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Reduced-order models have a number of practical engineering applications for unsteady flows that
require either low-dimensional approximations for analysis and control or repeated simulation
over a range of parameter values. The standard method for building reduced-order models uses
the proper orthogonal decomposition (POD) and Galerkin projection. However, this standard
method may be inaccurate when used “off-design” (at parameter values not used to generate
the POD). This phenomena is exaggerated when parameter values describe the shape of the flow
domain since slight changes in shape can have a significant influence on the flow field. In this
paper, we investigate the use of POD sensitivity vectors to improve the accuracy and dynamical
system properties of the reduced-order models to problems with shape parameters. To carry
out this study, we consider flows past an elliptic cylinder with varying thickness ratios. Shape
sensitivities (derivatives of flow variables with respect to thickness ratio) computed by finite-
difference approximations are used to compute the POD sensitivity vectors. Numerical studies
test the accuracy of the new bases to represent flow solutions over a range of parameter values.

1. Introduction

Reduced-order modeling of incompressible flows plays an important role in academic and
industrial research. In order to reduce the complexity of the governing equation, reduced-
order models are often developed to represent the dynamical system with a few degrees
of freedom. These models can provide analytical insight into the physical phenomena and
enable application of dynamical systems theory and control methods.

Since Roshko [1] measured the vortex shedding period behind a bluff body, many
researchers have investigated this phenomenon experimentally and numerically for a wide
range of Reynolds numbers. The most frequently investigated bluff geometry is the circular
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cylinder. The flow behind a circular cylinder has become the canonical problem for studying
such external separated flows [2–7]. Bishop and Hassan [2] were among the first to suggest a
phenomenological model reduction by proposing Rayleigh/van der Pol self-excited oscillators
to represent the forces over a cylinder due to vortex shedding. Several other analytical models
have also been proposed along similar lines for stationary or moving cylinders [8–13].

On the other hand, engineering applications often involve flows over complex bodies,
such as wings, submarines, missiles, and rotor blades, which can hardly be modeled as a
circular cylinder. It would however be interesting to broaden the application of reduced-order
models to other complex geometries. A systematic approach would be to start by studying
a configuration that is more general than a circular cylinder and can characterize typical
engineering flow configurations. Elliptic cylinders seem to provide such a configuration and
changes in the eccentricity allow for shapes ranging from a circular cylinder to a flat plate. By
tuning the damping coefficients, self-excited oscillator models [14] can be extended to elliptic
cylinders.

In some cases, the reduced-order models represent the space variation with a limited
number of basis functions, while still capturing the physics and dominant features of the flow.
Most widely used reduced-order model techniques in fluid dynamics are derived from the
proper orthogonal decomposition- (POD-) Galerkin projection approach [15, 16]. The POD
provides a tool to formulate an optimal basis (or modes) to represent given trajectories of a
dynamical system. The most common approach is to compute a “representative” collection
of states of the system (commonly referred to as snapshots) through numerical simulations or
experiments, then use the POD to find a low-dimensional set of basis functions [16, 17]. The
POD processes time snapshot data to find the best basis functions on which to represent this
data. Later, a low-dimensional dynamical system is typically obtained by Galerkin projection.
These models give insight to the flow physics, often reproduce the data, and may be used
for control purposes. POD-based reduced-order models have been successfully applied to
model vortex shedding past a cylinder [18–23]. In fact, the flow past a cylinder has become a
benchmark problem for reduced-order modeling.

Despite the accurate reproduction of the data from which it is originated, the POD-
based reduced-order model lacks robustness away from the reference simulations. This is
a serious limitation of the POD-based reduced-order models since most applications use
reduced-order models in a predictive setting. In [24], the authors noted that the accuracy of
the model predictions rapidly deteriorates as we move away from the decomposition value. Thus, the
POD basis generated from an experiment or a numerical simulation is only useful within a
narrow bandwidth of parameters close to that reference. In addition to the accuracy of the
model away from the reference, numerical stability of these models for long-time integration
is also an issue [23, 25–30].

Various methods have been proposed to extend the applicability and increase the
accuracy of POD-based reduced-order models away from the reference data. Ma and
Karniadakis [19] investigated the stability and dynamics of three-dimensional limit-cycle
states near the Mode A [6] instability for flow past a cylinder using a low-dimensional
modeling. They employed two procedures to construct this hybrid system, either by
concatenating the two sets of snapshots at Re = 182 and Re = 185 or by extracting the
POD modes at each state and orthonormalizing the entire set. They concluded that reference
data must contain sufficient information about the flow field to predict any qualitative
change within that flow regime. Noack et al. [20] suggested a generalization for POD-based
Galerkin models to include the transient behavior. In their Galerkin approximation, they
included an additional vector and termed it a shift-mode (also known as a centering trajectory
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of a mean-field correction). They obtained the steady solution with a Newton iteration,
employing the discretized steady Navier-Stokes equations. The shift mode represents the
shift of the short term averaged flow away from the POD space and is effectively a normalized
mean-field correction. Within the control setting of POD-based reduced-order models, a
similar strategy is required in cylinder wake problems to make the control effective.

In the application of reduced-order models to optimal control, one desires a model
that is accurate over a wide range of actuation data. In a recent study, Graham et al.
[21] used reduced-order models to develop optimal control strategies for flow past a
circular cylinder at Re = 100 through cylinder rotation. When the POD modes were
generated from the snapshots at a given oscillation frequency, the active control model
only worked near that particular frequency. Therefore, they incorporated multiple frequency
information in their snapshot data set using a varying frequency sinusoid, or chirp. With
this approach, one may require a large parametric data set as the reference data to broaden
the applicability of POD-based reduced-order models over a wide range of parameter
values.

In our previous work [31], we proposed the inclusion of parametric derivatives of
the POD basis functions (computed using sensitivity analysis). The study considered two
approaches for using the POD derivatives to define a reduced basis. One approach used
linear extrapolation of the standard POD basis to the parameter value of interest (extrapolated
basis). A second approach combined with the POD and POD derivatives to construct the
basis (expanded basis). Both approaches provided promising results in the study of flow past
a square cylinder where the viscosity (equivalently, the Reynolds number) was varied from
the reference value.

A follow-up study [32] considered the development of reduced-order models for flows
where the parameter described the orientation of the square cylinder relative to the free-
stream flow direction. We demonstrated our shape sensitivity analysis approach by rotating
the square cylinder. This problem also featured a “hidden” parametric dependence on the
Reynolds number as the characteristic length scale changes with the orientation of the square
cylinder to the mean-stream flow.

In this study, we use a similar basis improvement methodology. However, we consider
modeling the flow as the obstacle is changed from a circular cylinder to an elliptic cylinder.
The shape parameter is chosen as the thickness ratio (τ) between the minor axis to the major
axis. It is important to note that the Reynolds number is defined using the projected area
of the cylinder, as seen by the flow, and is kept constant in our analysis. Moreover, we use
finite differences to compute the shape sensitivity as the ellipse parameter τ is varied. We
employ an O-grid for the cylinders such that the outer domain is circular in all cases. Since
the outer domains of both the circular and elliptic cylinders are the same, the shape sensitivity
approaches to zero as it moves away from the body. In this regard, the finite-difference-based
methodology provides a quick and easier way to compute the shape sensitivity and extend
the application of POD basis to actual shape deformation. This study can find its application
in the aerospace industry where the wing cross-section changes its actual shape, such as a
morphing wing. This study also provides a validation to the basis selection approach used
by Ma and Karniadakis [19]. In their study, they built a POD basis using two simulations
with similar parameters. Their approach produces a similar basis as we would obtain with
our expanded approach.

The paper is organized as follows. Section 2 explains the numerical methodology to
solve the Navier-Stokes equations and simulate the flow past circular and elliptic cylinders.
In Section 3, we present the POD-based reduced-order model procedure after collecting
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Figure 1: (a) Geometry of an elliptic cylinder and (b) “O” grid distributed among 8 processors in the η
direction for τ = 2.0.

the snapshots of the flow field. In Section 4 we present the sensitivity analysis procedure and
numerical results are discussed in Section 5.

2. Numerical Methodology

The Navier-Stokes and continuity equations are the governing equations for the present
problem. For incompressible flow, they can be represented as follows:

∂uj

∂xj
= 0, (2.1)

∂ui
∂t

+
∂

∂xj

(
ujui
)
= −1

ρ

∂p

∂xi
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∂2ui
∂xj∂xj

, (2.2)

where i, j = 1, 2 for two-dimensional flows; the ui represent the Cartesian velocity
components (u,v); p is the pressure; ρ is the fluid density; μ is the fluid viscosity.

We employ curvilinear coordinates in an Eulerian reference frame; a planar view is
shown in Figure 1(a). Here, X and Y indicate the Cartesian coordinates, ξ and η represent
a curvilinear coordinate system, and Lx and Ly are the major and minor axes, respectively.
The thickness ratio of the ellipse is given by τ = Lx/Ly and is the parameter used in our
parametric modeling study.

The Navier-Stokes equations are written in curvilinear coordinates and strong
conservation form as follows:

∂Um

∂ξm
= 0, (2.3)
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= 0, (2.4)
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where the flux is defined as

Fim = Umui + J−1 ∂ξm
∂xi

p − 1
Re

Gmn ∂ui
∂ξn

, (2.5)

where J−1 = det(∂xi/∂ξj) is the inverse of the Jacobian or the volume of the cell, Um =
J−1(∂ξm/∂xj)uj is the volume flux (contravariant velocity multiplied by J−1) normal to the
surface of constant ξm, and Gmn = J−1(∂ξm/∂xj)(∂ξn/∂xj) is the “mesh skewness tensor.”
Equations (2.3) and (2.4) are nondimensionalized using the projected area Ly of the ellipse
as the length scale and the freestream velocity (U∞) as the velocity scale. Thus, the Reynolds
number is given by Re = LyU∞/ν, where ν = μ/ρ. All of these parameters remain fixed in
our computations.

In this study, a body conformal O-type grid is employed to simulate the flow over a
body as shown in Figure 1(b). The grid is decomposed into different processors to achieve
parallel performance. A non-staggered-grid layout is employed to solve the transformed
Navier-Stokes equations. The Cartesian velocity components (u, v) and pressure (p) are
defined at the center of the control volume in the computational space, and the volume
fluxes (U,V ) are defined at the mid points of control volume. All of the spatial derivatives
are approximated with second-order accurate central differences except for the convective
terms. Using the same central differencing for the convection terms may lead to spurious
oscillations in the coarser regions of the grid, thereby leading to erroneous results. In the
present formulation, we discretize the convective terms using a variation of QUICK [33];
that is, we calculate the face values of the velocity variables (ui) from the nodal values using
quadratic upwinding interpolation. The upwinding of QUICK is carried out by computing
the positive and negative volume fluxes ((Um + |Um|)/2) and ((Um − |Um|)/2), respectively,
and using the generic stencil.

A semi-implicit scheme is employed to advance the solution in time. The diagonal
viscous terms are advanced implicitly using the second-order accurate Crank-Nicolson
method; whereas all of the other terms are advanced using the second-order accurate Adams-
Bashforth method. In the present formulation, we apply a fractional-step method to advance
the solution in time. The fractional-step method splits the momentum equation into

(a) an advection-diffusion equation—the momentum equation solved without the
pressure term,

(b) a pressure Poisson equation—constructed by implicit coupling between the
continuity equation and the pressure in the momentum equation, thus satisfying
the constraint of mass conservation.

The governing equations are solved using a methodology similar to that employed by
Zang et al. [34]. However, the algorithm is extended to parallel computing platforms and the
1D domain decomposition technique (for two-dimensional flows) is employed to distribute
the problem among different processors. Details of discretization, parallel implementation,
validation, and verification can be found in [35].

The CFD results for the numerical methodology have been validated for three-
dimensional [35] and two-dimensional [23] flows by comparing them with published
experimental and numerical studies. We have also performed grid and domain dependence
studies to verify the numerical results for circular and elliptic cylinders [14].
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3. POD-Galerkin Reduced-Order Model

3.1. The Proper Orthogonal Decomposition

Mathematically, we compute Φ for which the following quantity is maximum:

〈
|(u,Φ)|2

〉

‖Φ‖2
, (3.1)

where 〈·〉 denotes either an ensemble or a time average. Applying variational calculus, one
can show that (3.1) is equivalent to a Fredholm integral eigenvalue problem represented as

∫

Ω
Rij

(
x, x′
)
Φj(x′

)
dx′ = λΦj(x), (3.2)

where i, j are the number of velocity components and Rij(x, x′) is the two-point spatial
autocorrelation tensor.

In the classical POD or direct method, originally introduced by Bakewell and Lumley
[36], Rij is a two-point spatial-correlation tensor and the eigenfunctions are the POD modes.
In this approach, the averaging operator is performed in time. On the other hand, if the
averaging operator is evaluated as a spatial average over the domain of interest, the method is
known as the method of snapshots [17]. In this approach, we formulate a temporal-correlation
function from the snapshots and transform it into an eigenvalue problem as follows:

Cij =
〈(

ui,uj
)〉
, (3.3)

where (a, b) =
∫
Ωa · bdΩ represents the inner product between a and b. The POD modes are

then computed by solving the eigenvalue problem

CQ = Qλ, (3.4)

where Q and λ are the eigenvectors and eigenvalues, respectively. Since C is nonnegative
Hermitian, Q is orthogonal by definition. The POD modes are computed as follows:

Φi =
1
√
λi
WQi. (3.5)

An important characteristic of these modes is orthogonality; that is, Φi ·Φj = δij , where δij is
the kronecker delta. The optimality of the POD modes lies in capturing the greatest possible
fraction of the total kinetic energy for a projection onto the given set of modes.
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The flow data or snapshots of the steady-state velocity field are sampled with a constant
time interval (ΔTs). The velocity field data (u, v) are assembled in a matrix W2N×S as follows:

W =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u
(1)
1 u

(2)
1 · · · u(S)1

...
...

...

u
(1)
N u

(2)
N · · · u(S)N

v
(1)
1 v

(2)
1 · · · v(S)

1

...
...

...

v
(1)
N v

(2)
N · · · v(S)

N

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.6)

Each column represents one time instant or a snapshot and S is the total number of snapshots
for N grid points in the domain. The vorticity field can also be used for POD; however, in
the case of the velocity field, the eigenvalues of W are a direct measure of the kinetic energy
in each mode. Deane et al. [24] observed that 20 snapshots are sufficient for the construction
of the first eight eigenfunctions at Re = 100–200. In general, numerical studies [37] suggest
that the first M POD modes, where M is even, resolve the first M/2 temporal harmonics and
require 2M number of snapshots for convergence.

We write the velocity field as the sum of the mean flow (u) and the velocity fluctuations
(u′). The mean flow u = 〈u〉, where 〈·〉 is the time average of the assembled data, is subtracted
from W. Then, the fluctuations are expanded in terms of the POD eigenfunctions (Φi) as
follows:

u(x, t) ≈ u(x) +
M∑

i=1

qi(t)Φi(x), (3.7)

where M is the number of POD modes used in the projection. The singular value
decomposition (SVD) of this matrix provides the divergence-free velocity POD modes (Φi).

3.2. Galerkin Projection

Substituting (3.7) in (2.4) and projecting this equation along the elements of the M-dimen-
sional POD basis give

q̇k(t) = Ak +
M∑

m=1

Bkmqm(t) +
M∑

m=1

M∑

n=1

Ckmnqn(t)qm(t), (3.8)
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where

Ak =
1

ReLy

(
Φk,∇2u

)
− (Φk,u · ∇u),

Bkm = −(Φk,u · ∇Φm) − (Φk,Φm · ∇u) +
1

ReLy

(
Φk,∇2Φm

)
,

Ckmn = −(Φk,Φm · ∇Φn).

(3.9)

In (3.8), A is an M × 1 vector resulting from the average flow field, B is an M ×M matrix
corresponding to the linear part, and C is a tensor that represents the quadratic nonlinearity
of the dynamical system. From linear stability analysis, we can compute the eigenvalues of B
and hence ascertain the stability of the trivial solution. Details of the projection for each term
are provided in the appendix.

3.3. Numerical Simulations and Reduced-Order Model

We perform numerical simulations of the flows past elliptic cylinders with thickness ratios
ranging from τ = 0.5 to τ = 1.5. The flow is simulated over a 192×256 (ξ×η) grid with an outer
domain size of 30Ly. In the present case, the grid is divided into eight domains/processors,
such that each processor has a load of 192 × 32 grid points, as shown in Figure 1(b). All
simulations are performed at Re = 200. It is important to note that the Reynolds number
is defined with the characteristic length of Ly = 1 and freestream velocity U∞ = 1. The
projected area Ly of the ellipse, as seen by the flow, is fixed for all values of τ . Thus, the
nondimensionalization is fixed for all shape variations.

We develop the reduced-order model for the flow past a circular cylinder (as an
example) and use a similar procedure for the model reduction of the flow past elliptic
cylinders with different thickness ratios. In the current study, we took 64 snapshots of the
flow field over one vortex shedding cycle of the circular cylinder. The flow data or snapshots
of the velocity and pressure fields are sampled in the steady-state of the dynamical system
with a constant time interval (ΔTs). The velocity field (u, v) is stored in W after subtracting
the mean flow. We compute the POD modes from respective snapshot data. In Figure 2, we
plot the first six POD modes of u-velocity for the circular cylinder (τ = 1). Projecting the
Navier-Stokes equations onto these modes, we develop a reduced-order model and compute
A,B, and C as given in (3.8). We integrate (3.8) to compute the qi(t) and plot them in Figure 4.
The results we obtained from the reduced-order model match well with the CFD numerical
results found in [23].

4. Sensitivity Analysis

In this section, we derive the first-order total derivatives of the POD modes with respect to
a generic shape parameter α. We refer to these as the Lagrangian sensitivities of the POD
vectors. In our previous study [31], we presented POD sensitivities with respect to a flow
parameter, such as the fluid viscosity and the geometry of the structure was fixed. In other
words, the sensitivities were computed using the same domain and no grid deformation was
required. In this study, the flow domain changes and this leads to a corresponding change in
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 2: Streamwise POD modes for τ = 1.

the grid with the elliptic parameter τ . It is important to note that the outer domain of for all
the cases is fixed with radius 30Ly.

The sensitivities with respect to the shape parameter α (for our case) are computed by
a second-order centered finite-difference (FD) approximation

DΦi

Dα
(x(α0);α0)

∣∣∣∣
FD

=
Φi(x(α0 + Δα);α0 + Δα) −Φi(x(α0 −Δα);α0 −Δα)

2Δα
, (4.1)

where α0 is the parameter value at which the sensitivities are computed and Δα is the step
size in the finite-difference scheme. The notation D · /Dα represents the total derivative with
respect to α. The parameter increment Δα is chosen sufficiently small for the FD computation
to be accurate and sufficiently large for the difference between the two nearby POD vectors
to be at least one order of magnitude larger than the discretization error. It is also important
to note that since the outer domain is the same for all elliptic cylinders and the flow is
nearly freestream, these sensitivities become smaller as we move away from the cylinder
and approach zero close to the outer domain of the cylinder.

The traditional approach in reduced-order modeling is to build the POD basis for
one particular value of the parameter of the system. This will be referred to as the baseline
approach and denoted by α0, which refers to the baseline state, solution, and POD basis. We
aim at producing reduced-order solutions at perturbed states for α = α0 + Δα. As in our
previous study [31], we define various basis elements used in our analysis.
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(a) τ = 0.5 (b) τ = 0.6

(c) τ = 0.7 (d) τ = 0.8

(e) τ = 0.9 (f) τ = 1.0

Figure 3: Instantaneous spanwise vorticity contours.

(i) Baseline POD Basis (BL). This is the classical approach where the POD basis,
built from the data at the baseline value α0, is used in (3.7) to subsequently
produce a reduced-order model at the perturbed value α. These spatial modes are
only available on the baseline geometry but they can easily be mapped onto the
perturbed geometry.

(ii) Perturbed POD Basis (PR). The reduced-order model is constructed using the POD
modes extracted from the solution data obtained by a full-order simulation at
the perturbed value α. This is a costly approach since each new reduced-order
simulation requires a full-order data at the perturbed parameter value. Thus, it
has little interest in practice but will be used in the remainder of this study as the
benchmark low-dimensional solution.

Following the previous studies for flow parameters in [31] and shape parameters in
[32], we examine two different ideas for constructing improved reduced-order bases using
the POD modes as well as the Lagrangian sensitivity of the POD modes at the baseline
value α0.

(i) Extrapolated Basis (ET). We treat each POD mode as a function of both space and
parameter α: Φi = Φi(x;α). A change Δα in the parameter from its baseline value α0

is reflected in the modes through a first-order expansion in the parameter space:

Φi(x;α) = Φi(x(α0);α0) + Δα
DΦi

Dα
(x(α0);α0) +O

(
Δα2
)
. (4.2)
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Figure 4: The velocity coefficients qi (i = 1, 2, 3, 4) at Re = 200.

The effectiveness of this approach clearly depends on whether or not the POD
modes exhibit a (nearly) linear dependence with respect to the parameter α.
However, the dimension of the reduced basis is preserved and the reduced
approximation of the flow variables still uses (3.7). Once again, the spatial functions
Φ andDΦi/Dα are only available on the baseline geometry but they can be mapped
on the perturbed geometry in a straight forward manner.

(ii) Expanded Basis (EP). The sensitivities of the modes can be shown to span a different
subspace than the POD modes (see, e.g., [38]). Thus, it is natural to expect that if
the approximated solution is selected in the union of the two subspaces generated
by the POD modes and their sensitivities, a broader class of solutions can be
represented. The expanded basis consists of the M first eigenfunctions with their
M sensitivities: [φ1; . . . ;φM;DΦ1/Dα; . . . ;DΦM/Dα]. The underlying assumption
behind this approach is that the subspace spanned by the mode sensitivities is
well suited to address the change in the solutions induced by a change in the
parameter. However, the dimension of the reduced basis has doubled and the
reduced approximation of the flow variables is now expressed as

u(x, t) ≈ u(x) +
Du(x)
Dα

+
M∑

i=1

qi(t)Φi(x) +
2M∑

i=M+1

qi(t)
DΦi

Dα
(x). (4.3)

5. Numerical Results and Discussion

In the current study, we numerically simulate the flow past elliptic cylinders with varying
thickness ratios ranging from τ = 0.5 to 1.5. In terms of the flow field, the projected area of the
cylinder, as seen by the flow, is kept constant (i.e., Ly = 1). In other words, the width of the
wake is relatively constant for all the elliptic cylinders. In Figure 3, we plot instantaneous
spanwise vorticity contours for various elliptic cylinders. It is interesting to note that as
the eccentricity decreases (τ < 1), the vortex shedding pattern is no longer a von Karman
vortex street as observed behind a circular cylinder. We observe different phenomena as the
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vortex shedding transitions to steady and unsteady secondary shedding. This pattern is the
manifestation of bifurcations in the flow as geometry of the cylinder is varied. However, as τ
increases (τ > 1), the elliptic cylinder is transformed towards an elliptic foil. We still observe
von Karman vortex street in the wake; however, the shedding period changes with τ [14].
The periodic nature of these von Karman vortex flows leads to a better approximation by
reduced-order models (as the basis only needs to accurately predict the first period). Based
on this observation, we can predict that the sensitivity analysis would tend to show better
results for increasing τ rather than decreasing τ .

From a reduced-order modeling point of view, variation in any geometric parameter
would require a new set of flow data or snapshots, computation of the POD modes, and the
projection onto these modes to develop a new model. This procedure corresponds to using
the perturbed POD basis and is computationally expensive. This undermines the motivation of
building a reduced-order model. However, it provides a mean for error calculations and will
be used to determine how well the other approaches work. A simple solution could be the
baseline approach, where we use the POD basis computed at the baseline, that is, for a circular
cylinder (τ = 1.0), map it onto the elliptic cylinder, and compute the modified flow field
using the transformed baseline modes. Clearly, this classical approach where the solution at
any parameter value is sought in the subspace spanned by the POD vectors generated at
another parameter value performs poorly. This is because the baseline POD vectors are best
suited to represent flow solutions at the parameter value for which they have been built.

Using the sensitivity analysis, we can modify the POD basis to include the effect of
parameter variation in the flow field. To do so, we consider the thickness ratio of the ellipse
(α ≡ τ = Lx/Ly) defining the cylinder shape as a parameter. Initially, we vary τ by 1%
(i.e., τ = 0.99) and compute the sensitivity from the finite-difference approach. The accuracy
of the method is limited by the step size Δτ . Using the sensitivity data, we compute the
extrapolated and expanded bases and project the snapshot data onto these bases to obtain
the time-coefficients (qi). We plot the two-dimensional projection of the phase portrait for
one period in the (q1, q2), (q1, q3), and (q1, q4) planes and compare the results obtained with
different basis functions in Figure 5. We observe that the data projected onto all of the bases
compare well to the projection onto the perturbed POD basis. Using the coefficient data
for each case, we compare the solutions to the full-order solution obtained by DNS at the
perturbed state. The relative error in the velocity field u mod on the modified geometry Ωα for
any basis is measured as

error =
∫T

0

√∫

Ωα

(u mod − uDNS)2dΩαdt. (5.1)

In Figure 6, we plot the relative error obtained for each set of basis vectors. Obviously,
the perturbed approach has the least error while the baseline approach corresponds to the
maximum error. On the other hand, we observe that the extrapolated and expanded bases
perform better than the baseline approach. Comparing the two new bases, the expanded
bases seem to work better than the extrapolated bases. The primary reason could be the
additional subspace provided by the sensitivity vectors; however, it also doubles the degrees
of freedom in this case. Thus, modification of the POD basis from geometric sensitivity
broadens the general applicability of the reduced-order models.
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Figure 5: Two-dimensional projections of the phase portraits for different bases.

We vary τ in both directions (i.e., τ = 0.5–1.5) and compute the corresponding shape
sensitivities. We then use the projections and the reduced-order model to quantify the error
with respect to perturbed basis (DNS data). We use 6, 12, and 24 POD modes for all cases. We
compute the error for the baseline, extrapolated, and expanded basis in terms of velocity data
obtained from projections (continuous curves) and reduced-order model (discrete points) as
shown in Figure 7. Our first observation is that the error is small in the vicinity of τ ≈ 1. In
fact, for a 10% perturbation in the geometric parameter, we gain nearly an order of magnitude
improvement in the error over the baseline model. However, as we move away from unity,
the error in all models increases and is weakly dependent on the number of modes used in the
expansion. It is interesting to note that the error increases gradually as τ is increased above the
value 1 while the error deteriorates quickly for τ less than 1. This fact can be explained from
the flow field observed in the wake of elliptic cylinders. Lower values of τ , while keeping
Ly = 1, means more bluffness in the structure and the flow tends to separate due to high
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Figure 6: Relative error in reduced-order models at τ = 0.99.

inverse pressure gradient. Earlier separation of the shear layer leads to transition from von
Karman vortex shedding and the shedding pattern is altered in the wake. This corresponds to
a bifurcation in the flow field and mere sensitivity analysis cannot capture the effect. On the
other hand, increasing τ , while keeping Ly = 1, smooths the flow and the separation is delayed.
Vortex shedding frequency is changed while the shedding pattern remains the same. Thus,
the flow structures are similar when τ > 1 and can be represented by first-order extrapolations
from τ = 1.

In general, the expanded basis tends to perform better than extrapolated basis.
Since we assume linear dependency of the POD modes on the geometric parameter, finite-
difference approach makes the extrapolated approach close to the baseline methodology. In
general, the model based on expanded basis shows relatively better results close to τ .

6. Conclusion

We investigated the possibility of using the POD sensitivity vectors corresponding to a
change in shape to improve the accuracy and dynamical system properties of the reduced-
order models. As a part of the ongoing research in this area, we modified a circular cylinder
to an elliptic cylinder by changing its thickness ratio and computed the sensitivity in the
POD modes with respect to this thickness ratio. We defined different POD bases functions,
with and without sensitivity, and used them to approximate the velocity field. We then
compared the performance of these bases and found that the inclusion of shape sensitivity
information in the POD bases performs better than the baseline approach. However,
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the Sensitivity Analysis for shape parameters is more challenging than for flow parameters
since the extrapolation explicitly requires the mapping from one domain to another. The
results from the shape sensitivity are encouraging and require further investigation in this
field, especially when the parameter changes lead to bifurcations which would require higher
order sensitivities (and not merely the first order derivatives).
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Appendix

The POD eigenfunctions are used as a basis in a Galerkin projection of the incompressible
Navier-Stokes equations. The projection is performed by the inner product of the POD modes
with (2.2) as

(
Φk,

∂u
∂t

+ (u · ∇)u +∇p − 1
Re

∇2u
)

= 0, (A.1)

where (a, b) =
∫
Ωa · bdΩ represents the inner product between a and b, and k = 1, 2, . . . ,M.

We substitute (3.7) into (A.1) and perform the inner product of each term. This leads to
a reduced-order model comprising a set of M ordinary-differential equations. The inner
product reduces the two (or three) momentum equations. To elaborate various terms in the
reduced-order model, we expand each term individually.

Time-Derivative Term

From the Galerkin expansion in (3.7), we see that the first term is

(
Φk,

∂u
∂t

)
=
(
Φk,

∂u(x)
∂t

+
∂u′(x, t)

∂t

)

=

(

Φk, 0 +
∂
∑M

m=1 qm(t)Φm(x)
∂t

)

=

(

Φk,Φm

M∑

m=1

dqm
dt

)

.

(A.2)

From the definition of the POD modes, the eigenfunctions Φi(φui , φ
v
i , φ

w
i ) are orthogonal by

construction; that is,

(

Φk,
M∑

m=1

Φm

)

= (Φk,Φk) =
(
φuk, φ

u
k

)
+
(
φvk, φ

v
k

)
+
(
φvk, φ

v
k

)
= σk. (A.3)

Substituting (A.3) into (A.2), we obtain

(
Φk,

∂u
∂t

)
= σk

dqk
dt

. (A.4)
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Convection Term

We substitute (3.7) into the second term of (A.1) and separate the terms,

(Φk,u · ∇u) =
(
Φk,
(
u + u′) · ∇

(
u + u′))

=
(
Φk,u · ∇u + u · ∇u′ + u′ · ∇u + u′ · ∇u′)

=

(

Φk,u · ∇u + u · ∇
M∑

m=1

qmΦm +
M∑

m=1

qmΦm · ∇u +
M∑

m=1

qmΦm · ∇
M∑

n=1

qnΦn

)

=

(

Φk,u · ∇u + u ·
M∑

m=1

∇Φmqm +
M∑

m=1

Φm · ∇uqm +
M∑

m=1

M∑

n=1

Φm · ∇Φnqmqn

)

(A.5)

We expand the inner product of each term on the right-hand side of (A.5). The first term is

(Φk,u · ∇u) =
(
φuk,u · ∇u

)
+
(
φvk,u · ∇v

)
+
(
φwk ,u · ∇w

)

= φuk

(
u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z

)

+ φvk

(
u
∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z

)

+ φwk

(
u
∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z

)

(A.6)

The second term is

(

Φk,u ·
M∑

m=1

∇Φmqm

)

=
M∑

m=1

φuk

(
u
∂φum
∂x

+ v
∂φum
∂y

+w
∂φum
∂z

)
qm

+
M∑

m=1

φvk

(
u
∂φvm
∂x

+ v
∂φvm
∂y

+w
∂φvm
∂z

)
qm

+
M∑

m=1

φwk

(
u
∂φwm
∂x

+ v
∂φwm
∂y

+w
∂φwm
∂z

)
qm

=
[
φuk

(
u
∂φum
∂x

+ v
∂φum
∂y

+w
∂φum
∂z

)

+ φvk

(
u
∂φvm
∂x

+ v
∂φvm
∂y

+w
∂φvm
∂z

)

+φwk

(
u
∂φwm
∂x

+ v
∂φwm
∂y

+w
∂φwm
∂z

)]
∗ q.

(A.7)
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The third term is

(

Φk,
M∑

m=1

qmΦm · ∇u

)

=
M∑

m=1

φuk

(
φum

∂u

∂x
+ φvm

∂u

∂y
+ φwm

∂u

∂z

)
qm

+
M∑

m=1

φvk

(
φum

∂v

∂x
+ φvm

∂v

∂y
+ φwm

∂v

∂z

)
qm

+
M∑

m=1

φwk

(
φum

∂w

∂x
+ φvm

∂w

∂y
+ φwm

∂w

∂z

)
qm

=
[
φuk

(
φum

∂u

∂x
+ φvm

∂u

∂y
+ φwm

∂u

∂z

)

+ φvk

(
φum

∂v

∂x
+ φvm

∂v

∂y
+ φwm

∂v

∂z

)

+φwk

(
φum

∂w

∂x
+ φvm

∂w

∂y
+ φwm

∂w

∂z

)]
∗ q.

(A.8)

The fourth term is

(

Φk,
M∑

m=1

qmΦm · ∇
M∑

n=1

qnΦn

)

=

(

φuk,
M∑

m=1

M∑

n=1

qmqnΦn · ∇φum

)

+

(

φvk,
M∑

m=1

M∑

n=1

qmqnΦn · ∇φvm

)

+

(

φwk ,
M∑

m=1

M∑

n=1

qmqnΦn · ∇φwm

)

.

(A.9)

Equation (A.9) is further split into subterms for convenience as follows:

(

φuk,
M∑

m=1

M∑

n=1

qmqnΦn · ∇φum

)

=

(

φuk,
M∑

m=1

M∑

n=1

qmqn

(
φun ∗

∂φum
∂x

+ φvn ∗
∂φum
∂y

+ φwn ∗
∂φum
∂z

))

= q′ ∗
[
φuk

(
φun ∗

∂φum
∂x

+ φvn ∗
∂φum
∂y

+ φwn ∗
∂φum
∂z

)]
∗ q.

(A.10)
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Similarly, the other subterms can be expanded as

(

φvk,
M∑

m=1

M∑

n=1

qmqnΦn · ∇φvm

)

=

(

φuk,
M∑

m=1

M∑

n=1

qmqn

(
φun ∗

∂φvm
∂x

+ φvn ∗
∂φvm
∂y

+ φwn ∗
∂φvm
∂z

))

= q′ ∗
[
φvk

(
φun ∗

∂φvm
∂x

+ φvn ∗
∂φvm
∂y

+ φwn ∗
∂φvm
∂z

)]
∗ q,

(

φwk ,
M∑

m=1

M∑

n=1

qmqnΦn · ∇φwm

)

=

(

φuk,
M∑

m=1

M∑

n=1

qmqn

(
φun ∗

∂φwm
∂x

+ φvn ∗
∂φwm
∂y

+ φwn ∗
∂φwm
∂z

))

= q′ ∗
[
φwk

(
φun ∗

∂φwm
∂x

+ φvn ∗
∂φwm
∂y

+ φwn ∗
∂φwm
∂z

)]
∗ q.

(A.11)

Combining (A.10) and (A.11), we obtain

(

Φk,
M∑

m=1

qmΦm · ∇
M∑

n=1

qnΦn

)

= q′ ∗
[
φuk

(
φun ∗

∂φum
∂x

+ φvn ∗
∂φum
∂y

+ φwn ∗
∂φum
∂z

)

+ φvk

(
φun ∗

∂φvm
∂x

+ φvn ∗
∂φvm
∂y

+ φwn ∗
∂φvm
∂z

)

+φwk

(
φun ∗

∂φwm
∂x

+ φvn ∗
∂φwm
∂y

+ φwn ∗
∂φwm
∂z

)]
∗ q.

(A.12)

Equation (A.12) represents the quadratic term in the model.

Pressure Term

The pressure term in the model is also projected onto the POD modes as follows:

(
Φk,∇p

)
=
∫
Φk · ∇p = −

∫
(∇ ·Φk)p +

∫

Ωs

p(n ·Φk). (A.13)

We note that using Green’s theorem and the divergence-free property, the pressure term
drops out from (3.8) for the case of p = 0 on the outerflow boundary Ωso [19]. The POD
eigenfunctions are identically zero on the inflow boundary because the average flow is
subtracted from the total flow. However, in case of Neumann boundary conditions on Ωso, the
contribution of the pressure term is not exactly zero for the cylinder wake. The outer domain
is intentionally kept at 25D from the cylinder to minimize the pressure effects. Hence, the
pressure is neglected on the outflow boundary so the pressure term vanishes in the reduced-
order model [37]. Thus,

(
Φk,∇p

)
= 0. (A.14)
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Diffusion Term

We substitute (3.7) into the diffusion term to obtain

(
Φk,

1
ReD

∇2u
)

= − 1
ReD

(
Φk,∇2(u + u′)

)
= − 1

ReD

(

Φk,∇2u +
M∑

m=1

qm∇2Φm

)

. (A.15)

We expand each term on the right-hand side of (A.15) into its components. The term
containing the mean velocity term is

(
Φk,∇2u

)
= φuk

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

+ φvk

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

+ φwk

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

.

(A.16)

Likewise, the term containing the POD mode is expanded as follows:

(

Φk,
M∑

m=1

qm∇2Φm

)

=
M∑

m=1

qmφ
u
k

(
∂2φum
∂x2

+
∂2φum
∂y2

+
∂2φum
∂z2

)

+
M∑

m=1

qmφ
v
k

(
∂2φvm
∂x2

+
∂2φvm
∂y2

+
∂2φvm
∂z2

)

+
M∑

m=1

qmφ
w
k

(
∂2φwm
∂x2

+
∂2φwm
∂y2

+
∂2φwm
∂z2

)

=

[

φuk

(
∂2φum
∂x2

+
∂2φum
∂y2

+
∂2φum
∂z2

)

+ φvk

(
∂2φvm
∂x2

+
∂2φvm
∂y2

+
∂2φvm
∂z2

)

+φwk

(
∂2φwm
∂x2

+
∂2φwm
∂y2

+
∂2φwm
∂z2

)]

∗ q.

(A.17)
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