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Robust Kalman filtering design for continuous-time Markovian jump nonlinear systems with
uncertain noise was investigated. Because of complexity of Markovian jump systems, the statistical
characteristics of system noise and observation noise are time-varying or unmeasurable instead
of being stationary. In view of robust estimation, maximum admissible upper bound of the
uncertainty to noise covariance matrix was given based on system state estimation performance.
As long as the noise uncertainty is limited within this bound via noise control, the Kalman filter
has robustness against noise uncertainty, and stability of dynamic systems can be ensured. It is
proved by game theory that this design is a robust mini-max filter. A numerical example shows
the validity of this design.
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1. Introduction

Optimal filtering problem has been a hot topic in past decades, within which Kalman
filtering is one of the most popular estimation approaches and considerable effort has been
devoted to its theory and applications. The applications of Kalman filtering theory may be
found in a large spectrum of different fields ranging from various engineering problems to
biology, geoscience, economics, and management [1]. For standard Kalman filtering, one
of the key assumptions is that system noise and observation noise are Gaussian, whose
covariances are known and stationary. However, in many actual problems, the statistical
characteristics (covariances) of noise may be time-varying instead of being stationary, and
in some cases it is impossible to get the exact measurement values, which means that the
noise covariances are uncertain instead of being exactly known; for this reason, the stochastic
noise is called “uncertain.” Consequently, the standard Kalman filter may not be robust
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against modeling uncertainty and disturbances. Thus, the study of a robust state estimation
approach is of practical importance and has been attracting more interest over the past few
years. A useful approach is to use a game-theoretic formulation with which one minimizes
the worst performance stimulated by uncertain factors, and some corresponding results of
robust filtering for linear systems with uncertain noise have been addressed in [2–4].

On the other hand, Markovian jump systems, which are convenient tools for
representing many real-world systems [5], have aroused much attention in recent years.
In the case of fault detection, fault-tolerant control, and multimodal control, discrete jumps
in the continuous dynamics are used to model component failures and sudden switch of
system dynamics. With further study of Markovian jump systems, many achievements have
been made in the last decade on stability analysis [6, 7], filtering [8, 9], and controller
design [10, 11]. Among the efforts towards filtering, Shi et al. [12] and Mahmoud et al. [13]
gave Kalman filtering equations for continuous-time and discrete-time Markovian jump
linear systems with structure uncertainty, respectively. However, in the above-referred
contributions, all the research work is facing the same problem as that of nonjump systems;
both the state equation and output measurement are subjected to stationary Gaussian noise so
that an optimal filtering gain is obtained based on the stationary noise covariance matrix. But
this is only an ideal assumption for Markovian jump systems. As we know, Markovian jump
systems are used to represent a class of systems which are usually accompanied by sudden
changes of working environment or system dynamics. For this reason, noise uncertainty
occurs more frequently or with more probability than in nonjump systems. Moreover, with
the uncertainty to noise covariance matrix increasing, the estimation of system state tends to
be inaccurate or false, which may cause errors in control signals and in worst case may lead
to breakdown of the whole dynamic systems.

To avoid this tragical situation, a direct way dealing with this problem is to redesign
Kalman filter for jump systems by using new noise covariance matrix. But as we have pointed
out above, it is almost impossible to get the real-time information of noise covariance matrix
since it is time-varying or unmeasurable; therefore we could not update Kalman filter gain
online. Another feasible way is to give an admissible bound for estimation performance
of system state so that the predesigned Kalman filter will remain effective and the system
operates in the course of nature as long as the real-time estimation error is within this
precision. To achieve this purpose, we perform the following design method. By using the
view of robust estimation, a maximum bound of noise covariance matrix uncertainty is
obtained through calculation according to admissible bias for estimation performance of
system state. If we could ensure the noise uncertainty to be within this bound via technical
method such as noise control, the estimation of system state can be within a desired precision,
and thus stability of the whole dynamic process can be achieved. It should be noted that in
this research work, we do not mean to eliminate the effect of noise entirely because it is almost
impossible or highly costly to do so in practical environment. Our work focuses on the upper
bound of noise change level; thus it means only that the change to noise covariance matrix is
required to be limited within this bound no matter what the stationary covariance matrix is.

In this paper, robust Kalman filtering for continuous-time Markovian jump nonlinear
systems with uncertain noise is considered. Firstly, we give some assumptions so that the
nonlinear jump systems can be modeled as a linear one by local linearization. Secondly, we
seek the maximum upper bound of nonstructural uncertainty to noise covariance matrix such
that the deviation of performance can be within a prescribed precision. Then, we discuss
the analytical solution of maximum bound using Lagrange method. Finally, we prove the
establishment of saddle inequality, and show that this filter design is a mini-max robust
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filter using game theory. At the end of the paper, an illustrative example is used to show
the validity of our method.

2. Problem Description

Throughout the paper, unless otherwise specified, we denote by (Ω,F, {Ft}t≥0,P) a complete
probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right-
continuous, and F0 contains all p-null sets). Let |x| stand for the usual Euclidean norm for
a vector x, and let |X| denote the Frobenius norm of a matrix X defined by |X| = λ1/2

max(XXT ),
where λmax(·) is the maximum eigenvalue of matrix and the superscript T represents
transpose. Operator Tr(·) denotes the matrix trace, and we denote by X > 0 (≥ 0) that matrix
X is positive definite (semipositive definite). Let {r(t), t ≥ 0} be a right-continuous Markov
process on the probability space taking values in finite state space S = {1, 2, . . . ,N} with
Π = [πij] being the chain generator, an N ×N matrix. The entries πij , i, j ∈ S, are interpreted
as transition rates such that

P
(
r(t + dt) = j | r(t) = i

)
=

⎧
⎨

⎩
πijdt + o(dt) if i /= j,

1 + πijdt + o(dt) if i = j,
(2.1)

where dt > 0 and limdt→0(o(dt)/dt) = 0. Here, πij > 0 (i /= j) is the transition rate from i to j.
Notice that the total probability axiom imposes πii < 0 and

N∑

j=1

πij = 0, ∀i ∈ S. (2.2)

Consider the following continuous-time Markovian jump nonlinear system with uncertain
noise:

ẋ = f
(
x, r(t)

)
+ω0,

y = h
(
x, r(t)

)
+ υ0,

(2.3)

where x ∈ Rn is state vector, and y ∈ Rm is measurement output. f(·, ·) ∈ Rn and h(·, ·) ∈ Rm

are nonlinear vector functions. ω0 and υ0 are n-dimensional and m-dimensional white noises
and satisfy the following assumption.

Assumption 2.1. For any given time s, t ≥ 0, there are

(1) E[ω0
t ] = 0, E[υ0

t ] = 0,

(2) Cov[ω0
t , ω

0
s] =W

0δt,s = (W + ΔW)δt,s, W ≥ 0, ΔW ≥ 0,

(3) Cov[υ0
t , υ

0
s] = V

0δt,s = (V + ΔV )δt,s, V > 0, ΔV ≥ 0,

(4) E[
(w0

t

υ0
t

)
·(w0T

s υ
0T
s )] =

[W0δt,s 0
0 V 0δt,s

]
.

In Assumption 2.1, W0 ∈ Rn×n and V 0 ∈ Rm×m consist of two parts, where W and V denote
the stationary noise covariance matrix, whose values are exactly known. ΔW and ΔV denote
the noise uncertainty caused by time-varying or sudden switch of system dynamics; they
are unknown but norm-bounded. δ(·, ·) is a Dirac function taking values in {0, 1}. For the
deduction of robust Kalman filter, we introduce the following assumption.
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Assumption 2.2. For any fixed system mode r(t) = i ∈ S and vector σ ∈ Rn, the nonlinear
vector functions f(·, ·), h(·, ·) are assumed to satisfy f(0, i) = h(0, i) = 0 and

∣
∣f(x + σ, i) − f(x, i) −A(i)σ

∣
∣ ≤

∣
∣ΔA(i)

∣
∣|σ|,

∣
∣h(x + σ, i) − h(x, i) − C(i)σ

∣
∣ ≤

∣
∣ΔC(i)

∣
∣|σ|,

(2.4)

where A(i), C(i) are Jacobian matrices of f(·, ·), h(·, ·), and ΔA(i), ΔC(i) satisfy

ΔA(i) = H1(i)F(i)E(i),

ΔC(i) = H2(i)F(i)E(i),
(2.5)

where H1(i), H2(i), and E(i), i ∈ S, are known constant matrices, and F(i), i ∈ S, is
unknown matrix satisfying FT (i)F(i) ≤ I. Establishing Assumption 2.2, the Markovian jump
nonlinear system could be transformed to a nominal linear model via local linearization
technique:

ẋ =
[
A
(
r(t)

)
+ ΔA

(
r(t)

)]
x +ω0,

y = [C
(
r(t)

)
+ ΔC

(
r(t)

)
]x + υ0.

(2.6)

For simplification, we denote A(r(t) = i), H1(r(t) = i), H2(r(t) = i), E(r(t) = i), ΔA(r(t) =
i), C(r(t) = i), and ΔC(r(t) = i) by Ai, H1i, H2i, Ei, ΔAi, Ci, and ΔCi.

Theorem 2.3. Consider stochastically stable Markovian jump system (2.6), and assume that the noise
is stationary,which means that ΔW = ΔV = 0. Then, one has the following standard Kalman filter
(see [12]):

˙̂x = Âix̂ +Ki

[
y − Ĉix̂

]
, (2.7)

where filtering gain Ki is given by the following coupled Riccati equations:

Âi = Ai +
(

1
εi
H1iH

T
1i +W

)
P−1
i ,

Ĉi =
1
εi
H2iH1iP

−1
i + Ci,

AiPi + PiAT
i + εiPiE

T
i EiPi +

N∑

j=1

πijPj +
1
εi
H1iH

T
1i +W = 0,

Ki =
(
QiĈ

T
i +

1
εi
H1iH

T
2i

)(
1
εi
H2iH

T
2i + V

)−1

,

(
Âi −KiĈi

)
Qi +Qi

(
Âi −KiĈi

)T +KiVK
T
i +

N∑

j=1

πijQj +
1
εi
H1iH

T
1i +W = 0.

(2.8)

Here, matricesPi > 0, Qi > 0 and scalar εi are chosen so that tr(Qi) reaches the minimum.
With the above standard Kalman filter gain Ki adopted, the state estimation error is

E
{(
x − x̂

)T(
x − x̂

)}
≤ max

j∈S
tr
(
Qj

)
. (2.9)
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Figure 1: Standard Kalman filter with stationary noise.

Define the estimation error performance as

J
(
K1, K2, . . . , KN,W,V

)
= max

j∈S
tr
(
Qj

)
. (2.10)

According to Theorem 2.3 and the quality of Kalman filtering, if the noise is stationary (ΔW =
ΔV = 0), the estimation error performance can achieve the minimum value by adopting
standard Kalman filtering (2.7).

Now, we consider that the noise is not stationary, which means that ΔW /= 0 and
ΔV /= 0; thus the new covariance matrix of noise is W0, V 0. If we still adopt the former
predesigned standard Kalman filter gain Ki, the new state estimation error should be Q0

i ,
which satisfies

(
Âi −KiĈi

)
Q0
i +Q

0
i

(
Âi −KiĈi

)T +KiV
0KT

i +
N∑

j=1

πijQ
0
j +

1
εi
H1iH

T
1i +W

0 = 0. (2.11)

Therefore, the new estimation error performance is

J
(
K1, K2, . . . , KN,W

0, V 0) = max
j∈S

tr
(
Q0
j

)
. (2.12)

According to (2.10) and (2.12), the deviation of estimation error performance yielded
by noise uncertainty (ΔW,ΔV ) can be written as

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
= J

(
K1, . . . , KN,W

0, V 0) − J
(
K1, . . . , KN,W,V

)

= max
j∈S

tr
(
Q0
j

)
−max

j∈S
tr
(
Qj

)
≤ r,

(2.13)

where r > 0 is a parameter which is given according to detailed precision request of practical
dynamic process.

Our design purpose is shown in Figures 1 and 2. Suppose that the noise is stationary
with covariance matrix W, V , and that the system filtering performance is J with standard
filtering gain Ki adopted as shown in Figure 1. But now noise is with uncertainty (ΔW,ΔV );
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W0 =W + ΔW
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System state
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Figure 2: Robust Kalman filter with uncertain noise.

the former designed Kalman filter gain Ki will no longer be an optimal one. If we still want
to get the precise estimation of system state so that the dynamic system could remain stable,
there are two choices. One is to update the Kalman filter gain Ki according to new noise
covariance matrix (W + ΔW,V + ΔV ), but this way is impossible or highly costly. Another
way is to still adopt the former designed filtering gain Ki and take some actions in noise
control. Based on this idea, the new estimation performance is J + ΔJ with Ki adopted, and
a deviation ΔJ occurs resulting from noise uncertainty (see Figure 2). For the robustness
of system, which means that ΔJ is less than an admissible precision r, there must besome
limitation to noise uncertainty. Using the view of robust estimation, we are trying to find a
maximum upper bound a, b for the uncertainty to noise covariance matrix. As long as the
noise uncertainty is controlled to satisfy |ΔW | ≤ a, |ΔV | ≤ b via noise control, we will achieve
deviation of estimation performance to be within the admissible precision r, which means
that ΔJ ≤ r; thus the general system has robustness to noise uncertainty, and stability of the
whole dynamic process can be maintained whatever the original stationary noise covariance
matrix (W,V ) is. In the following part of this paper, we seek the solution of maximum upper
bound a, b.

3. Upper Bound of Nonstructural Noise Uncertainty

3.1. Mathematical Expression of Upper Bound

According to (2.8) and (2.11), we have

(
Âi −KiĈi

)
ΔQi + ΔQi

(
Âi −KiĈi

)T +
N∑

j=1

πijΔQj + ΔW +KiΔVKT
i = 0, (3.1)

where ΔQi = Q0
i − Qi. From the above equation, it is easily seen that tr(ΔQi) is a linear

mapping of (ΔW,ΔV ). Define a compact convex set as Ξ = {(ΔW,ΔV ) : 0 ≤ ΔW ≤ ΔW∗, 0 ≤
ΔV ≤ ΔV ∗}; thus the deviation of performance ΔJ(K1, K2, . . . , KN,ΔW,ΔV ) is a mapping
from Ξ to R1, and it has the following facts.
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Fact 1. For any given noise uncertainty (ΔWj,ΔVj) ∈ Ξ, j = 1, 2, if ΔW1 ≤ ΔW2 and ΔV1 ≤
ΔV2, one has

ΔJ
(
K1, K2, . . . , KN,ΔW1,ΔV1

)
≤ ΔJ

(
K1, K2, . . . , KN,ΔW2,ΔV2

)
. (3.2)

Fact 2. Define the maximum admissible deviation of estimation performance r as

r = max
(ΔW,ΔV )∈Ξ

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
. (3.3)

Thus, r could be achieved only by maximum noise uncertainty (ΔW∗,ΔV ∗), which means
that

r = ΔJ
(
K1, K2, . . . , KN,ΔW∗,ΔV ∗

)
. (3.4)

The purpose of the following work is to construct a maximal compact convex set Ξ∗, as long
as the noise uncertainty satisfies (ΔW,ΔV ) ∈ Ξ∗, (2.13) is sure to establish. According to the
finity of mode S, (2.13) is equivalent to

tr
(
Q0
i

)
≤ r + max

j∈S
tr
(
Qj

)
. (3.5)

Therefore, for each mode i ∈ S, there is

tr
(
ΔQi

)
= tr

(
Q0
i

)
− tr

(
Qi

)
≤ r + max

j∈S
tr
(
Qj

)
− tr

(
Qi

)
. (3.6)

Define the maximum upper bound of noise uncertainty as |ΔW | ≤ a, |ΔV | ≤ b; thus

0 ≤ ΔW ≤ aIn, 0 ≤ ΔV ≤ bIm. (3.7)

Substituting the above inequalities into (3.1) and (3.6), one has

a tr
(
Di

)
+ b tr

(
Gi

)
≤ r + max

j∈S
tr
(
Qj

)
− tr

(
Qi

)
, ∀i ∈ S, (3.8)

where matrices Di,Gi > 0, i ∈ S, satisfy the following coupled Riccati equations:

(
Âi −KiĈi

)
Di +Di

(
Âi −KiĈi

)T +
N∑

j=1

πijDj + In = 0,

(
Âi −KiĈi

)
Gi +Gi

(
Âi −KiĈi

)T
+

N∑

j=1

πijGj +KiK
T
i = 0.

(3.9)

According to the above analysis, seeking a maximum upper bound of noise uncertainty
(ΔW,ΔV ) is equivalent to obtaining the optimal solution of a, b:

max a · b
s.t. a · tr

(
Di

)
+ b · tr

(
Gi

)
≤ r + max

j∈S
tr
(
Qj

)
− tr

(
Qi

)
, a ≥ 0, b ≥ 0, i ∈ S. (3.10)

Thus, seeking the optimal solution a, b is transformed to a nonlinear programming problem
with linear inequalities’ constraints. Now, we discuss how to find the analytical solution of
such problem.
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3.2. Analytical Solution

Since Ξ = {(ΔW,ΔV )} is a compact convex set and the inequalities’ constraints in (3.10)
compose a compact set on which a · b is defined as a continuous function, thus the nonlinear
programming problem must have optimal solution a∗, b∗ and the existence of solution is
proved. Next, we will seek the analytical solution a∗, b∗.

Decompose the original nonlinear programming problem (see (3.10)) into N
subproblems:

max a1 · b1

s.t. a1 · tr
(
D1

)
+ b1 · tr

(
G1

)
≤ r + max

j∈S
tr
(
Qj

)
− tr

(
Q1

)

max a2 · b2

s.t. a2 · tr
(
D2

)
+ b2 · tr

(
G2

)
≤ r + max

j∈S
tr
(
Qj

)
− tr

(
Q2

)

...

max aN · bN
s.t. aN · tr

(
DN

)
+ bN · tr

(
GN

)
≤ r + max

j∈S
tr
(
Qj

)
− tr

(
QN

)
.

(3.11)

By using Lagrange method, we have the optimal analytical solution for each subproblem as

a∗i =
r + maxj∈S tr

(
Qj

)
− tr

(
Qi

)

2 tr
(
Di

) ,

b∗i =
r + maxj∈S tr

(
Qj

)
− tr

(
Qi

)

2 tr
(
Gi

) .

(3.12)

Thus, the analytical solution for the original nonlinear programming problem (see (3.10)) is
given as

a∗ = min
i∈S

a∗i = min
i∈S

{
r + maxj∈S tr

(
Qj

)
− tr

(
Qi

)

2tr
(
Di

)

}

,

b∗ = min
i∈S

b∗i = min
i∈S

{
r + maxj∈S tr

(
Qj

)
− tr

(
Qi

)

2tr
(
Gi

)

}

.

(3.13)

Remark 3.1. The analytical solution of the nonlinear programming problem is given by the
above analysis; however, it is only an optimal solution for each subproblem. This analytical
solution in (3.13) is local optimal, but global suboptimal. For the global optimal solution, we
could only get the numerical solution using “fmincon” function in MATLAB software. The
optimal analytical solution of such nonlinear programming problem is still an open problem
in mathematics for further exploration.

Theorem 3.2. ConsiderMarkovian jump system (2.6). If one adopts state estimator (2.7) and Kalman
filter gain (2.8), there exists a maximum admissible compact set Ξ. As long as the uncertainty to noise
covariance matrix satisfies (ΔW,ΔV ) ∈ Ξ, the deviation of system state estimation error performance
ΔJ is within a given precision r.
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Remark 3.3. Take into account the existence of noise uncertainty, and the new noise covariance
matrix is given as (W+ΔW,V +ΔV ). Thus, the former predesigned optimal Kalman filter gain
Ki, which is deduced from stationary noise (W,V ), will no longer be optimal and may cause
distortion of control signals. But, this does not mean that we need to redesign Kalman filter.
According to the above analysis, if we can successfully limit noise uncertainty (ΔW,ΔV )
to be within an admissible compact set Ξ, the predesigned Kalman filter gain Ki can still
be effective though it is not optimal. Moreover, the deviation of estimation performance is
ensured to be within a desirable precision r.

4. Mini-Max Robust Filter

Let K∗1, K
∗
2, . . . , K

∗
N denote the standard Kalman filtering gain according to new noise

covariance matrix pair (W∗, V ∗) = (W +ΔW∗, V +ΔV ∗), which corresponds to the maximum
admissible noise uncertainty (ΔW∗,ΔV ∗); thus K∗1, K

∗
2, . . . , K

∗
N satisfy

AiP
∗
i + P

∗
i A

T
i + εiP

∗
i E

T
i EiP

∗
i +

N∑

j=1

πijP
∗
j +

1
εi
H1iH

T
1i +W

∗ = 0,

K∗i =
(
Q∗i Ĉ

T
i +

1
εi
H1iH

T
2i

)(
1
εi
H2iH

T
2i + V

∗
)−1

,

(
Âi −K∗i Ĉi

)
Q∗i +Q

∗
i

(
Âi −K∗i Ĉi

)T +K∗i V
∗K∗Ti +

N∑

j=1

πijQ
∗
j +

1
εi
H1iH

T
1i +W

∗ = 0.

(4.1)

According to the least-square quality of standard Kalman filtering, we have

ΔJ
(
K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗
)
≤ ΔJ

(
K1, K2, . . . , KN,ΔW∗,ΔV ∗

)
. (4.2)

On the other hand, with the establishment of Fact 1, there is

ΔJ
(
K∗1, K

∗
2, . . . , K

∗
N,ΔW,ΔV

)
≤ ΔJ

(
K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗
)
. (4.3)

Thus, we have the following saddle-point inequality:

ΔJ
(
K∗1, K

∗
2, . . . , K

∗
N,ΔW,ΔV

)
≤ ΔJ

(
K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗
)

≤ ΔJ
(
K1, K2, . . . , KN,ΔW∗,ΔV ∗

)
.

(4.4)

By game theory, we have

min
Ki

max
(ΔW,ΔV )∈Ξ

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
= max

(ΔW,ΔV )∈Ξ
min
Ki

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
.

(4.5)

This means that the optimal estimation under the worst situation is a mini-max filter. It cannot
only minimize the estimation performance under the largest noise uncertainty (a∗In, b∗Im),
but can also ensure the deviation to be within a given precision r. For this reason, this Kalman
filter design is a robust mini-max filter.
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Remark 4.1. Traditional Kalman filtering design is performed on the basis that noise covari-
ance matrix is stationary and exactly known, and it will fail when the noise covariance matrix
is unknown or has uncertainty. In our method, the filter design could be divided into two
steps. Firstly, we design standard Kalman filter according to the stationary noise covariance
matrix (W,V ), then via some technical methods such as noise control we impose the noise
uncertainty to be within the given bound (ΔW∗,ΔV ∗), which could be presented in the
form of nonstructural (a∗In, b∗Im). In practical dynamic process, when the noise uncertainty
reaches the maximum, the ideal deviation of performance is ΔJ(K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗),
and this deviation is less than the worst case ΔJ(K1, K2, . . . , KN,ΔW∗,ΔV ∗) ≤ r, which
ensures the estimation of system states and control signals to beprecise to some extent, and
the synthetical system to be robust and stable. For this reason, the Kalman filter design has
robustness to noise uncertainty, and according to (4.5), this filter is also a mini-max filter .

5. Simulation

Consider the following two-mode Markovian jump system.
Let the system mode r(t) = 1 be given by

ẋ1 = −0.6x1 + 0.5x2 + 0.01 sin
(
x1 + x2

)
+ω0

1,

ẋ2 = 0.7x1 + 0.02 cos
(
x1 − x2

)
+ω0

2,

y = x1 + 0.5x2 + υ0.

(5.1)

Let the system mode r(t) = 2 be given by

ẋ1 = −x1 + 0.6x2 + 0.02 sinx2 +ω0
1,

ẋ2 = 0.8x1 − 1.1x2 + 0.02 cosx1 +ω0
2,

y = x1 + υ0,

(5.2)

where uncertain state and measurement noise are ω0 =
[
ω0

1 ω0
2

]T and υ0; its stationary
covariance matrix is known as W =

[
1 0
0 1

]
, V = 1; system mode transition matrix is Π =[ −0.6 0.6

0.9 −0.9

]
; the admissible bound of performance deviation is r = 0.3.

The detailed algorithm is as follows.

(1) By applying Assumption 2.1, we have A1 =
[ −0.6 0.5

0.7 0

]
, C1 =

[
1 0.5

]
, A2 =

[ −1 0.6
0.8 −1.1

]
, C2 =

[
1 0

]
, H11 =

[
0.1 0.2

]T
, E1 =

[
0.1 0.1

]
, H12 =

[
0.1 0.1

]T , E2 =
[
0.2 0.2

]
.

Notice that ΔCi ≡ 0; thus H21 = H22 = 0.

(2) Solve (2.8) and get Q1, Q2 and K1, K2 : Q1 =
[ 2.6058 1.4207

1.4207 3.1934

]
, Q2 =

[ 2.6573 1.4181
1.4181 2.8473

]
, K1 =

[ 0.8748
1.0921

]
, K2 =

[ 0.6567
0.4866

]
.

(3) Substitute the result to (3.10), using Lagrange method; the upper bound of noise
uncertainty is given as

a∗ = 0.1014, b∗ = 0.1701. (5.3)
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(4) Let the new noise covariance matrix correspond to the maximum uncertainty:

W∗ =W + ΔW =W + a∗ · I2,

V ∗ = V + ΔV = V + b∗ · I1.
(5.4)

(5) Repeat step (2), and we have the correspondent Q∗1, Q
∗
2, K

∗
1, K

∗
2 for new noise

covariance matrix (W∗, V ∗):

Q∗1 =

[
2.7641 1.4417
1.4417 3.2688

]

, Q∗2 =

[
2.6788 1.4458
1.4458 2.9011

]

,

K∗1 =

[
0.8977
1.3021

]

, K∗2 =

[
0.7012
0.5041

]

.

(5.5)

(6) Applying the robust Kalman filtering, there is saddle-point inequality:

ΔJ
(
K∗1, K

∗
2,ΔW,ΔV

)
≤ ΔJ

(
K∗1, K

∗
2,ΔW

∗,ΔV ∗
)

= max
{

tr
(
Q∗1

)
, tr

(
Q∗2

)}
−max

{
tr
(
Q1

)
, tr

(
Q2

)}

= 0.2337 < 0.3

= ΔJ
(
K1, K2,ΔW∗,ΔV ∗

)
.

(5.6)

From the above simulation, it is seen that with the noise uncertainty being limited within the
upper bound a∗, b∗ via noise control, the deviation of system estimation performance is less
than the admissible precision r. Because the analytical solution a∗, b∗ is global suboptimal,
the deviation of system estimation performance (0.2337) is obviously less than admissible
precision (0.3), which means that this solution is a conservative one and the global optimal
solution of a, b could be a little greater than a∗, b∗. Thus, this method allows flexibility to the
designer to some extent.

6. Conclusion

In this paper, robust Kalman filter for continuous-time Markovian jump nonlinear systems
with uncertain noise is considered. For the stability of dynamic system when statistical
information of noise is unavailable, a new design method is given by obtaining the maximum
admissible bound of uncertainty to noise covariance matrix. Based on this, the deviation
of system estimation performance is thus guaranteed to be within a given precision.
Furthermore, the worst performance yielded by noise uncertainty can be minimized by this
method since it is a mini-max robust filter. The analytical solution of the bound to noise
uncertainty is also discussed in this paper, which is a global, suboptimal, and conservative
solution using Lagrange method. The simulation results show the validity of this design.
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