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In order to obtain the better analysis of the multiple reentrant manufacturing systems (MRMSs),
their modeling and analysis from both micro- and macroperspectives are considered. First, this
paper presents the discrete event simulation models for MRMS and the corresponding algorithms
are developed. In order to describe MRMS more accurately, then a modified continuum model
is proposed. This continuum model takes into account the re-entrant degree of products, and
its effectiveness is verified through numerical experiments. Finally, based on the discrete event
simulation and the modified continuum models, a numerical example is used to analyze the
MRMS. The changes in the WIP levels and outflux are also analyzed in details for multiple re-
entrant supply chain networks. Meanwhile, some interesting observations are discussed.

1. Introduction

In recent years, factories and production systems have become larger and more complicated.
The reentrantmanufacturing system is a typical example, in which the work in process (WIP)
repeatedly passes through the same workstation at different stages of the process routes.
Figure 1 gives the structure of a reentrant manufacturing process. Here, B represents the
storage areas of eachwork center. In the large factories, no experiments can be done involving
whole supply chains. Therefore, simulation models are developed, which can be used to
substitute for the real systems. Especially the multiscale simulations of production flows
in manufacturing systems have become a very important research topic recently. Scaling
also plays a role in biomedical engineering field [1]. The production flows naturally show
two time scales: a shorter one that describes single items processed through the individual
workstations and a longer one that describes the response time of the whole factory [2].
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Figure 1: The structure of a reentrant manufacturing system.

In fact, two scales of flows, small and large, are well explained in fractals [3]. Furthermore,
the representations of their bounds are also provided [4].

Currently, most of the semiconductor manufacturing systems are described by the
discrete models, the advantages of the discrete models are (1) some of the actual static
problems can be directly reflected in the discrete models. (2) In reality, the methods of data
collection are discrete. (3) There are many existing methods to solve the discrete models.
Based on the theory of the discrete event dynamic systems, there are several discrete methods
used to model the multiple reentrant semiconductor production flows.

First, queuing networks can intuitively describe the discrete production process of the
wafer production line and obtain the analytical expression of the performance evaluation.
A methodology for supply chain inventory analysis and optimization was presented by
linking production authorization (PA) strategy to queuing models [5]. The statistics of arrival
flows of the fluid models in queuing systems has been studied [6, 7]. Dong and Chen [8]
proposed a network of inventory-queue models for the performance modeling and analysis
of an integrated supply chain network. For a single multiple semiconductor manufacturing
system, S. Kumar and P. R. Kumar [9] focused on the analysis of queuing theory of the
reentrantmanufacturing systems. However, with the emergence of newmodes of production,
especially for the development of the large quantity and multi-class order production mode,
modeling and analysis of the traditional queuing network models becomes more difficult,
a simplified model of wafer manufacturing systems becomes less practical. On the other
hand, it is very difficult to solve the large-scale queuing network models. Most of the queuing
models can only be used to evaluate the stability of some scheduling policies, while they are
difficult to be used directly for the real-world supply chains. The queuing models are only
used to evaluate the stability of some scheduling policies and can not be directly used for the
actual production systems [10].

Second, Petri net (PN) model has been widely used in modeling, simulating,
analyzing, and controlling the discrete event dynamic systems. Compared with some other
description tools, PN model is especially easy to describe concurrent phenomena and
simulate the parallel systems. However, with the increasing complexity and size of the
manufacturing systems, the complexity of the PN model analysis is also a corresponding
increase. Lin et al. [11] established a model of the reentrant semiconductor production lines
using Petri-nets and studied on the stability of the system using buffer-boundless approach.
Dong and Chen [12] developed a modular modeling approach based on object-oriented
predicate/transition nets (OPTNs) for the analysis of supply chain process models. Liu
et al. [13] proposed a model of semiconductor manufacturing systems on the basis of object-
oriented colored time Petri nets and proved the validity of the model by simulating different
scheduling rules.
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Third, fluid networks model comes from traffic theory and was introduced by Newell
[14] to approximately solve queuing problems. Thismethod treats the discretemanufacturing
process as the dynamic allocation of processing capacity of equipment. Themodel can greatly
reduce the dimensions of the system, thereby can reduce the difficulty of analysis, while it has
good robustness and can be applied to random environment. However, the expression of the
model is obtained by the constraint equations, so it is difficult to apply to multi-class and
high volume make-to-order production mode. Dai and Weiss [15] analyzed the relationship
between the stability of the fluid model and the stability of the scheduling policies for the
related queuing networks. Here, the stability of the fluid models is expressed by the bound-
edness of the fluid variables for a fixed influx. Göttlich [16] deduced the conservation laws
under the form of ordinary differential and proved the existence of its solution based on the
fluid models of supply chain networks.

On the other hand, the continuous models also have several advantages in description
of the production lines. That is, they are scalable, more detailed results that can be found as
compared to fluid models, and more important, they are amenable to optimization and
control. Recently, the continuous models have been applied to many fields and have achieved
some significant research results. Anderson [17] established the basic continuous model for
supply chains and described production flow of the systems using rate equations macro-
scopically. Lee et al. [18] studied on the supply chain simulation with discrete-continuous
combinedmodeling approach. This could combine thewide applicability of the discrete event
simulation (DES) and fast computation of the continuum models together. Armburster and
Ringhofer [19] introduced the concept of materials’ density and established the continuous
model of large-scale reentrant manufacturing systems and proposed new state equations so
that the continuous model could be used to the real production systems. Compared with a
discretemodel, van den Berg et al. [20] verified the validity of the continuous model of simple
serial production systems and then solved the optimal control problems with consideration
of the demand growth.

The continuous models can more accurately reflect the actual situation, while the cor-
responding discrete models need to be discretized in time or space, then takes a constant
value in each discrete node to represent the state of a period of time. This method is the ap-
proximation of the real situations and can not fully reflect the actual situations. Using the
common ground and similarities of the semiconductor manufacturing systems, the large-
scale complex network can be decomposed into relatively small-scale simple problems.
The multiscale methods can be more accurate modeling and analysis of the manufacturing
systems. Armbruster and Ringhofer [21] extended the standard stochastic models by
introducing the concept of a random phase velocity. This leads to the concepts of temperature
and diffusion in the corresponding kinetic and fluid models for supply chains. Zou et al. [22]
demonstrated certain features of equation free coarse-grained computation for a reentrant
supply-chain model. They took the advantage of the time scale separation to directly solve
coarse-grained equations through an equation-free computational approach. Unver et al. [23,
24] presented a continuum (traffic flow like)model for the flow of products through complex
production networks, based on statistical information obtained from extensive observations
of the system. The resulting model consists of a system of hyperbolic conservation laws,
which exhibit the correct diffusive properties given by the variance of the observed data.

In this paper, in order for better analysis of the multiple reentrant manufacturing sys-
tems, their modeling and analysis from both micro- and macroperspectives are considered.
First, the discrete event simulation models and their basic algorithm are proposed. In order
to describe the multiple reentrant semiconductor manufacturing systems more precisely,
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a modified continuous model is proposed, which can reflect how the reentrant degree of
a product impacts on the system performance. Finally, the changes of the WIP levels and
outflux are analyzed based on the discrete event simulation models and the modified
continuous models.

The structure of this paper is organized as follows: Section 2 presents the discrete event
simulation models and their basic algorithm. In Section 3, in order to describe the manufac-
turing systems more accurately, a modified continuous model is proposed, which introduces
the concept of reentrant factor, and the effectiveness is also verified through a numerical
example. In Section 4, the changes of the WIP levels and outflux are analyzed between the
discrete event simulation models and the modified continuous models. Meanwhile, some
interesting observations are discussed. Finally, some conclusions and suggested further areas
of investigation are given in Section 5.

2. Simulation Models

2.1. Discrete Event Simulation Models

In the discrete event simulation (DES) models, each item to be produced is treated as in-
dividual. The production process consists of M stages (s1, s2, . . . , sM), am

n denotes the time at
which the lot number n arrives at stage sm, and emn denotes the time at which the lot number
n exits at stage sm (or the lot number n arrivers at stage sm+1). τm

n denotes the processing time
that the lot number n takes at stage sm, which is known as the throughput time (TPT). The
relationship between the arrival and exit times is given via the law

(a) emn = am
n + τm

n , (b) dP{τm
n = r} = Tm(r, am

n )dr, (c) am+1
n = emn . (2.1)

Here, Tm(r, a) denotes the time-dependent distribution of throughput times of stage sm, and P
denotes the probability distribution of the processing time. The TPT is determined by the state
of the supplier sm at time am

n when lot number n arrives. The throughput time distribution
Tm is usually dependent on the total number lots Wm(t) processed at stage sm at time t, the
so-called work in progress (WIP). The WIP Wm(t) is computed as

Wm(t) =
∑

n

H(t − am
n ) −H

(
t − am+1

n

)
, (2.2)

where H denotes the usual Heaviside function.
In engineering practices, the most significant influence on the form of this distribution

comes from the total number of items in progress, that is, the work in progress (WIP). So the
TPT distribution Tm in (2.1) is written as Tm = Tm(r,Wm(am

n )). When the TPT at the beginning
of the simulation is fixed, we essentially treat the whole factory as a single queue whose
length at the item arrival time determines the time that the item needs to get processed. In
the case of complicated supply chain networks, where each individual supplier models a
whole factory, the dependence of the distribution Tm on the WIP Wm is more complex and
could be given by experimental data.

For a high-volume multiple reentrant manufacturing system, the time interval
between jobs becomes less important, and then the jobs can be seen as a continuous way.
In these continuous production models, the WIP Wm(t) and the influx λm(t) are treated as
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a continuous function. This leads to a class of models often referred to as fluid models in the
supply chain literature [25]. The primary variables are the WIP Wm(t) and the fluxes λm(t)
from stage sm−1 to sm. A random throughput time function τ(t) can be computed from the
WIP obtained before. The WIP Wm(t) is then given by the conservation law

d

dt
Wm(t) = λm(t) − μm(t), λm+1(t) = μm(t). (2.3)

Here, λ and μ represent the influx and outflux of the lots, respectively. According to (2.1), the
fluxes are given

μm(t) =
∫
δ(s + τ(s) − t)λm(s)ds. (2.4)

For a large number of lots, the individual lots are replaced by a continuous quantity,
and the fluxes λm are replaced by continuous functions. The WIP Wm(t) is evolved by the
conservation law (d/dt)W(t) = λ(t) − μ(t). Using the discrete time steps, the following
formulation can be obtained:

W(t + Δt) = W(t) + Δt
[
λ(t) − μ(t)

]
. (2.5)

So the question can be used to solve outflux μ(t) in terms of influx λ(t).
However, if supplier sm is a reentrant system itself, then the lots arriving after time

am
n will significantly influence the TPT τm

n since they will compete with lot number n in the
individual subqueues of the system. The set of policies, such as FIFO, PUSH, or PULL, will
be used to govern the competition. This situation is treated by introducing the concepts of
phase (a scaled position) and phase velocity.

In phase models, the evolution of a large ensemble of lots is modeled by describing the
trajectories of each individual lot in phase space based on Newton equations. The trajectories
ξ(t) and the throughput time τ(t) are introduced. The throughput time τ(t) is a random
variable sampled from the distribution T(r, t). Given a prescribed TPT distribution function
T(r, t), which is expressed in terms of WIP as τ(r,WIP)), the position and the throughput
time after a small enough time interval Δt are given by

ξ(t + Δt) = ξ(t) +
Δt

τ(t)
, τ(t + Δt) = (1 − k)τ(t) + kη(t), (2.6a)

P{k(t) = 1} = wΔt, P{k(t) = 0} = 1 −wΔt, dP
{
η(t) = r

}
= T(r, t)dr, (2.6b)

ξ(0) = 0, dP
{
η(0) = r

}
= T(r, 0)dr. (2.6c)

A random variable k is used to decide whether to update the throughput time or not,
which is either one or zero. The probability of k = 1 equalswΔt and the probability of k = 0 is
1−wΔt. Here,w is the update frequency. If k = 1, the throughput time is updated and the new
throughput time is given by a random number η(t), which is obtained from the throughput
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time distribution τ(r,WIP). If k = 0, the current throughput time remains unchanged. In
general, suppose thatw depends on both η(t) and time t, then (2.6b) will be replaced by

P{k(t) = 1} = Δtw
(
η(t), t

)
, P{k(t) = 0} = 1 −Δtw

(
η(t), t

)
,

dP
{
η(t) = r

}
= T(r, t)dr.

(2.6b′)

According to [18], w can be chosen as

w(r, t) =
λ(t)
rT−1

, (2.7)

where λ(t) is the influx of items and T−1 =
∫
r−1T(r, t)dr. Based on the evolution (2.6a), (2.6b),

and (2.6c), the algorithm procedure to solve the phase and TPT of an item for the discrete
event and continuous production is then as follows.

Step 1. Set the initial phase to 0 as the item enters the factory, increase the WIP W(t) by one
and adjust the probability distribution T(r,WIP) accordingly.

Step 2. Computew(r, t) based on (2.7), and sample the parameters k(t) and η(t) according to
their distribution (2.6b).

Step 3. Compute the TPT τ(t + Δt) and the phase ξ(t + Δt) according to (2.6b).

Step 4. Update the distribution TPT T(r,WIP), according to the currentWIP at the time t+Δt,
and back to Step 2, repeat this loop until the phase ξ = 1. Now the time when ξ = 1 becomes
the time of the item leaving the system.

The function ξ(t) plays a role of a position which is advanced with a randomly
changing velocity 1/η(t). It is, therefore, to derive a kinetic formulation. In the context of
supply chains, these models are often referred to as traffic flowmodels [26]. A product arrives
at the first stage at time t = a and moves from x = 0 to x = 1 along a trajectory with velocity
1/ηa(t), in such a way that it reaches the end x = 1 at time t = e, then the velocity has to be
chosen in the following way

∫e
a(1/ηa(t))dt = 1. The total WIP W(t) and the flux F(x, t) at any

point x ∈ [0, 1] are then obtained as follows:

W(t) =
∫
[H(ξa(t)) −H(ξa(t) − 1)]λ(a)da, F(x, t) =

∫
ηa(t)δ(x − ξa(t))λ(a)da, (2.8)

where λ(a) is concentrated on the arrival times an for a discrete model or is a continuous
function for a continuous production model.

2.2. Basic Partial Differential Equation (PDE) Models

Partial differential equation (PDE) models are actually continuum approximation of fluid
models. Recently, PDE models for large-scale multiple reentrant production systems have
become an important research topic. PDE models do have several advantages, that is, they
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might be preferred when evaluating the overall performance of large-scale manufacturing
systems or solving the optimization problem for a longer time plan. Currently, the continuous
models have been applied tomany fields and have achieved some significant research results.

This is appropriate to describe a semiconductor manufacturing fab involving a large
number of items inmany stages: ρ(x, t) is the density of the products with units (units/space)
in the system, which is the conserved variable. Here, x denotes the degree of completion
(DOC), x = 0 describes raw products that have just entered into the factory, and x = 1 denotes
finished products that are ready to exit from the system. So, x is in the closed interval: x ∈
[0, 1]. The total number of products in the system can be obtained by taking the integral of
density ρ(x, t) of products over the stage variable x from 0 to 1. Therefore, the total WIPW(t)
as a function of time can be obtained as follows:

W(t) =
∫1

0
ρ(x, t)dx. (2.9)

Assuming that there is a unique entry and exit for the system and the yield is 100%,
PDE models can be given bellow according to the conservation law,

∂ρ(x, t)
∂t

+
∂
(
v
(
ρ(x, t)

)
ρ(x, t)

)

∂x
= 0, x ∈ [0, 1], t ∈ (0,∞), (2.10)

where v(ρ(x, t)) is a velocity function that depends on the density ρ(x, t) only. For a reentrant
supply chain system, we assume that v(ρ(x, t)) can be described by a state equation of the
following form:

v
(
ρ(x, t)

)
= v0

(
1 − W(t)

Wmax

)
, (2.11)

where v0 is the velocity for the empty supply chain system, and Wmax is the maximal load
(capacity of the supply chain system). Clearly, the velocity v(ρ(x, t)) is determined by the
total WIP. The boundary condition for the start rate λ(t) of products entering the supply
chain system at x = 0 is then defined as

λ(t) = ρ(0, t)v(t). (2.12)

An arbitrary initial condition for the density of the products can be expressed as

ρ(x, 0) = ρ0(x). (2.13)

The production process of the supply chain network can be described as an equivalent
M/M/1 queue. The state variable ρeq denotes the equilibrium density of the supply chain
system as a whole. Let ρ = ρeq, then ρ(0, t) = ρeq and v = veq = 1/τ . Correspondingly,
the associated cycle time in steady state is τ = 1/veq. Since a job arriving at a queue with



8 Mathematical Problems in Engineering

a processing rate is μ = 1/vmax, the cycle time τ = μ(1 + L) can be obtained according to the
queuing theory, the equilibrium velocity therefore becomes

v
(
ρ
)
=

vmax

1 +
∫1
0 ρ(x, t)dx

=
vmax

1 +w(t)
. (2.14)

Equation (2.14) is a widely used expression between v and ρ for large-scale multiple
reentrant supply chain systems, notice that the velocity v only depends upon theWIP at stage
x. Therefore, (2.10) can be rewritten as

∂ρ(x, t)
∂t

+ v
∂ρ(x, t)

∂x
= 0, x ∈ [0, 1], t ∈ (0,∞). (2.15)

Hence, assume that an initial WIP distribution ρ0(x) in the factory is given, the
resulting full PDE models for the single-product multiple reentrant supply chain systems
are given as follows:

∂ρ(x, t)
∂t

+ v
(
ρ
)∂ρ(x, t)

∂x
= 0,

ρ(x, 0) = ρ0(x),

ρ(0, t)v(t) = λ(t),

v
(
ρ
)
=

vmax

1 +
∫1
0 ρ(x, t)dx

.

(2.16)

If the influx λ(t) and the initial condition ρ0(x) are nonnegative, then the density will
remain nonnegative. We use an upwinding scheme [27] to discretize the PDE which is given
by the following equation:

ρ
(
xi, tj+1

)
= ρ

(
xi, tj

) − Δt

Δx
v
(
tj
)[
ρ
(
xi, tj

) − ρ
(
xi−1, tj

)]
, (2.17)

where i = 1, 2, . . . ,N, and j = 0, 1, . . . ,M − 1. Δt and Δx are the step sizes in time and space,
respectively. Based on the boundary condition, the propagation scheme is given by

ρ
(
x0, tj+1

)
= ρ

(
x0, tj

) − Δt

Δx

[
v
(
tj
)
ρ
(
x0, tj

) − λ
(
tj
)]
. (2.18)

Since the Courant-Friedrich-Levy (CFL) condition is necessary for stability, the time
step Δt and the space step Δx must satisfy the following formulation: |(Δt/Δx)vmax(t)| ≤ 1.
Here, vmax(t) is the maximum velocities in the system at time t.

Based on the above formula, the density distribution of each moment ρ(xi, tj) can
be obtained. Therefore, the system throughput rate q(xN, tj) of each moment can also be
computed as follows:

q
(
xN, tj

)
= ρ

(
xN, tj

)
v
(
ρ
(
xN, tj

))
. (2.19)



Mathematical Problems in Engineering 9

Furthermore, the total WIP w(t) =
∫1
0 ρ(x, t)dx can be obtained via the extended

Simpson’s rule quadrature. Finally, the density distribution ρ(xi, tj) and throughput q(xN, tj)
of each moment can be obtained.

3. The Modified Continuum Model

3.1. Numerical Experiment

Mini-Fab is a simplified model of the semiconductor production lines, which has all the
important features of the reentrant semiconductor manufacturing systems, such as reentrant,
different processing time, and batch production. Currently, many scholars have done a lot of
researchwork based on the Mini-Fab. TheMini-Fab contains 5 machines grouped into 3 work
centers, the product comprises of 6 processing steps and each work center has a reentrant
step, which is shown in Figure 2. The system designed in this study is FIFO (First In First
Out).

For convenience, we make the following basic assumptions on the model.

(1) The product yield rate is 100%, namely, there is no rework problem.

(2) The system is a continuous production process for 24 hours a day.

(3) The system does not take into account the time of carrying, loading and discharg-
ing, adjusting equipment, premaintaining equipment, and downtime.

Now assuming that there is one product D in the Mini-Fab, its processing steps and
processing time are shown in Table 1.

From the above table, we can see that the total processing time is P = 0.25 (days).
Based on the basic PDE model, the parameters are set as follows: vmax = 4 (units/day), λ = 5
(units/day). We typically start upwith an empty production system, the total running time of
the production lines is 10 (days). LetΔt = 0.001 andΔx = 0.01, thenΔx andΔt that satisfy the
CFL stability condition is formulated as follows: (Δt/Δx)vmax < 1. The system throughput
can be obtained through the simulation based on the basic PDE model of (2.16). Figure 3
indicates that the system throughput is about 3.2 (units/day) during the steady state.

When the throughput of the basic continuous models is obtained, the corresponding
Mini-Fab simulation model can be built using simulation package ExtendSim [28] to verify
the validity of the models with a period of one year. The jobs are sorted by FIFO. From
Figure 4, it can be seen that the throughput during the steady state is about 5 (units/day)
through ExtendSim simulation.

Comparing Figure 3 with Figure 4, obviously, it can be found that there are some dif-
ferences between the throughput results of the two models. This is because the basic contin-
uous model of (2.16) is built on the basis of a large number of materials and many reentrant
steps in the systems and some important characteristics of semiconductor production systems
are not captured. Therefore, the further investigation is needed to explore more precise
models for multiple reentrant production systems.

3.2. The Modified Continuum Model

It is worth noting that the state equations could reflect the characteristics of systems—any
changes of the multiple reentrant production systems may lead to a different state equation.
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Figure 2: Process flow diagram of the Mini-Fab.

Table 1: Processing time of the productD at each step.

Machining centers Processing time (hours)
Machines A & B Step 1: 1.5 Step 5: 1.5
Machines C & D Step 2: 0.5 Step 4: 1
Machine E Step 3: 1 Step 6: 0.5

Equation (2.14) is a quite general state equation, in order to capture some important
features of multiple reentrant supply chain systems, a more specified relationship is required
for computing the velocities numerically. Lefeber and Armbruster [29] presented a more
sophisticated reentrant factory model through the use of integration kernels. For the general
supply chain systems (nonreentrant systems), Sun and Dong [30] described several kinds
of state equations and the corresponding cycle times. Although there are many kinds of
continuum models currently, they do not reflect how the reentrant degree of the product
impacts on the system performance. Hence, a new concept is introduced to describe the
reentrant degree of production system.

Definition 3.1. Let α be a product reentrant factor, α equals to the ratio of the product’s pro-
cessing time of reentrant steps and the product’s total processing time.

Reentrant factor α is the property of product’s process flows, with the increase of
reentrant factor α, the degree of reentrant of the product becomes larger and larger. Let P
be the total processing time, P1 be the reentrant processing time, and P2 be the nonreentrant
processing time. According to the above definition, the following formula can be obtained:

α =
P1

P1 + P2
=
P1

P
. (3.1)

In reality, the velocity of products in the system is not only related with the WIP level,
but also with the reentrant factor. Let w(t) be the WIP level in the system at a given time t,
w(Δx, t) be the WIP level at interval Δx at time t, Δx be the interval of the completion of the
product, and Δt be the processing time required to complete the interval Δx. Assuming that
w(Δx, t) is proportional to Δt, and the system consists of two parts: reentrant processes and
nonreentrant processes. Hence, αw(t) is the WIP level of the reentrant processes at a given
time t, also referred as reentrant WIP. Similarly, (1 − α)w(t) is the WIP level of nonreentrant
processes at a given time t, also called as nonreentrant WIP.
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Figure 4: Throughput as a function of time for the ExtendSim simulation.

According to the queuing theory, the processing cycle time of the reentrant process τ1
can be expressed as follows:

τ1 = [1 + αw(t)]P1. (3.2)

As for the nonreentrant processes, assuming the total number of workstations is m,
a1, a2, . . . , am are the corresponding processing times at each workstation, respectively, and
τ2 is the nonreentrant processing cycle time, then we have

P2 = a1 + a2 + · · · + am,

τ2 =
m∑

i=1

(
1 +

ai

P
w(t)

)
ai =

m∑

i=1

ai +
m∑

i=1

a2
i

P
w(t) = P2 +

m∑

i=1

a2
i

P
w(t).

(3.3)
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So the total cycle time τ can be written in the following form:

τ = τ1 + τ2 = [1 + αw(t)]P1 +

[
P2 +

m∑

i=1

a2
i

P
w(t)

]

= P +

(
α2 +

m∑

i=1

a2
i

P 2

)
w(t)P.

(3.4)

Then, the resulting new state equation for the velocity will be given by

v =
1
τ
=

1
P +

(
α2 +

∑m
i=1 a

2
i /P

2
)
w(t)P

. (3.5)

In order to avoid computational complexity of
∑m

i=1 a
2
i /P

2, an approximate method
is proposed to deal with the nonreentrant processes. Suppossing that WIP in nonreentrant
processes follows the uniform distribution in each workstation, then the mean processing
time P2/m and the mean WIP level at each workstation ((1 − α)/m)w(t) can be obtained.
According to the queuing theory, the mean cycle time of the nonreentrant processes at each
workstation is [1 + ((1 − α)/m)w(t)]P2/m, and the total cycle time of the nonreentrant
processes τ2 is [1 + ((1 − α)/m)w(t)]P2. Therefore, the total cycle time τ can be expressed
as follows:

τ = τ1 + τ2

= [1 + αw(t)]P1 +
[
1 +

(1 − α)
m

w(t)
]
P2

= P1 + P2 +
[
αP1 +

(1 − α)
m

P2

]
w(t)

= P +
[
α · αP +

(1 − α) · (1 − α)P
m

]
w(t)

= P +

[
α2 +

(1 − α)2

m

]
w(t)P.

(3.6)

The corresponding new state equation can be obtained as follows:

v =
1
τ
=

1

P +
[
α2 + (1 − α)2/m

]
w(t)P

. (3.7)
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Therefore, the resulting modified whole PDE model is given below:

∂ρ(x, t)
∂t

+ v
(
ρ
)∂ρ(x, t)

∂x
= 0,

ρ(x, 0) = ρ0(x),

ρ(0, t)v(t) = λ(t),

v =
1
τ
=

vmax

1 +
[
α2 + (1 − α)2/m

]
w(t)

.

(3.8)

3.3. Validity of the Modified Models

Once the new state equation is obtained, the validity of the modified models can be verified
by the same example described in the previous section. According to Figure 2, the total
number of workstations is m = 3, and the steps 4 to 6 are reentrant steps. From Table 1,
the reentrant factor of products α = 0.5 can be easily obtained by definition. Assuming that
the influx λ of items is 5 (units/day) and the total running time is 10 (days), the system starts
running from an empty factory. With Δt = 0.001, Δx = 0.01, then Δx and Δt satisfy the CFL
stability condition: vmax ·Δt/Δx < 1. Similarly, the modified continuous model (3.8) can also
be solved via the upwind scheme, and the throughput of the modified continuum models
can be obtained, which is plotted in Figure 5.

It can be seen that the throughput is initially zero for the reentrant manufacturing
systems. This is due to the time delay and the system initialization (the system starts up
with an empty factory), then the system begins to have throughput at about 0.25 days and
increases drastically until the throughput reaches a stable value of 5 (units/day) at about
1.5 days. Comparing Figure 4 with Figure 5, it can be obviously found that the results are
basically consistent with the simulation results obtained from ExtendSim. Therefore, it can be
seen that the modified continuum models are effective for multiple reentrant supply chain
systems.

4. Numerical Experiments

Once themodified continuummodels are obtained, in order to describe themultiple reentrant
manufacturing systems from the micro- and macroperspectives, based on the DES and
modified PDE models, a numerical experiment is carried out to demonstrate the consistency
of the models for the Mini-Fab case. The WIP levels and outflux of the DES and the modified
continuum models for the multiple reentrant supply chain systems are presented in this
section.

In this section, a mean field assumption is made first, namely, the TPT distribution
T(r, t) is a given function while in reality it depends on the WIP W(t). The idea underlying
this assumption is that, for many lots presenting in the system, the impact of one individual
lot on the distribution T(r, t) is negligible. In engineering practices, the TPT distribution
depends on the lot trajectories through the WIP W(t). Therefore, the lots can be treated as
approximately statistically independent. The prescribed TPT distribution is shown as well as
the upper and the lower limits as a function of WIP in Figure 6. The mean possible TPT is
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Figure 5: Throughput as a function of time for the modified PDE model.
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Figure 6: Probability distribution of the TPT as a function of WIP.

a constant between the maximal possible TPT and the lower possible TPT, while the min-
imally possible TPT remains constant independent of the WIP.

Same as the previous section, taking the multiple reentrant production system as an
example, the system begins to run from an empty factory. The DES model is executed by
generating a total of 200 lots. In order to facilitate the computation, we assume that the influx
is defined as a constant value in the experiment first. The trajectories are computed by the
random phase model, and the lots’ arrival time an is given by an+1 = an + (1/λ(an)), where
a0 = 0. The WIP levels and outflux of DES models are computed according to (2.8) with
discrete arrival times an. For the modified PDE models, let vmax = 4 (units/day), a uniform
time step sizeΔt = 0.001 and a uniform spatial interval lengthΔx = 0.01, thenΔx andΔt also
satisfy the CFL stability condition: (Δt/Δx)vmax < 1. Figures 7 and 8 show theWIP levels and
outflux of the DES and modified PDE models, in which dotted line indicates the WIP levels
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Figure 8: Outflux of the DES and the modified PDE models as a function of time.

and outflux variation of the DES models and the straight line represents the WIP levels and
outflux variation of the modified PDE models, respectively.

Comparing the WIP levels and outflux computed from the DES models to the solution
of the modified PDE models, it can be observed that, although the WIP levels and outflux
values of the two models are not exactly equal, the results are close enough to each other
to substantiate the consistency of two models. The same results of the DES and modified
PDE models are given for the steady state. The WIP levels of the two models show gradual
increase, while the outflux of the two models first shows an increasing trend gradually to
reach the maximum and then reaches a stable value.
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5. Conclusions

In this paper, better analysis of the multiple reentrant manufacturing systems can be obtained
if both micro- and macroperspectives are adopted. The discrete event simulation models
are first proposed and their basic algorithm is also presented in detail. The low accuracy
of the basic PDE models for the multiple reentrant supply chain networks is explained by
a numerical experiment. In order to model such complex systems more precisely, a modified
PDE model that takes into account the reentrant degree of the product is presented, while
the validity of the modified PDE model is also illustrated through a numerical experiment
for multiple reentrant supply chain systems. Then, based on the DES and modified PDE
models, a numerical experiment is provided to compare the WIP levels and outflux changes.
Meanwhile, some interesting observations are discussed. Once the results of the micro- and
macro simulations are obtained, some analysis for the multiple reentrant manufacturing
systems based on the multiscale methods becomes possible.
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[16] S. Göttlich, M. Herty, and A. Klar, “Networkmodels for supply chains,” Communications in Mathemati-
cal Sciences, vol. 3, no. 4, pp. 545–559, 2005.

[17] E. J. Anderson, “A new continuous model for job shop scheduling,” International Journal of Systems
Science, vol. 12, no. 12, pp. 1469–1475, 1981.

[18] Y. H. Lee, M. K. Cho, S. J. Kim, and Y. B. Kim, “Supply chain simulation with discrete-continuous
combined modeling,” Computers and Industrial Engineering, vol. 43, no. 1-2, pp. 375–392, 2002.

[19] D. Armbruster and C. Ringhofer, “Continuous models for production flows,” in Proceedings of the
American Control Conference, vol. 5, pp. 4589–4594, 2004.

[20] R. Van Den Berg, E. Lefeber, and K. Rooda, “Modeling and control of a manufacturing flow line using
partial differential equations,” IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 130–
136, 2008.

[21] D. Armbruster and C. Ringhofer, “Thermalized kinetic and fluid models for reentrant supply chains,”
Multiscale Modeling & Simulation, vol. 3, no. 4, pp. 782–800, 2005.

[22] Y. Zou, I. G. Kevrekidis, and D. Armbruster, “Multiscale analysis of re-entrant production lines: an
equation-free approach,” Physica A, vol. 363, no. 1, pp. 1–13, 2006.

[23] A. K. Unver, C. Ringhofer, and D. Armbruster, “A hyperbolic relaxation model for product flow in
complex production networks,”Discrete and Continuous Dynamical Systems, supplement 2009, pp. 791–
800, 2009.

[24] A. K. Unver and C. Ringhofer, “Estimation of transport coefficients in re-entrant factory models,” in
15th IFAC Symposium on System Identification (SYSID ’09), vol. 15, pp. 705–710, 2009.

[25] J. J. Hasenbein, “Stability of fluid networks with proportional routing,”Queueing Systems, vol. 38, no.
3, pp. 327–354, 2001.

[26] D. Armbruster, D. Marthaler, and C. Ringhofer, “Kinetic and fluid model hierarchies for supply
chains,” Multiscale Modeling & Simulation, vol. 2, no. 1, pp. 43–61, 2003.

[27] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 2007.

[28] T. B. Qin and Y. F. Wang, Application Oriented Simulation Modeling and Analysis with ExtendSim,
Tsinghua University Press, Beijing, China, 2009.

[29] E. Lefeber and D. Armbruster, Aggregate Modeling of Manufacturing Systems, Systems Engineering
Group, 2007.

[30] S. Sun and M. Dong, “Continuum modeling of supply chain networks using discontinuous Galerkin
methods,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 13–16, pp. 1204–1218,
2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


