) and the stochastic load F̃(t) is assumed to be unknown and has to be identified
using the uncertain simplified computational model, that is to say the stochastic simplified
computational model for which the dispersion parameter has been identified in Section 5.4.
We begin defining a model as simple as possible for the stochastic load F̃(t) introduced in
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Figure 4: Graph of function δ 	→ pJ(Jexp;δ).
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Figure 5: Definition of the stochastic load.

Section 4.1. We have then chosen to model F̃(t) as {F̃(t) = (T(t),M(t)), t ∈ R} in which T(t) is a
y-force and M(t) is a z-moment applied to the middle of the beam of the nonlinear subsystem
(see Figure 5). This force and this moment are independent second-order centred stationary
Gaussian stochastic processes. So, they are both completely defined by their power spectral
density functions [ST(ω)] and [SM(ω)]. The matrix-valued spectral density function of the
stochastic process {F̃(t), t ∈ R} is then defined by

[
SF̃(ω)

]
=

[
ST(ω) 0

0 SM(ω)

]
, ω ∈ R . (5.1)

It is assumed that the function ω 	→ [SF̃(ω)] is constant in the frequency band of analysis B
and is such that (4.1) is verified. The experimental stochastic process {Zexp

s (t), t ∈ R} defined
in Section 4.3 is composed of μ = 7 stochastic y-displacements. Taking into account (4.6), the
function ω 	→ [SF̃(ω)], which is a constant diagonal hermitian matrix, can then be rewritten
for all ω in B as

[
SF̃(ω)

]
=
[
S(ω, r)

]
=

[
r1 0

0 r2

]
, ω ∈ B, r ∈ Cr , (5.2)

in which the admissible set Cr = {r = (r1, r2); r1 > 0, r2 > 0}. This vector r is identified using
the trial method to solve the optimization problem defined by (4.7). Such a method consists in
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Figure 6: Graph of the cost function (r1, r2) 	→ log10(D(r1, r2)).
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Figure 7: For point Pobs, power spectral density function (PSD) for (a) the stochastic y-displacement and
(b) the stochastic z-rotation: upper and lower envelopes and mean response (mid thin line); experimental
model (thick line).

calculating the cost function D(r) for 100 values of the vector r. Figure 6 shows the graph of the
function r 	→ log10(D(r)) which allows the optimal value ropt to be determined. The confidence
region associated with a probability level Pc = .95 of the reponse of the stochastic simplified
computational model on which the identified stochatic load is applied can then be estimated.
The comparison between the experimental responses with the responses constructed with the
stochastic simplified computational model is given in Figure 7. This figure displays the confi-
dence region of the power spectral density function of the stochastic y-displacement and the
stochastic z-rotation for point Pobs.
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6. Conclusions

We have presented a methodology and its validation to perform the identification of a stochas-
tic loads applied to a complex nonlinear dynamical system for which a few measurements of
its responses are available. To carry out this identification, a simplified computational model of
the real system is introduced. Since such a simplified computational model induces model un-
certainties, a probabilistic model of these uncertainties is introduced in the simplified compu-
tational model. The identification of the stochastic loads is then performed using this stochastic
computational model which takes into account model uncertainties and consequently, we have
validated a method to perform a robust identification with respect to model uncertainties. It
should be noted that the nonlinear dynamical system used for this validation is representative
of real industrial systems and then validates the methodology proposed.
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