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A novel filled function is given in this paper to find a global minima for a nonsmooth constrained
optimization problem. First, a modified concept of the filled function for nonsmooth constrained
global optimization is introduced, and a filled function, which makes use of the idea of the filled
function for unconstrained optimization and penalty function for constrained optimization, is
proposed. Then, a solution algorithm based on the proposed filled function is developed. At last,
some preliminary numerical results are reported. The results show that the proposed approach is
promising.

1. Introduction

Recently, since more accurate precisions demanded by real-world problems, studies on global
optimization have become a hot topic. Many theories and algorithms for global optimization
have been proposed. Among these methods, filled function method is a particularly popular
one. The filled function method was originally introduced in [1, 2] for smooth unconstrained
global optimization. Its idea is to construct a filled function via it the objective function
leaves the current local minimum to find a better one. The filled function method consists
of two phase: local minimization and filling. The two phases are performed repeatedly until
no better minimizer could be located. The filled function method was further developed in
literature [3–9]. It should be noted that these filled function methods deal only with smooth
unconstrained or box constrained optimization problem. However, many practical problems
could only be modelled as nonsmooth constrained global optimization problems. To address
this situation, in this paper, we generalize the filled function proposed in [10] and establish
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a novel filled function approach for nonsmooth constrained global optimization. The key
idea of this approach is to combine the concept of filled function for unconstrained global
optimization with the penalty function for constrained optimization.

In general, there are two difficulties in global optimization: the first is how to leave the
current local minimizer of f(x) to go to a better one; the second is how to check whether the
current minimizer is a global solution of the problem. Just like other GO methods, the filled
function method has some weaknesses discussed in [11]. In particular, the filled function
method cannot solve the second issue, so our paper focuses on the former issue.

The rest of this paper is organized as follows. In Section 2, some preliminaries about
nonsmooth optimization and filled function are listed. In Section 3, the concept of modified
filled function for nonsmooth constrained global optimization is introduced, a novel filled
function is given, and its properties are investigated. In Section 4, an efficient algorithm
based on the proposed filled function is developed for solving nonsmooth constrained
global optimization problem. Section 5 presents some numerical results. Last, in Section 6,
the conclusion is given.

2. Nonsmooth Preliminaries

Consider the following problem (P):

min
x∈S

f(x), (P)

where S = {x ∈ X : gi(x) ≤ 0}, f, gi : X → R, i ∈ I = {1, 2, . . . , m}, and X ⊂ Rn is a box set.
In this section, we first list some definitions and lemmas from [12], then wemake some

assumptions on f(x), gi(x), i ∈ I, and finally we define filled function for problem (P).

Definition 2.1. Letting f(x) be Lipschitz with constant L > 0 at the point x, the generalized
gradient of f at x is defined as

∂f(x) =
{
ξ ∈ X : 〈ξ, d〉 ≤ f0(x;d), ∀d ∈ X

}
, (2.1)

where f0(x;d) = lim supy→x,t↓0(f((y + td)−f(y))/t) is the generalized directional derivative
of f(x) in the direction d at x.

Lemma 2.2. Let f be Lipschitz with constant L at the point x, then

(a) f0(x;d) is finite, sublinear and satisfies |f0(x;d)| ≤ L‖d‖;
(b) for all d ∈ X, f0(x;d) = max{〈ξ, d〉 : ξ ∈ ∂f(x)}, and to any ξ ∈ ∂f(x), one has ‖ξ‖ ≤ L;

(c) ∂Σsifi(x) ⊆ Σsi∂fi(x), for all si ∈ R.

Considering problem (P), throughout the paper, we need the following assumptions:

(A1) f(x) and gi(x), i ∈ I, are Lipschitz continuous with a common constant L > 0.

(A2) the number of the different value of local minimizer of (P) is finite;

(A3) S◦ /= ∅, clS◦ = S, where S◦ denotes the interior of S, clS◦ denotes the closure of S◦.
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Now, we give the definition of filled function for problem (P) below.

Definition 2.3. A function P(x, x∗) is called a filled function of [P] at x∗ if all the following
conditions are met:

(1) x∗ is a strict local maximizer of P(x, x∗) on X;

(2) P(x, x∗) has no stationary points in the set S1 \ x∗ ∪ (X \ S), that is, 0/∈ ∂P(x, x∗);

(3) If x∗ is not a global minimizer of problem (P), then there exists a point x∗
1 ∈ S such

that x∗
1 is a local minimizer of P(x, x∗) on X with f(x∗

1) < f(x∗).

3. A New Filled Function and Its Properties

Consider the problem (P).
Define

F(x, x∗, r) = η(‖x − x∗‖) + r

1 +
[
min
(
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

))]2 , (3.1)

where r > 0 is a parameter, η() is a differentiable function such that η(0) = 1 and η′(t) < 0 for
any t > 0, and ‖ · ‖ indicates the Euclidean vector norm.

Next, we will prove that F(x, x∗, r) is a filled function, where x∗ is the current local
minimizer of problem (P).

Theorem 3.1. x∗ is a strict local maximizer of F(x, x∗, r) on X.

Proof. Since x∗ is a local minimizer of (P), there exists a neighborhood N(x∗, σ∗) of x∗ with
σ∗ > 0 such that f(x) ≥ f(x∗) for any x ∈ S ∩N(x∗, σ∗).We consider the following two cases.

Case 1 (x ∈ N(x∗, σ∗) ∩ S, and x /=x∗). In this case, note that

min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)]
= 0, (3.2)

then

F(x, x∗, r) = η(‖x − x∗‖) − 1 + F(x∗, x∗, r) < F(x∗, x∗, r). (3.3)

Case 2 (x ∈ N(x∗, σ∗) ∩ (X \ S)). In this case, x /=x∗; moreover, there exists at least one index
i0 ∈ 1, . . . , n such that gi0(x) > 0. It follows that

min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)]
= 0,

F(x, x∗, r) = η(‖x − x∗‖) + r < 1 + r = F(x∗, x∗, r).
(3.4)

Therefore, x∗ is a strict local maximizer of F(x, x∗, r).
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Theorem 3.2. For any x ∈ (S1 \ x∗) ∪ (X \ S), one has 0/∈ ∂F(x, x∗, r).

Proof. For any x ∈ (S1 \ x∗) ∪ (X \ S), similar to the proof of Theorem 3.1, we have

min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)]
= 0. (3.5)

Since x /=x∗, it follows that

∂
(
min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)])2

⊂ 2min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)]

× ∂min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)]
= 0,

∂F(x, x∗, r)

⊂ ∂η(‖x − x∗‖) − ∂
(
min
[
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

)])2

× r
(
1 +
[
min
(
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

))]2)2

= η′(‖x − x∗‖) x − x∗

‖x − x∗‖ .

(3.6)

Therefore, we have that

〈
∂F(x, x∗, r),

x − x∗

‖x − x∗‖
〉

⊂
〈
η′(‖x − x∗‖) x − x∗

‖x − x∗‖ ,
x − x∗

‖x − x∗‖
〉

= η′(‖x − x∗‖) < 0.

(3.7)

So, to any ξ ∈ ∂F(x, x∗, r), one has ξT ((x − x∗)/‖x − x∗‖) < 0. Then 0/∈ ∂F(x, x∗, r).

Theorem 3.3. Suppose that Assumptions (1)–(3.8) are satisfied. If x∗ is not a global minimizer, and
r > 0 is appropriately large, then there exists a point x∗

r ∈ S2 such that x∗
r is a minimizer of F(x, x∗, r).

Proof. Since x∗ is not a global minimizer, there exists another local minimizer x∗
1 of (P) such

that f(x∗
1) < f(x∗), g(x∗

1) ≤ 0. By Assumption (3.1), there exists one point x∗
2 ∈ intX such

that f(x∗
2) < f(x∗), g(x∗

2) < 0. Thus, we have

F
(
x∗
2, x

∗, r
)
= η
(∥∥x∗

2 − x∗∥∥) + r

1 +
(
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2 . (3.8)

On the other hand, to any x ∈ ∂S, where ∂S denotes the boundary of the set S, there exists at
least one index i0 ∈ {1, . . . , m} such that gi0(x) = 0, which yields

F(x, x∗, r) = η(‖x − x∗‖) + r. (3.9)
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Let M = maxx1,x2∈X‖x2 − x1‖ > 0,N0 = η(‖x∗
2 − x∗‖) − η(M) � 0. To any x ∈ ∂S, if r > 0 is

chosen to be appropriately large such that

r >
1 +
(
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2
(
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2 N0, (3.10)

then, we have that

F
(
x∗
2, x

∗, r
) − F(x, x∗, r)

= η
(∥∥x∗

2 − x∗∥∥) − η(‖x − x∗‖) − r

( (
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2

1 +
(
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2
)

� η
(∥∥x∗

2 − x∗∥∥) − η(M) − r

( (
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2

1 +
(
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2
)

� N0 − r

( (
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2

1 +
(
max

(
f
(
x∗
2

) − f(x∗), gi
(
x∗
2

)
, i = 1, . . . , m

))2
)

< 0.

(3.11)

Denotes x∗
r = argminx∈SF(x, x∗, r). Then, if r > 0 is appropriately large such that (3.10)

is met, one has

F(x∗
r , x

∗, r) = min
x∈S

F(x, x∗, r) = min
x∈S\∂S

F(x, x∗, r) ≤ F
(
x∗
2, x

∗, r
)
. (3.12)

Note that S \ ∂S is an open bounded set, thus x∗
r ∈ S \ ∂S and gi(x∗

r) < 0, for i = 1, . . . , m.
Moreover, we can easily prove that f(x∗

0) < f(x∗). In fact, if it is not true, then

F(x∗
r , x

∗, r) = η(‖x∗
r − x∗‖) + r > F

(
x∗
2, x

∗, r
)
, (3.13)

which contradicts with (3.12).
Therefore, one has x∗

r ∈ S2. This completes the proof.

4. Solution Algorithm

In the previous section, several properties of the proposed filled function are discussed. Now
a solution algorithm based on these properties is described as follows.

Initialization Step

(1) Choose a disturbance constant δ; for example, set δ := 0.1.

(2) Choose an upper bound of r such that rU > 0; for example, set rU := 108.

(3) Choose a constant r̂ > 0; for example, r̂ = 10.
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(4) Choose direction ek, k = 1, 2, . . . , k0 with integer k0 ≥ 2n, where n is the number of
variable.

(5) Set k := 1.

Main Step

(1) Start from an initial point x, minimize the primal problem (P) by implementing a
nonsmooth local search procedure, and obtain the first local minimizer x∗

1 of f(x).

(2) Let r = 1.

(3) Construct the filled function: F(x, x∗
1, r) = η(‖x − x∗

1‖) + (r/1 + [min(0,max(f(x)−
f(x∗

1), gi(x), i = 1, . . . , m))]2).

(4) If k > k0, then go to (7). Else set x := x∗
1 + δek as an initial point, minimize the

filled function problem by implementing a nonsmooth local search procedure, and
obtain a local minimizer denoted xk.

(5) If xk∈X, then set k := k + 1, go to (4). Else go to next step.

(6) If xk satisfies f(xk) < f(x∗
1), then set x := xk and k := 1, start from x as a new initial

point, minimize the primal problem (P) by implementing a local search procedure,
and obtain another local minimizer x∗

2 of f(x) such that f(x∗
2) < f(x∗

1), set x
∗
1 := x∗

2,
go to (2). Else go to next step.

(7) Increase r by setting r := r̂r.

(8) If r ≤ rU, then set k := 1, go to (3). Else the algorithm is incapable of finding a
better local minimizer. The algorithm stops and x∗

1 is taken as a global minimizer.

The motivation and mechanism behind the algorithm are explained as below.
A set ofm = 2n initial points is chosen in Step (4) of the Initialization step to minimize

the filled function. We set the initial points symmetric about the current local minimizer. For
example, when n = 2, the initial points are: For example, when n = 2, the directions can be
chosen as (1, 0), (0, 1), (−1, 0), (0,−1).

In Step (1) and Step (6) of the Main step, we minimize the primal problem (P)
by nonsmooth constrained local optimization algorithms such as penalty function method,
bundle method, quasi-newton method and composite optimal method. In Step 4 of the
Main step, we minimize the filled function problem by nonsmooth unconstrained local
optimization algorithms such as cutting-planes method, powell method, and Hooke-Jeeve
method. They are all effective methods.

Recall from Theorem 3.3 that the value of r should be selected large enough.
Otherwise, there could be no minimizer of F(x, x∗

1, r) in set S2. Thus, r is increased
successively in Step (7) of the solution process if no better solution is foundwhenminimizing
the filled function. If all the initial points have been used and r reaches its upper bound rU,
but no better solution is found, then the current local minimizer is taken as a global one.

The proposed filled function method can also apply to smooth constrained global
optimization.
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5. Numerical Experiment

In this section, we perform a numerical test to give an initial feeling of the potential
application of the proposed function approach in real-world problems. In our programs, the
filled function is of the form

F(x, x∗, r) = exp(−‖x − x∗‖) + r

1 +
[
min
(
0,max

(
f(x) − f(x∗), gi(x), i = 1, . . . , m

))]2 .

(5.1)

The proposed algorithm is programmed in Fortran 95. The composite optimal method is used
to find local minimizers of the original constrained problem, and the Hooke-Jeeve method is
used to search for local minimizers of the filled function problems.

Themain iterative results of AlgorithmNFFA applying on four test examples are listed
in Tables 1–4 . The symbols used in the tables are given as follows:

k: the iteration number in finding the kth local minimize;

r: the parameter to find the (k + 1)th local minimize;

xk: the kth initial point to find the kth local minimize;

x∗
k
: the kth local minimize;

f(xk): the function value of the kth initial point;

f(x∗
k
): the function value of the kth local minimizer.

Problem 1. We have

min f(x) = −20 exp
⎛
⎝−0.2

√
|x1| + |x2|

2

⎞
⎠ − exp

(
cos(2πx1) + cos(2πx2)

2

)
+ 20

s.t. x2
1 + x2

2 ≤ 300, 2x1 + x2 ≤ 4, −30 ≤ xi ≤ 30, i = 1, 2.

(5.2)

Algorithm NFFA succeeds in finding a global minimizer x∗ = (0, 0)T with f(x∗) = −2.7183.
The numerical results are listed in Table 1.

Problem 2. We have

min f(x) = −x2
1 + x2

2 + x2
3 − x1

s.t. x2
1 + x2

2 + x2
3 − 4 ≤ 0, min{x2 − x3, x3} ≤ 0.

(5.3)

Algorithm NFFA successfully finds an approximate global solution x∗ = (1.9889,−0.0001,
−0.0111)T with f(x∗) = −5.9446. Table 2 records the numerical results of Problem 2.

Problem 3. We have

min f(x) = max
{
f1(x), f2(x), f3(x)

}

s.t. x2
1 − x2 − x2

4 ≤ 0, 0 ≤ xi ≤ 3, i = 1, . . . , 4,
(5.4)
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Table 1: Numerical results for Problem 1.

k r xk f(xk) x∗
k

f(x∗
k
)

1 — (−15,−2) 6.1184 (−15.0000,0.0000) 5.7164
2 1 (−1.0585,0.5165) 2.1433 (0.0001,−0.2094) −0.3690
3 10 (0.0007,−0.0435) −0.7470 (0.0000,0.0000) −2.7183

Table 2: Numerical results for Problem 2.

k r xk f(xk) x∗
k

f(x∗
k
)

1 — (−1.5,1.0,−0.75) 0.8125 (−1.9802,−0.0130,−0.0006) −1.9410
2 1 (1.1931,0.6332,−1.1931) −3.9140 (1.9889, −0.0001,−0.0111) −5.9446

where

fi(x) = f0(x) + 10 · gi(x), i = 1, 2, 3,

f0(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

g1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8,

g2(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10,

g3(x) = x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5.

(5.5)

Algorithm NFFA successfully finds a global solution x∗ = (0, 1, 1, 1)T with f(x∗) = −65. The
computational results are listed in Table 3.

Problem 4. We have

min f(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t. (x3 − 3)2 + x4 ≥ 300, (x5 − 3)2 + x6 ≥ 4, x1 − 3x2 ≤ 2, −x1 + x2 ≤ 2,

2 ≤ x1 + x2 ≤ 6, 0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 8, 1 ≤ x3 ≤ 5,

0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10.

(5.6)

The proposed algorithm successfully finds a global solution x∗ = (5, 1, 5, 0, 5, 10)T with
f(x∗) = −310. The main iterative results are listed in Table 4.

6. Conclusions

In this paper, we extend the concept of the filled function for unconstrained global
optimization to nonsmooth constrained global optimization. Firstly, we give the definition
of the filled function for constrained optimization and construct a new filled function with
one parameter. Then, we design a solution algorithm based on this filled function. Finally, we
perform some numerical experiments. The preliminary numerical results show that the new
algorithm is promising.
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Table 3: Numerical results for Problem 3.

k r xk f(xk) x∗
k

f(x∗
k
)

1 — (2,2,2,2) 42.0000 (0.0000,1.0000,0.0000,2.0000) −6.0000
2 1 (0.6078,2.0003,0.0003,0.0319) −22.9117 (0.9289,0.8620,0.2453,0.0803) −35.9939
3 100 (0.4012,0.2524,0.2288,0.0000) −49.4733 (0.0000,1.0000,1.0000,1.0000) −65.0000

Table 4: Numerical results for Problem 4.

k r xk f(xk) x∗
k

f(x∗
k
)

1 — (2,2,2,2,2,2) −10.0000 (5,1,5,6,5,4) −262.0000
2 1 (5,1,5,1.7581,5,4) −263.0269 (5,1,5,0,5,4) −274.0000
3 1000 (5,1,5,1.7579,5,10) −299.0286 (5,1,5,0,5,10) −310.0000
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