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We propose an entirely novel family of score functions for blind signal separation (BSS),
based on the family of mixture generalized gamma density which includes generalized gamma,
Weilbull, gamma, and Laplace and Gaussian probability density functions. To blindly extract the
independent source signals, we resort to the FastICA approach, whilst to adaptively estimate the
parameters of such score functions, we use Nelder-Mead for optimizing the maximum likelihood
(ML) objective function without relaying on any derivative information. Our experimental results
with source employing a wide range of statistics distribution show that Nelder-Mead technique
produce a good estimation for the parameters of score functions.

1. Introduction

By definition, independent component analysis (ICA) is the statistical method that searches
for a linear transformation, which can effectively minimize the statistical dependence
between its components [1]. Under the physically plausible assumption of mutual statistical
independence between these components, the most application of ICA is blind signal
separation (BSS). In its simplest form, BSS aims to recover a set of unknown signals, the
so-called original sources s (t) = [s1(t), s2(t), . . . , sn(t)]

T ∈ Rn, by relying exclusively on
information that can be extracted from their linear and instantaneous mixtures x(t) =
[x1(t), x2(t), . . . , xm(t)]

T ∈ Rm, given by

x(t) = As(t), t = 1, 2, . . . , m, (1.1)

where A ∈ Rmxn is an unknown mixing matrix of full rank and m ≥ n. In doing so, BSS
remains truly (blind) in the sense that very little to almost nothing be known a priori for the
mixing matrix or the original source signals.
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Often sources are assumed to be zero-mean and unit-variance signals with at most
one having a Gaussian distribution. The problem of source estimation then boils down to
determining the unmixing matrixW ∈ Rnxm such that the linear transformation of the sensor
observation is

u(t) = Wx(t), t = 1, 2, . . . , n, (1.2)

where u(t) = [u1(t), u2(t), . . . , un(t)]
T ∈ Rn yield an estimate of vector s(t) corresponding

to the original or true sources. In general, the majority of BSS approaches perform ICA, by
essentially optimizing the negative log-likelihood (objective) function with respect to the
unmixing matrix W such that

L(u,W) =
n∑

l=1

E
[
log pul(ul)

] − log |det(W)|, (1.3)

where E[·] represents the expectation operator and pul(ul) is the model for the marginal
probability density function (pdf) of ul, for all l = 1, 2, . . . , n. Normally, matrix W is regarded
as the parameter of interest and the pdfs of the sources are considered to be nuisance
parameters. In effect, when correctly hypothesizing upon the distribution of the sources, the
maximum likelihood (ML) principle leads to estimating functions, which in fact are the score
functions of the sources [2]

ϕl(ul) = − d

dul
log pul(ul). (1.4)

In principle, the separation criterion in (1.3) can be optimized by any suitable ICA algorithm
where contrasts are utilized (see; e.g., [2]). A popular choice of such a contrast-based
algorithm is the so-called fast (cubic) converging Newton-type (fixed-point) algorithm,
normally referred to as FastICA [3], based on

Wk+1 = Wk +D
(
E
[
ϕ(u)uT

]
− diag

(
E
[
ϕl(ul)ul

]))
Wk, (1.5)

where, as defined in [4],

D = diag

(
1

(
E
[
ϕl(ul)ul

] − E
[
ϕ′
l(ul)

])
)
, (1.6)

with ϕ(t) = [ϕ1(u1), ϕ2(u2), . . . , ϕn(un)]
T being valid for all l = 1, 2, . . . , n. In the ICA

framework, accurately estimating the statistical model of the sources at hand is still an open
and challenging problem [2]. Practical BSS scenarios employ difficult source distributions
and even situationswheremany sources with very different pdfs aremixed together. Towards
this direction, a large number of parametric density models have been made available
in recent literature. Examples of such models include the generalized Gaussian density
(GGD) [5], the generalized lambda density (GLD), and the generalized beta distribution
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(GBD) or even combinations and generalizations such as super and generalized Gaussian
mixture model (GMM) [6], the generalized gamma density (GGD) [7], the Pearson family of
distributions [4], and even the so-called extended generalized lambda distribution (EGLD)
which is an extended parameterizations of the aforementioned GLD and GBD models [8]. In
the following section, we propose Mixture Generalized Gamma Density (MGΓD) for signal
modeling in blind signal separation.

2. Mixture Generalized Gamma Density (MGΓD)

A Mixture Generalized Gamma Density (MGΓD) is a parametric statistical model which
assumes that the data originates from weighted sum of several generalized gamma sources
[9]. More specifically, a MGΓD is defined as

p(u | θ) =
k∑

i=1

mipi
(
u | ci, αi, βi, γi

)
, (2.1)

where

(i) θ = (mi, ci, αi, βi, γi), i = 1, 2, . . . , k,

(ii) k is the number of mixture density components,

(iii) mi is the ith mixture weight and satisfiesmi ≥ 0,
∑k

i=1mi = 1,

(iv) pi(u|ci, αi, βi, γi) is an individual density of the generalized gamma density which is
characterized by [7],

pi
(
u | ci, αi, βi, γi

)
=
γiβ

αi
i |u − ci|αiγi−1
2Γ(αi)

exp
(−βi|u − ci|γi

)
, (2.2)

where ci is the location parameter, βi > 0 is the scale parameter, αi > 0 is the shape/power
parameter, and γi > 0 is the shape parameter. Γ(α) is the gamma function, defined by

Γ(x) =
∫∞

0
tx−1e−tdt. (2.3)

By varying the parameters, it is possible to characterize a large class of distributions such
as Gaussian, sub-Gaussian (more peaked, than Gaussian, heavier tail), and supergaussian
(flatter, more uniform). It is noticed that for γ = 1, the (GΓD) define gamma density as special
case. Furthermore, if γ = 2 and α = 0.5, it become the Gaussian pdf, and if γ = 1 and α = 1, it
represent the Laplacian pdf.

Figures 1 and 2 show some examples of pdf for MGΓD for k = 1 and k =
2. Thanks to the shape parameters, the MGΓD is more flexible and can approximate a
large class of statistical distributions, this distribution requires to estimate 5∗k parameters,
θ(mi, ci, αi, βi, γi) i = 1, 2, . . . , k. Particularly, we discuss the estimation of these parameters in
detail in the following section.
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Figure 1: The probability density function of MGΓD for k = 1, c = 3, α = 0.5, β = 3, and γ =
6, 2, 3.5, 1(p1, p2, p3, p4) respectively. The MGΓD allows us to include the case of Gaussian mixture model
α = 0.5 and γ = 2.

3. Numerical Optimization of the Log-Likelihood Function to
Estimate MGΓD Parameters

We propose in this section a generalization of the method proposed in [9]which address only
the case of 2 components by setting the derivatives of the log-likelihood function to zeros. The
log-likelihood function of (2.2), given by [10]

L(u | θ) =
k∑

i=1

N −1∑

j=1

hi,j log
[
mipi

(
uj | ci, αi, βi, γi

)]
, (3.1)

where N the sample size and hi,j = p(i | uj)(i = 1, . . . , k, j ∈ [0, N − 1]) represents the
conditional expectation of pi given the observation uj , this means the posterior probability
that uj belongs to the ith component. In the case of generalized gamma distribution, if we
substitute (2.2) into (3.1) and after some manipulation, we obtain the following form of L(u |
θ)

L(U | θ) =
k∑

i=1

N∑

j=1

hi,j log (mi) +
k∑

i=1

N∑

j=1

hi,j
[
log
(
γi
)
+
(
αiγi − 1

)
log
∣∣uj − ci

∣∣

− log (2) + αi log
(
βi
)

− log (Γ(αi)) − βi
∣∣uj − ci

∣∣γi].

(3.2)
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Accordingly, we obtain for i = 1, 2, . . . , k the following nonlinear equation related to the
estimated parameters by derivatives of the log-likelihood function with respect to ci, αi, βi,
and γi and setting these derivatives to zeros, we obtain

∂L(U | θ)
∂ci

= 0,
∂L(U | θ)

∂βi
= 0,

∂L(U | θ)
∂γi

= 0,
∂L(U | θ)

∂αi
= 0,

ψ(αi) = log
(
βi
)
+

∑N
j=1 hij log

∣∣uj − ci
∣∣γi

∑N−1
j=1 hij

,

βi = αi

∑N
j=1 hij

∑N
j=1 hij

∣∣uj − ci
∣∣i
,

(3.3)

N∑

j=1

hij + αi
N∑

j=1

hij log
∣∣uj − ci

∣∣γi = βi
N∑

j=1

hij
∣∣uj − ci

∣∣γi log
∣∣uj − ci

∣∣γi , (3.4)

where Ψ(·) is the digamma function (Ψ(x) = Γ′(x)/ Γ(x)). After a little mathematical
manipulation, the ML estimate of γi is obtained

ψ

⎛
⎜⎝

(∑N
j=1 hij

)(∑N
j=1 hij

∣∣uj − ci
∣∣γi
)

(∑N
j=1 hij

)(∑N
j=1 hij

∣∣uj−ci
∣∣γi log

∣∣uj−ci
∣∣γi
)
−
(∑N

j=1 hij
∣∣uj−ci

∣∣γi∑N
k=1 hik log |uk−ci|γi

)

⎞
⎟⎠

− log

⎛
⎜⎝

(∑N
j=1 hij

)2

(∑N
j=1 hij

)(∑N
j=1 hij

∣∣uj−ci
∣∣γi log

∣∣uj−ci
∣∣γi
)
−
(∑N

j=1 hij
∣∣uj−ci

∣∣γi∑N
k=1 hik log |uk−ci|γi

)

⎞
⎟⎠

−
∑N

j=1 hij log
∣∣uj − ci

∣∣γi
∑N

j=1 hij
= 0.

(3.5)

Given the estimate of γi, it is straightforward to derive the estimate for αi, βi, and ci. Let γ̂i be
the estimate of γi. Then,

α̂i =

(∑N
j=1 hij

)(∑N
j=1 hij |uj − ci|γi

)

(∑N
j=1 hij

)(∑N
j=1 hij

∣∣uj − ci
∣∣γi log

∣∣uj − ci
∣∣γi
)
−
(∑N

j=1 hij
∣∣uj − ci

∣∣γi∑N
k=1 hik log |uk − ci|γi

) ,

β̂i = α̂i

∑N
j=1 hij

∑N
j=1 hij

∣∣uj − ci
∣∣γi ,

N∑

j=1

hi,j
[(
α̂iγ̂i − 1

)
η
(
uj
) − γ̂iβ̂iη

(
uj
)∣∣uj − ĉi

∣∣γ̂i
]
= 0,

(3.6)
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Table 1

Estimated
parameters

m1 c1 α1 β1 γ1 m2 c2 α2 β2 γ2

1st value 0.24 0 0.48 1.86 0.95 0.76 9.74 0.46 1.86 3.96

2nd value 0.24 0 0.47 1.70 0.87 0.76 9.68 0.49 1.90 3.89

3rd value 0.23 0 0.48 1.99 0.90 0.76 9.70 0.49 1.89 3.70

4th value 0.23 0 0.47 1.80 0.94 0.77 9.80 0.49 1.70 3.80

5th value 0.22 0 0.49 1.76 0.95 0.78 9.84 0.47 1.83 3.98

where

η(x) =

⎧
⎨

⎩
1 if uj − ci < 0,

−1 if uj − ci ≥ 0,
(3.7)

where α̂i and β̂i are the resulting estimates for αi and βi, respectively, and to estimate the
location parameter, we solve (3.4) by gradient ascent. The estimation of weight coefficient
obtains directly from hi,j as follows [10]

m̂i =
1
N

N∑

j=1

hi,j . (3.8)

However, (3.5) cannot be easily solved, so we adopt the gradient ascent algorithm to
obtain the estimate of γi and determine the estimates of αi, βi, and ci uniquely using this value
of γi.

Alternative numerical method can be used to estimate the parameters is called NM,
where the appeal of the NM optimization technique lies in the fact that it can minimize the
negative of the log-likelihood objective function given in (3.2), essentially without relying on
any derivative information. Despite the danger of unreliable performance (especially in high
dimensions), numerical experiments have shown that the NM method can converge to an
acceptably accurate solution with substantially fewer function evaluations than multidirec-
tional search descent methods. Good numerical performance and a significant improvement
in computational complexity for our estimation method, therefore, optimization with the NM
technique, produce a good estimation for parameters in MGΓD. To show the performance of
NM, we consider the next example.

3.1. Example

We generate random number from MGΓD with parameters k = 2, m1 = 0.25, m2 = 0.75,
α1 = 0.5, α2 = 0.5, β1 = 2, β2 = 2, γ1 = 1, γ2 = 4, c1 = 0, and c2 = 10. By performs NM, we
obtain best estimation for parameters. As we show in Table 1, the first 5th values of estimated
parameters after being sorted according the value of function. In the following section, we
resolve to FastICA algorithm for blind signal separation (BSS), this algorithm depends on the
estimated parameters and an unmixing matrix Wwhich estimated by FastICA algorithm.
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Figure 2: The probability density function of MGΓD for k = 2, c1 = 2, c2 = 7, α1 = α2 = 0.5, and β1 = β2 = 2
with different weight m1 = 0.7, 0.3, 0.4, 0.6, m2 = 1 − m1, and power parameters γ1 = 1.9, 2, 2.5, 3 and
γ2 = 2, 4, 4.3, 1.5(g, f, h,w), respectively.

4. Application of MGΓD in Blind Signal Separation

Novel flexible score function is obtained, by substituting (2.1) into (1.4) for the source
estimates ul, l = 1, 2, . . . , n, it quickly become obvious that our proposed score function
inherits a generalized parametric structure, which in turn can be attributed to the highly
flexible MGΓD parent model. In this case, a simple calculus yield the flexible BSS score
function

ϕl(ul | θ) =
( −1
pul(ul)

) k∑

i=1

miγiβi
αi sign (ul − ci)|ul − ci|(αiγi−2) exp−(βi|ul − ci|γi

)

2Γ(αi)

× [(αiγi − 1
) − βiγi|ul − ci|γi

]
.

(4.1)

In principle ϕl (ul | θ) is capable of modeling a large number of signals, such as speech or
communication signals, as well as various other types of challenging heavy- and light-tailed
distributions.

This is due to the fact that its characterization depends explicitly on all parameters
mi, ci, αi, βi, γi, i = 1, 2, . . . , k. Other commonly used score functions can be obtained by
substituting appropriate values for mi, ci, αi, βi, and γi in (4.1), for instance, when k = 1, we
have score function

ϕl(ul | θ) =
sign (ul − c1)

|ul − c1|
(
β1γ1|ul − c1|γ1 − α1γ1 + 1

)
. (4.2)
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Table 2

Sources MGΓD(α, γ) PDF plot

Gaussian 0.5, 2.0

Laplace 1.0, 1.0

Uniform 0.1, 10

Gamma 0.5, 1.0

When α1γ1 = 1 and β1 = 1, we have a scaled form of the GGD-based score function constitutes
such a special case of(4.2)

ϕl(ul | θ) = γ1 sign (ul − c1)|ul − c1|γ1−1. (4.3)

The function ϕl (ul | θ) could become singular, in some special cases, essentially those
corresponding to heavy-tailed (or sparse) distribution defined for αiγi ≥ 1 with αi = 1
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and |ul − ci| = 0. In practice, to circumvent such deficiency, the denominator in (4.1) can
be modified slightly to read

ϕl(ul | θ) =
( −1
pul(ul) + ε

) k∑

i=1

miγi sign (ul − ci)|ul − ci|(αiγi−2) exp−(|ul − ci|/βi
)γi

2βi
αiγiΓ(αi)

×
[
(
αiγi − 1

) − γi

β
γi
i

|ul − ci|γi
]
,

(4.4)

where ε is a small positive parameter (typically around 104) which, when put to use, can
almost always guarantee that the discontinuity of (4.1) or values in or approaching the region
|ul − ci| = 0 is completely avoided.
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5. Numerical Experiments

To investigate the separation performance of the proposed MGΓD-based FastICA BSS
method, a set of numerical experiments are preformed, in which we consider only two cases
when k = 1, k = 2, and we illustrate this in the following two examples.

5.1. Example 1

In this example, k = 1 and the data set used consists of different realizations of independent
signals, with distributions shown in Table 2. Note that this is a large-scale and substantially
difficult separation problem, since it involves a Gaussian, various super- and sub-Gaussian
symmetric PDFs, as well as asymmetric distributions. In all cases, the number of data samples
has also been designed to be relatively small; for example, N = 250. The source signals
are mixed (noiselessly) with randomly generated full-rank mixing matrices A. The FastICA
method is implemented in the so-called simultaneous separation mode whereas the stopping
criterion is set to ε = 10− 4. FastICA is executed using the flexible MGΓD model is used to
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model the distribution of the unknown sources, while (3.3)–(3.5) are employed to adaptively
calculate the necessary parameters of the MGΓD-based score function defined in (4.4).

Now, to show the performance in this case, we consider three source signals (source),
where these signals are generated randomly from Weilbull, gamma, and exponential
distributions as follows:

s1 = wblrnd(1 : 250, 1),

s2 = exprnd(1, 1, 250),

s3 = gamrnd(1, 1, 250).

(5.1)

Let the mixing matrix A and unmixing matrix W be defined as follows:

A =

⎛
⎜⎜⎝

.56 .79 .37

.75 .65 .86

.17 .32 .48

⎞
⎟⎟⎠, W =

⎛
⎜⎜⎝

0.2128 −0.2177 0.2566

0.2184 −0.1924 0.1646

1.9485 −1.8798 1.8687

⎞
⎟⎟⎠. (5.2)
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Table 3

Sources MGΓD(α1, γ1, α2, γ2) PDF plot

Gamma Lapalce 0.5, 1.0, 1.0, 1.0

Gaussian Laplace 0.5, 2.0, 1.0, 1.0

Weilbull Gamma 2.0, 4.0, 0.5, 1.0

Uniform Laplace 0.1, 10, 1.0, 1.0

By using the equation x = As, we obtain mixed signals as show in Figure 3, where mixing
signals are in the left and source signals are in the right.

After using FastICA, we recover the sources, and we show the estimated signals in the
left and original signals in the right in Figure 4 with different in scale only.

5.2. Example 2

In this example, k = 2 in which the data set used consists of different realizations of
independent signals. Note that each signal not only a Gaussian, super-, and sub-Gaussian
PDFs, but it is mixed of this PDFs as shown in Table 3.
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To show the performance in this case, we consider three source signals (source)
where these signals are generated randomly from Gamma Lapalce (s1), Weilbull (s2), and
Gaussian Laplace (s3) distributions. Let the mixing matrix A and unmixing matrix W be
defined as follows:

A =

⎛
⎜⎜⎝

.56 .79 .37

.75 .65 .86

.17 .32 .48

⎞
⎟⎟⎠, W =

⎛
⎜⎜⎝

−0.1293 2.6579 −4.2322
−1.4418 −3.1533 9.9930

−2.3310 8.4107 −11.6627

⎞
⎟⎟⎠. (5.3)

By using the equation X = AS, we obtain mixed signals as show in Figure 5, where mixed
signals are in the left and source signals are in the right.

After using FastICA, we recover the source, and we show the estimated signals in the
left with scale and original signals in the right in Figure 6.
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6. Algorithm Performance

The separation performance for ICA algorithm is evaluated with the crosstalk error measure

PI =
n∑

i=1

⎛

⎝
n∑

j=1

∣∣pij
∣∣2

max1≤ l ≤n
∣∣pil
∣∣2

− 1

⎞

⎠ +
n∑

j=1

(
n∑

i=1

∣∣pij
∣∣2

max1≤ l ≤n
∣∣plj
∣∣2

− 1

)
. (6.1)

Note that here, pij represents the elements of the permutation matrix P = WA, which
after assuming that all sources have been successfully separated should ideally reduce to
a permuted and scaled version of the identity matrix. The separation performance for the
first example is PI = −12.68dB and for second example is PI = −16.68dB.

7. Conclusions

We have derived a novel parametric family of flexible score functions, based exclusively on
theMGΓDmodel. To calculate the parameters of these functions in an adaptive BSS setup, we
have chosen to maximize the ML equation with the NM optimization method. This alleviates
excessive computational cost requirements and allows for a fast practical implementation of
the FastICA. Simulation results show that the proposed approach is capable of separating
mixtures of signals.
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