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Shannon wavelets are used to define a method for the solution of integrodifferential equations.
This method is based on (1) the Galerking method, (2) the Shannon wavelet representation, (3) the
decorrelation of the generalized Shannon sampling theorem, and (4) the definition of connection
coefficients. The Shannon sampling theorem is considered in a more general approach suitable
for analysing functions ranging in multifrequency bands. This generalization coincides with the
Shannon wavelet reconstruction of L2(R) functions. Shannon wavelets are C∞-functions and their
any order derivatives can be analytically defined by some kind of a finite hypergeometric series
(connection coefficients).

1. Introduction

In recent years wavelets have been successfully applied to the wavelet representation of
integro-differential operators, thus giving rise to the so-called wavelet solutions of PDE and
integral equations. While wavelet solutions of PDEs can be easily find in a large specific
literature, the wavelet representation of integro-differential operators cannot be considered
completely achieved and only few papers discuss in depth this question with particular
regards to methods for the integral equations. Some of them refer to the Haar wavelets [1–3]
to the harmonic wavelets [4–9] and to the spline-Shannon wavelets [10–13]. These methods
are mainly based on the Petrov-Galerkin method with a suitable choice of the collocation
points [14]. Alternatively to the collocation method, there has been also proposed, for the
solution of PDEs, the evaluation of the differential operators on the wavelet basis, thus
defining the so-called connection coefficients [6, 15–21].

Wavelets [22] are localized functions which are a useful tool in many different
applications: signal analysis, data compression, operator analysis, PDE solving (see, e.g.,
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[15, 23] and references therein), vibration analysis, and solid mechanics [23]. Very often
wavelets have been used only as any other kind of orthogonal functions, without taking into
consideration their fundamental properties. The main feature of wavelets is, in fact, their
possibility to split objects into different scale components [22, 23] according to the multiscale
resolution analysis. For the L2(R) functions, that is, functions with decay to infinity, wavelets
give the best approximation. When the function is localized in space, that is, the bottom length
of the function is within a short interval (function with a compact support), such as pulses,
any other reconstruction, but wavelets, leads towards undesirable problems such as the Gibbs
phenomenon when the approximation is made in the Fourier basis. Wavelets are the most
expedient basis for the analysis of impulse functions (pulses) [24, 25].

Among the many families of wavelets, Shannon wavelets [17] offer some more specific
advantages, which are often missing in the others. In fact, Shannon wavelets

(1) are analytically defined;

(2) are infinitely differentiable;

(3) are sharply bounded in the frequency domain, thus allowing a decomposition of
frequencies in narrow bands;

(4) enjoy a generalization of the Shannon sampling theorem, which extend to all range
of frequencies [17]

(5) give rise to the connection coefficients which can be analytically defined [15–17]
for any order derivatives, while for the other wavelet families they were computed
only numerically and only for the lower order derivatives [18, 19, 21].

The (Shannon wavelet) connection coefficients are obtained in [17] as a finite series
(for any order derivatives). In Latto’s method [18, 20, 21], instead, these coefficients
were obtained only (for the Daubechies wavelets) by using the inclusion axiom but in
approximated form and only for the first two-order derivatives. The knowledge of the
derivatives of the basis enables us to approximate a function and its derivatives and it is
an expedient tool for the projection of differential operators in the numerical computation of
the solution of both partial and ordinary differential equations [6, 15, 23, 26].

The wavelet reconstruction by using Shannon wavelets is also a fundamental step
in the analysis of functions-operators. In fact, due to their definition Shannon wavelets are
box functions in the frequency domain, thus allowing a sharp decorrelation of frequencies,
which is an important feature in many physical-engineering applications. In fact, the
reconstruction by Shannon wavelets ranges in multifrequency bands. Comparing with the
Shannon sampling theorem where the frequency band is only one, the reconstruction by
Shannon wavelets can be done for functions ranging in all frequency bands (see, e.g., [17]).
The Shannon sampling theorem [27], which plays a fundamental role in signal analysis
and applications, will be generalized, so that under suitable hypotheses a few set of values
(samples) and a preliminary chosen Shannon wavelet basis enable us to completely represent,
by the wavelet coefficients, the continuous signal and its frequencies.

The Shannon wavelet solution of an integrodifferential equation (with functions
localized in space and slow decay in frequency) will be computed by using the Petrov-
Galerkin method and the connection coefficients. The wavelet coefficients enable to represent
the solution in the frequency domain singling out the contribution to different frequencies.

This paper is organized as follows. Section 2 deals with some preliminary remarks and
properties of Shannon wavelets also in frequency domain; the reconstruction of a function
is given in Section 3 together with the generalization of the Shannon sampling theorem;
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the error of the wavelet approximation is computed. The wavelet reconstruction of the
derivatives of the basis and the connection coefficients are given in Section 4. Section 5 deals
with the Shannon wavelet solution of an integrodifferential equation and an example is given
at last in Section 6.

2. Shannon Wavelets

Shannon wavelets theory (see, e.g., [16, 17, 28, 29]) is based on the scaling function ϕ(x) (also
known as sinc function)

ϕ(x) = sincx def=
sinπx
πx

=
eπix − e−πix

2πix
, (2.1)

and the corresponding wavelet [16, 17, 28, 29]

ψ(x) =
sinπ(x − 1/2) − sin 2π(x − 1/2)

π(x − 1/2)

=
e−2iπx(−i + eiπx + e3iπx + ie4iπx)

(π − 2πx)
.

(2.2)

From these functions a multiscale analysis [22] can be derived. The dilated and
translated instances, depending on the scaling parameter n and space shift k, are

ϕnk(x) = 2n/2ϕ(2nx − k) = 2n/2 sinπ(2nx − k)
π(2nx − k)

= 2n/2 e
πi(2nx−k) − e−πi(2nx−k)

2πi(2nx − k) ,

(2.3)

ψnk (x) = 2n/2 sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)
π(2nx − k − 1/2)

=
2n/2

2π(2nx − k + 1/2)

2∑

s=1

i1+sesπi(2
nx−k) − i1−se−sπi(2nx−k)

(2.4)

respectively.

2.1. Properties of the Shannon Scaling and Wavelet Functions

By a direct computation it can be easily seen that

ϕ0
k(h) = δkh, (h, k ∈ Z), (2.5)
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with δkh Kroneker symbol, so that

ϕ0
k(x) = 0, x = h/= k (h, k ∈ Z), (2.6)

ψnk (x) = 0, x = 2−n
(
k +

1
2
± 1

3

)
, (n ∈ N, k ∈ Z). (2.7)

It is also

lim
x→ 2−n(h+1/2)

ψnk (x) = −2n/2δhk. (2.8)

Thus, according to (2.5), (2.8), for each fixed scale n, we can choose a set of points x:

x ∈ {h} ∪
{

2−n
(
h +

1
2
± 1

3

)}
, (n ∈ N, h ∈ Z), (2.9)

where either the scaling functions or the wavelet vanishes, but it is important to notice that
when the scaling function is zero, the wavelet is not and viceversa. As we shall see later, this
property will simplify the numerical methods based on collocation point.

Since they belong to L2(R), both families of scaling and wavelet functions have a
(slow) decay to zero; in fact, according to their definition (2.3), (2.4)

lim
x→±∞

ϕnk(x) = 0, lim
x→±∞

ψnk (x) = 0, (2.10)

it can be also easily checked that for a fixed x0

ϕnk+1(x0) < ϕnk(x0),
ϕn
k+1(x0)
ϕn
k(x0)

=
2nx − k

2nx − k + 1
< 1,

ψn
k+1(x0)
ψn
k (x0)

=
2n+1x − 2k − 1
2n+1x − 2k − 3

× 2 sin(π(2nx − k)) − 1
2 sin(π(2nx − k)) + 1

.

(2.11)

Since

lim
x→∞

2n+1x − 2k − 1
2n+1x − 2k − 3

= 1,

2 sin(π(2nx − k)) − 1 < 2 sin(π(2nx − k)) + 1,

(2.12)

it is

lim
x→∞

ψn
k+1(x)
ψn
k (x)

< 1. (2.13)
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Analogously we have

ψn+1
k (x0)
ψn
k (x0)

=

√
2
(
2n+1x − 2k − 1

)

2n+2x − 2k − 1
×

cos
(
π
(
2n+1x − k

))
− sin

(
2π
(
2n+1x − k

))

cos(π(2nx − k)) − sin(2π(2nx − k)) ,

lim
x→ 2−n(k+1/2)

ψn+1
k+1(x)
ψn
k (x)

=
2
√

2(cos kπ − sin 2kπ)
(2k − 1)π

=
(−1)k2

√
2

(2k − 1)π
,

∣
∣
∣
∣
∣
(−1)k2

√
2

(2k − 1)π

∣
∣
∣
∣
∣
< 1.

(2.14)

The maximum and minimum values of these functions can be easily computed. The
maximum value of the scaling function ϕ0

k
(x) can be found in correspondence of x = k

max
[
ϕ0
k(xM)

]
= 1, xM = k. (2.15)

The min value of ϕ0
k
(x) can be computed only numerically and it is

min
[
ϕ0
k(x)

]
∼= ϕ0

k(xm) =
sin
√

2π√
2π

, xm = k − 1 ±
√

2. (2.16)

The minimum of the wavelet ψn
k
(x) can be found in correspondence of the middle

point of the zeroes (2.7) so that

min
[
ψnk (xm)

]
= −2n/2, xm = 2−n−1(2k + 1), (2.17)

and the max values of ψn
k
(x) are

max
[
ψnk (xM)

]
= 2n/2 3

√
3

π
, xM =

⎧
⎪⎪⎨

⎪⎪⎩

−2−n
(
k +

1
6

)
,

2−n−1

3
(18k + 7).

(2.18)

2.2. Shannon Wavelets Theory in the Fourier Domain

Let

f̂(ω) = f̂(x) def=
1

2π

∫∞

−∞
f(x)e−iωx dx (2.19)

be the Fourier transform of the function f(x) ∈ L2(R), and

f(x) = 2π
∫∞

−∞
f̂(ω)eiωx dω (2.20)

its inverse transform.
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The Fourier transform of (2.1), (2.2) gives us

ϕ̂(ω) =
1

2π
χ(ω + 3π) =

⎧
⎨

⎩

1
2π

, −π ≤ ω < π

0, elsewhere,
(2.21)

and [17]

ψ̂(ω) =
1

2π
e−iω
[
χ(2ω) + χ(−2ω)

]
(2.22)

with

χ(ω) =

⎧
⎨

⎩

1, 2π ≤ ω < 4π,

0, elsewhere.
(2.23)

Analogously for the dilated and translated instances of scaling/wavelet function, in the
frequency domain, it is

ϕ̂nk(ω) =
2−n/2

2π
e−iωk/2nχ

(ω
2n

+ 3π
)
,

ψ̂nk (ω) = −
2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
.

(2.24)

It can be seen that

χ(ω + 3π)
[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
= 0 (2.25)

so that by using the function ϕ̂0
k(ω) and ψ̂nk (ω) there is a decorrelation into different non-

overlapping frequency bands.
For each f(x) ∈ L2(R) and g(x) ∈ L2(R), the inner product is defined as

〈
f, g
〉 def=

∫∞

−∞
f(x)g(x)dx, (2.26)

which, according to the Parseval equality, can be expressed also as

〈
f, g
〉 def=

∫∞

−∞
f(x)g(x)dx = 2π

∫∞

−∞
f̂(ω)ĝ(ω)dω = 2π

〈
f̂ , ĝ
〉
, (2.27)

where the bar stands for the complex conjugate.
With respect to the inner product (2.26). The following can be shown. [16, 17]
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Theorem 2.1. Shannon wavelets are orthonormal functions, in the sense that

〈
ψnk (x), ψ

m
h (x)

〉
= δnmδhk, (2.28)

With δnm, δhk being the Kroenecker symbols.

For the proof see [17]. Moreover we have [16, 17].

Theorem 2.2. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal, in the sense that

〈
ϕ0
k(x), ϕ

0
h(x)

〉
= δkh, (2.29)

being ϕ0
k
(x) def= ϕ(x − k).

See the proof in [17].
The scalar product of the (Shannon) scaling functions with respect to the correspond-

ing wavelets is characterized by the following [16, 17].

Theorem 2.3. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal to the Shannon wavelets, in the sense that

〈
ϕ0
k(x), ψ

m
h (x)

〉
= 0, m ≥ 0, (2.30)

being ϕ0
k
(x) def= ϕ(x − k).

Proof is in [17].

3. Reconstruction of a Function by Shannon Wavelets

Let f(x) ∈ L2(R) be a function such that for any value of the parameters n, k ∈ Z, it is

∣∣∣∣

∫∞

−∞
f(x)ϕ0

k(x)dx
∣∣∣∣ ≤ Ak <∞,

∣∣∣∣

∫∞

−∞
f(x)ψnk (x)dx

∣∣∣∣ ≤ B
n
k <∞, (3.1)

and B ⊂ L2(R) the Paley-Wiener space, that is, the space of band limited functions, that is,

supp f̂ ⊂ [−b, b], b <∞. (3.2)

According to the sampling theorem (see, e.g., [27] and references therein) we have the
following.
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Theorem 3.1 (Shannon). If f(x) ∈ L2(R) and supp f̂ ⊂ [−π,π], the series

f(x) =
∞∑

k=−∞
αkϕ

0
k(x) (3.3)

uniformly converges to f(x), and

αk = f(k). (3.4)

Proof (see also [17]). In order to compute the values of the coefficients we have to evaluate the
series in correspondence of the integer:

f(h) =
∞∑

k=−∞
αkϕ

0
k(h)

(2.5)
=

∞∑

k=−∞
αkδkh = αh, (3.5)

having taken into account (2.5).
The convergence follows from the hypotheses on f(x). In particular, the importance of

the band limited frequency can be easily seen by applying the Fourier transform to (3.3):

f̂(ω) =
∞∑

k=−∞
f(k)ϕ̂0

k(x)

(2.24)
=

1
2π

∞∑

k=−∞
f(k)e−iωkχ(ω + 3π)

=
1

2π
χ(ω + 3π)

∞∑

k=−∞
f(k)e−iωk

(3.6)

so that

f̂(ω) =

⎧
⎪⎨

⎪⎩

1
2π

∞∑

k=−∞
f(k)e−iωk, ω ∈ [−π,π]

0, ω /∈ [−π,π].
(3.7)

In other words, if the function is band limited (i.e., with compact support in the frequency
domain), it can be completely reconstructed by a discrete Fourier series. The Fourier
coefficients are the values of the function f(x) sampled at the integers.
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As a generalization of the Paley-Wiener space, and in order to generalize the Shannon
theorem to unbounded intervals, we define the space Bψ ⊇ B of functions f(x) such that the
integrals

αk
def=
〈
f(x), ϕ0

k(x)
〉 (2.27)

=
∫∞

−∞
f(x)ϕ0

k(x)dx,

βnk
def=
〈
f(x), ψnk (x)

〉 (2.27)
=
∫∞

−∞
f(x)ψnk (x)dx

(3.8)

exist and are finite. According to (2.26), (2.27), it is in the Fourier domain that

αk
def=
∫∞

−∞
f(x)ϕ0

k(x)dx
(14)
= 2π〈f̂(x), ̂ϕ0

k
(x)〉 = 2π

∫∞

−∞
f̂(ω)ϕ0

k
(ω)dω

(2.24)
= 2π

∫∞

−∞
f̂(ω)

1
2π

eiωkχ(ω + 3π)dω
(2.23)
=
∫π

−π
f̂(ω)eiωkdω,

βnk
def=
∫∞

−∞
f(x)ψnk (x)dx

(2.27)
= 2π〈f̂(x), ψ̂nk (x)〉

(2.24)
= −2π

∫∞

−∞
f̂(ω)

2−n/2

2π
eiω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
dω

(2.23)
= −2−n/2

[∫2n+1π

2nπ
f̂(ω)eiω(k+1/2)/2ndω +

∫−2nπ

−2n+1π

f̂(ω)eiω(k+1/2)/2ndω

]

,

(3.9)

so that

αk =
∫π

−π
f̂(ω)eiωkdω

βnk = −2−n/2

[∫2n+1π

2nπ
f̂(ω)eiω(k+1/2)/2ndω +

∫−2nπ

−2n+1π

f̂(ω)eiω(k+1/2)/2ndω

]

.

(3.10)

For the unbounded interval, let us prove the following.

Theorem 3.2 (Shannon generalized theorem). If f(x) ∈ Bψ ⊂ L2(R) and supp f̂ ⊆ R, the series

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x) (3.11)

converges to f(x), with αh and βn
k
given by (3.8) and (3.10). In particular, when supp f̂ ⊆

[−2N+1π, 2N+1π], it is

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

N∑

n=0

∞∑

k=−∞
βnkψ

n
k (x). (3.12)
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Proof. The representation (3.11) follows from the orthogonality of the scaling and Shannon
wavelets (Theorems 2.1, 2.2, and 2.3). The coefficients, which exist and are finite, are given by
(3.8). The convergence of the series is a consequence of the wavelet axioms.

It should be noticed that

supp f̂ = [−π,π]
⋃

n=0,...,∞

[
−2n+1π,−2nπ

]
∪
[
2nπ, 2n+1π

]
, (3.13)

so that for a band limited frequency signal, that is, for a signal whose frequency belongs to the
band [−π,π], this theorem reduces to the Shannon sampling theorem. More in general, the
representation (3.11) takes into account more frequencies ranging in different bands. In this
case we have some nontrivial contributions to the series coefficients from all bands, ranging
from [−2Nπ, 2Nπ]:

supp f̂ = [−π,π]
⋃

n=0,...,N

[
−2n+1π,−2nπ

]
∪
[
2nπ, 2n+1π

]
. (3.14)

In the frequency domain, (3.11) gives

f̂(ω) =
∞∑

h=−∞
αh ϕ̂

0
h(ω) +

∞∑

n=0

∞∑

k=−∞
βnkψ̂

n
k (ω)

f̂(ω)
(2.24)
=

1
2π

∞∑

h=−∞
αhe

−iωhχ(ω + 3π)

− 1
2π

∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−iω(k+1/2)/2n
[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
.

(3.15)

That is,

f̂(ω) =
1

2π
χ(ω + 3π)

∞∑

h=−∞
αhe

−iωh

− 1
2π

χ

(
ω

2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−i ω(k+1/2)/2n

− 1
2π

χ

( −ω
2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−i ω(k+1/2)/2n .

(3.16)

Moreover, taking into account (2.5), (2.7), we can write (3.11) as

f(x) =
∞∑

h=−∞
f(h)ϕ0

h(x) −
∞∑

n=0

∞∑

k=−∞
2−n/2fn

(
2−n
(
k +

1
2

))
ψnk (x) (3.17)
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with

fn(x)
def=

∞∑

k=−∞

〈
f(x), ψnk (x)

〉
ψnk (x). (3.18)

3.1. Error of the Shannon Wavelet Approximation

Let us fix an upper bound for the series of (3.11) in a such way that we can only have the
approximation

f(x) ∼=
K∑

h=−K
αhϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x). (3.19)

This approximation can be estimated by the following

Theorem 3.3 (Error of the Shannon wavelet approximation). The error of the approximation
(3.19) is given by

∣∣∣∣∣
f(x) −

K∑

h=−K
αh ϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x)

∣∣∣∣∣

≤
∣∣∣∣∣
f(−K − 1) + f(K + 1) − 3

√
3

π

[
f

(
2−N−1

(
−S − 1

2

))
+ f
(

2−N−1
(
S +

3
2

))]∣∣∣∣∣
.

(3.20)

Proof. The error of the approximation (3.19) is defined as

f(x) −
K∑

h=−K
αhϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x)

=
−K−1∑

h=−∞
αh ϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x) +

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

.

(3.21)

Concerning the first part of the r.h.s, it is

−K−1∑

h=−∞
αh ϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x) ≤ max

x∈R

[
−K−1∑

h=−∞
αhϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x)

]

=
−K−1∑

h=−∞
αh ϕ

0
h(h) +

∞∑

h=K+1

αh ϕ
0
h(h)

(2.5)
=

−K−1∑

h=−∞
αh +

∞∑

h=K+1

αh
(3.3)
=

−K−1∑

h=−∞
f(h) +

∞∑

h=K+1

f(h),

(3.22)
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and since f(x) ∈ L2(R) is a decreasing function,

−K−1∑

h=−∞
αhϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x) ≤ f(−K − 1) + f(K + 1). (3.23)

Analogously, it is

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

≤ max
x∈R

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

(2.18)
=

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k

(
2−n−1(18k + 7)

3

)

+
∞∑

k=S+1

βnkψ
n
k

(
2−n−1(18k + 7)

3

)]

=
∞∑

n=N+1

[
−S−1∑

k=−∞
βnk2n/2 3

√
3

π
+

∞∑

k=S+1

βnk2n/2 3
√

3
π

]

=
3
√

3
π

∞∑

n=N+1

2n/2

[
−S−1∑

k=−∞
βnk +

∞∑

k=S+1

βnk

]

(3.17)
= −3

√
3

π

∞∑

n=N+1

2n/2

[
−S−1∑

k=−∞
2−n/2f

(
2−n
(
k +

1
2

))
+

∞∑

k=S+1

2−n/2f

(
2−n
(
k +

1
2

))]

,

(3.24)

so that

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

≤ −3
√

3
π

[
f

(
2−N−1

(
−S − 1

2

))
+ f
(

2−N−1
(
S +

3
2

))]

(3.25)

from where (3.20) follows.

4. Reconstruction of the Derivatives

Let f(x) ∈ L2(R) and let f(x) be a differentiable function f(x) ∈ Cp with p sufficiently
high. The reconstruction of a function f(x) given by (3.11) enables us to compute also its
derivatives in terms of the wavelet decomposition:

d


dx

f(x) =

∞∑

h=−∞
αh

d


dx

ϕ0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnk

d


dx

ψnk (x), (4.1)

so that, according to (3.11), the derivatives of f(x) are known when the derivatives

d


dx

ϕ0
h(x),

d


dx

ψnk (x) (4.2)

are given.
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Indeed, in order to represent differential operators in wavelet bases, we have to
compute the wavelet decomposition of the derivatives:

d


dx

ϕ0
h(x) =

∞∑

k=−∞
λ
(
)
hk

ϕ0
k(x),

d


dx

ψmh (x) =

∞∑

n=0

∞∑

k=−∞
γ (
)

mn

hk ψ
n
k (x),

(4.3)

being

λ
(
)
kh

def=

〈
d


dx

ϕ0
k(x), ϕ

0
h(x)

〉

, γ (
) nmkh
def=

〈
d


dx

ψnk (x), ψ

m
h (x)

〉

(4.4)

the connection coefficients [15–21, 26, 29] (or refinable integrals).
Their computation can be easily performed in the Fourier domain, thanks to the

equality (2.27). In fact, in the Fourier domain the 
-order derivative of the (scaling) wavelet
functions is

̂d


dx

ϕn
k(x) = (iω)
ϕ̂nk(ω),

̂d


dx

ψn
k (x) = (iω)
ψ̂nk (ω),

(4.5)

and according to (2.24),

̂d


dx

ϕnk(x) = (iω)


2−n/2

2π
e−iωk/2nχ

(ω
2n

+ 3π
)
,

̂d


dx

ψn
k (x) = −(iω)


 2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ
(
− ω

2n−1

)]
.

(4.6)

Taking into account (2.27), we can easily compute the connection coefficients in the
frequency domain

λ
(
)
kh = 2π

〈
̂d


dx

ϕ0
k(x),

̂ϕ0
h(x)

〉

, γ (
)
nm

kh = 2π

〈
̂d


dx

ψnk (x), ψ̂

m
h (x)

〉

(4.7)

with the derivatives given by (4.6).
If we define

μ(m) = sign(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, m > 0,

−1, m < 0,

0, m = 0,

(4.8)

the following has been shown [16, 17].
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Theorem 4.1. The any order connection coefficients (4.4)1 of the Shannon scaling functions ϕ0
k(x)

are

λ
(
)
kh =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)k−h
i


2π


∑

s=1


!πs

s![i(k − h)]
−s+1

[
(−1)s − 1

]
, k /=h,

i
π
+1

2π(
 + 1)

[
1 + (−1)


]
, k = h,

(4.9)

or, shortly,

λ
(
)
kh

=
i
π


2(
 + 1)

[
1 + (−1)


](
1 −
∣
∣μ(k − h)

∣
∣)

+ (−1)k−h
∣
∣μ(k − h)

∣
∣ i




2π


∑

s=1


!πs

s![i(k − h)]
−s+1

[
(−1)s − 1

]
.

(4.10)

For the proof see [17].
Analogously for the connection coefficients (4.4)2 we have the following.

Theorem 4.2. The any order connection coefficients (4.7)2 of the Shannon scaling wavelets ψn
k
(x) are

γ (
)
nm

kh = δnm
{

i

(
1 −
∣∣μ(h − k)

∣∣)π

2n
−1


 + 1

(
2
+1 − 1

)(
1 + (−1)


)

+ μ(h − k)

+1∑

s=1

(−1)[1+μ(h−k)](2
−s+1)/2 
!i
−sπ
−s

(
 − s + 1)!|h − k|s
(−1)−s−2(h+k)2n
−s−1

×
{

2
+1
[
(−1)4h+s + (−1)4k+


]
− 2s
[
(−1)3k+h+
 + (−1)3h+k+s

]}}

,

(4.11)

respectively, for 
 ≥ 1, and γ (0)
nm

kh = δkhδnm.

For the proof see [17].

Theorem 4.3. The connection coefficients are recursively given by the matrix at the lowest scale level:

γ (
)
nn

kh = 2
(n−1)γ (
)
11
kh
. (4.12)

Moreover it is

γ (2
+1)nn
kh = −γ (2
+1)nn

hk, γ (2
)
nn

kh = γ (2
)
nn

hk. (4.13)

If we consider a dyadic discretisation of the x-axis such that

xk = 2−n
(
k +

1
2

)
, k ∈ Z (4.14)



Mathematical Problems in Engineering 15

according to (2.8), the (4.3)2 at dyadic points xk = 2−n(k + 1/2) becomes
[

d
dx

ψnk (x)
]

x=xk
= −2n/2

∞∑

h=−∞
γ ′
nn
kh. (4.15)

For instance, in x1 = 2−1(1 + 1/2)
[

d
dx

ψ1
1(x)

]

x=x1=3/4
= −21/2

∞∑

h=−∞
γ11

1h
∼= −21/2

2∑

h=−2
γ11

1h = −21/2
(

1
6
+

1
4

)
= −5

√
2

12
. (4.16)

Analogously it is

ϕnk

(
2−n
(
k +

1
2

))
=

21+n/2

π
, k ∈ Z, (4.17)

from where, in xk = (k + 1/2), it is

[
d

dx
ϕ0
k(x)

]

x=xk
=

2
π

∞∑

h=−∞
λkh. (4.18)

5. Wavelet Solution of the Integrodifferential Equation

Let us consider the following linear integrodifferential equation:

A
du
dx

= B
∫∞

−∞
k
(
x, y
)
u
(
y
)
dy + u(x) + q(x) (A,B ∈ R), (5.1)

which includes as special cases the integral equation (A = 0, B /= 0) and the differential
equation (A/= 0, B = 0). When A = B = 0, there is the trivial solution u(x) = −q(x).

It is assumed that the kernel is in the form:

k
(
x, y
)
= f(x)g

(
y
)
, (5.2)

and the given functions f(x) ∈ L2(R), g(x) ∈ L2(R), q(x) ∈ L2(R), so that, according to (3.11)

f(x) =
∞∑

h=−∞
fhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
fnk ψ

n
k (x),

g(x) =
∞∑

h=−∞
ghϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
gnkψ

n
k (x),

q(x) =
∞∑

h=−∞
qhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
qnkψ

n
k (x),

(5.3)

with the wavelet coefficients fh, fnk , gh, g
n
k , qh, q

n
k given by (3.8).

The analytical solution of (5.1) can be obtained as follows.
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Theorem 5.1. The solution of (5.1), in the degenerate case (5.2), in the Fourier domain is

û(ω) =
2π B

〈
ĝ(ω), q̂(ω)/(Aiω − 1)

〉

(1 − 2πB)
〈
ĝ(ω), f̂(ω)/(Aiω − 1)

〉
f̂(ω)

Aiω − 1
+

q̂(ω)
Aiω − 1

. (5.4)

Proof. The Fourier transform of (5.1), with kernel as (5.2), is

A
d̂u
dx

= Bf̂(x)
∫∞

−∞
g
(
y
)
u
(
y
)
dy + û(x) + q̂(x),

Aiω û(ω) = 2πBf̂(ω)
〈
ĝ(ω), û(ω)

〉
+ û(ω) + q̂(ω),

û(ω) = 2πB
f̂(ω)

(Aiω − 1)
〈
ĝ(ω), û(ω)

〉
+

q̂(ω)
(Aiω − 1)

,

(5.5)

that is,

û(ω) = 2πB
f̂(ω)

(Aiω − 1)
〈
ĝ(ω), û(ω)

〉
+

q̂(ω)
(Aiω − 1)

. (5.6)

By the inner product with ĝ(ω) there follows

〈
ĝ(ω), û(ω)

〉
= 2πB

〈

ĝ(ω),
f̂(ω)

(Aiω − 1)

〉
〈
ĝ(ω), û(ω)

〉
+
〈
ĝ(ω),

q̂(ω)
(Aiω − 1)

〉
, (5.7)

so that

〈
ĝ(ω), û(ω)

〉
=

〈
ĝ(ω), q̂(ω)/(Aiω − 1)

〉

(1 − 2πB)
〈
ĝ(ω), f̂(ω)/(Aiω − 1)

〉 . (5.8)

If we put this equation into (5.6), we get (5.4).

Although the existence of solution is proven, the computation of the Fourier transform
could not be easily performed. Therefore the numerical computation is searched in the
wavelet approximation.
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The wavelet solution of (5.1) can be obtained as follows: it is assumed that the
unknown function and its derivative can be written as

u(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x),

du
dx

=
∞∑

h=−∞
αh

d
dx

ϕ0
h(x) +

∞∑

n=0

∞∑

k=−∞

d
dx

βnkψ
n
k (x)

(4.3)
=

∞∑

h=−∞
αh

∞∑

s=−∞
λ′hsϕ

0
s(x) +

∞∑

n=0

∞∑

k=−∞
βnk

∞∑

m=0

∞∑

s=−∞
γ ′
nm
sk ψ

m
s (x),

(5.9)

and the integral can be written as

∫∞

−∞
g
(
y
)
u
(
y
)
dy =

〈
g, u
〉
=

∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k . (5.10)

There follows the system

∞∑

h=−∞
αh

∞∑

s=−∞
λ′hsϕ

0
s(x) +

∞∑

n=0

∞∑

k=−∞
βnk

∞∑

m=0

∞∑

s=−∞
γ ′
nm
sk ψ

m
s (x)

=
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x)

+

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k

][
∞∑

h=−∞
fh ϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
fnk ψ

n
k (x)

]

+
∞∑

h=−∞
qhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
qnkψ

n
k (x),

(5.11)

and, according to the definition of the connection coefficients,

∞∑

h=−∞
αh

∞∑

s=−∞
λ′hsϕ

0
s(x) +

∞∑

n=0

∞∑

k=−∞

∞∑

s=−∞
βnkγ

′nn
sk ψ

n
s (x)

=
∞∑

h=−∞
αh ϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x)

+

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k

][
∞∑

h=−∞
fhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
fnk ψ

n
k (x)

]

+
∞∑

h=−∞
qhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
qnkψ

n
k (x).

(5.12)
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By the inner product and taking into account the orthogonality conditions (Theorems 2.1, 2.2,
and 2.3) it is

∞∑

h=−∞
αhλ

′
hk = αk +

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

h=−∞
βnhg

n
h

]

fk + qk, (5.13)

or

∞∑

h=−∞

(
λ′hk − δhk − ghfk

)
αh =

[
∞∑

n=0

∞∑

h=−∞
βnhg

n
h

]

fk + qk, (k ∈ Z). (5.14)

Analogously, it is

∞∑

n=0

∞∑

k=−∞
βnk γ

′nj
kr

= βjr +

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k

]

f
j
r + q

j
r (5.15)

or, according to (4.11), and rearranging the indices

∞∑

h=−∞
βnh
(
γ ′
nn
hk − δhk

)
− fnk

∞∑

m=0

∞∑

h=−∞
βmh g

m
h = fnk

∞∑

h=−∞
αhgh + qnk. (5.16)

Thus the solution of (5.1) is (5.9)1 with the wavelet coefficients given by the algebraic system

∞∑

h=−∞

(
λ′hk − δhk − ghfk

)
αh =

[
∞∑

n=0

∞∑

h=−∞
βnhg

n
h

]

fk + qk (k ∈ Z),

∞∑

h=−∞
βnh
(
γ ′
nn
hk − δhk

)
− fnk

∞∑

m=0

∞∑

h=−∞
βmh g

m
h = fnk

∞∑

h=−∞
αhgh + qnk (n ∈ N, k ∈ Z)

(5.17)

and up to a fixed scale of approximation N,S:

S∑

h=−S

(
λ′
hk
− δhk − ghfk

)
αh =

[
N∑

n=0

S∑

h=−S
βn
h
gn
h

]
fk + qk (k ∈ Z),

S∑

h=−S
βn
h

(
γ ′nnhk − δhk

)
− fn

k

N∑

m=0

S∑

h=−S
βm
h
gm
h
= fn

k

N∑

h=−N
αhgh + qnk (n ∈ N, k ∈ Z).

(5.18)
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6. Example

Let us consider the following equation:

du
dx

=
∫∞

−∞
e−x

2−|y|u
(
y
)
dy − x

|x|u(x) − e
−x2

(6.1)

with the condition

u(0) = 1. (6.2)

The analytical solution, as can be directly checked, is

u(x) = e−|x|. (6.3)

Since

f(x) = e−x
2
, g(x) = e−|x|, q(x) = −e−x2 (6.4)

belong to L2(R), let us find the wavelet approximation by assuming that also u(x) belongs to
L2(R), so that they can be represented according to (5.3), (5.9).

At the level of approximation N = 0, S = 0, from (5.3) we have

f(x) = e−x
2 ∼= 0.97ϕ0

0(x), g(x) = e−|x| ∼= 0.80ϕ0
0(x) + 0.04ψ0

0(x),

q(x) = −e−x2 ∼= −0.97ϕ0
0(x),

(6.5)

so that

f0 = 0.97, f0
0 = 0, g0 = 0.80, g0

0 = 0.04, q0 = −0.97, q0
0 = 0. (6.6)

System (5.18) becomes

(
λ′00 − δ00 − g0f0

)
α0 = β0

0g
0
0f0 + q0,

β0
0

(
γ ′00

00 − δ00

)
− f0

0β
0
0g

0
0 = f0

0α0g0 + q0
0,

(6.7)

and, since λ′00 = 0 and γ ′00
00 = 0, according to (6.6) we have

−1 − 0.80 × 0.97α0 = −0.97,

−β0
0 = 0,

(6.8)

whose solution is

α0 = 0.548, β0
0 = 0, (6.9)
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1

1−1
x

(a)

1

1−1
x

(b)

Figure 1: Wavelet approximations (shaded) of the analytical solution (plain) of (6.1) obtained by solving
(5.17).

so that

u(x) ∼= 0.548ϕ0
0(x). (6.10)

As expected, the approximation is very row (Figure 1(a)); in fact in order to get a satisfactory
approximation we have to solve system (5.18) at least at the levels N = 0, S = 5 as shown in
Figure 1(b).

7. Conclusion

In this paper the theory of Shannon wavelets combined with the connection coefficients
methods and the Petrov-Galerkin method has been used to find the wavelet approximation
of integrodifferential equations. Among the main advantages there is the decorrelation of
frequencies, in the sense that the differential operator is splitted into its different frequency
bands.
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