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Abstract. 
We study warped product semi-invariant submanifolds of nearly cosymplectic manifolds. We prove that the warped product of the type 
	
		
			

				𝑀
			

			

				⟂
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				𝑇
			

		
	
 is a usual Riemannian product of 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
, where 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 are anti-invariant and invariant submanifolds of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
, respectively. Thus we consider the warped product of the type 
	
		
			

				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 and obtain a characterization for such type of warped product.

1. Introduction
 The notion of warped product manifolds was introduced by Bishop and O'Neill in 1969 as a natural generalization of the Riemannian product manifolds. Later on, the geometrical aspect of these manifolds has been studied by many researchers (cf., [1–3]). Recently, Chen [1] (see also [4]) studied warped product CR-submanifolds and showed that there exists no warped product CR-submanifolds of the form 
	
		
			
				𝑀
				=
				𝑀
			

			

				⟂
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				𝑇
			

		
	
 such that 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 is a totally real submanifold and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 is a holomorphic submanifold of a Kaehler manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Therefore he considered warped product CR-submanifold in the form 
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 which is called CR-warped product, where 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 are holomorphic and totally real submanifolds of a Kaehler manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Motivated by Chen's papers, many geometers studied CR-warped product submanifolds in almost complex as well as contact setting (see [3, 5, 6]).
 Almost contact manifolds with Killing structure tensors were defined in [7] as nearly cosymplectic manifolds, and it was shown that normal nearly cosymplectic manifolds are cosymplectic (see also [8]). Later on, Blair and Showers [9] studied nearly cosymplectic structure 
	
		
			
				(
				𝜙
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
 on a manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 with 
	
		
			

				𝜂
			

		
	
 closed from the topological viewpoint.
 In this paper, we have generalized the results of Chen' [1] in this more general setting of nearly cosymplectic manifolds and have shown that the warped product in the form 
	
		
			
				𝑀
				=
				𝑀
			

			

				⟂
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				𝑇
			

		
	
 is simply Riemannian product of 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 where 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 is an anti-invariant submanifold and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 is an invariant submanifold of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Thus we consider the warped product submanifold of the type 
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 by reversing the two factors 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 and simply will be called warped product semi-invariant submanifold. Thus, we derive the integrability of the involved distributions in the warped product and obtain a characterization result.
2. Preliminaries
 A 
	
		
			
				(
				2
				𝑛
				+
				1
				)
				-
			

		
	
dimensional 
	
		
			

				𝐶
			

			

				∞
			

		
	
 manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 is said to have an almost contact structure if there exist on 
	
		
			
				
			
			

				𝑀
			

		
	
 a tensor field 
	
		
			

				𝜙
			

		
	
 of type 
	
		
			
				(
				1
				,
				1
				)
			

		
	
, a vector field 
	
		
			

				𝜉
			

		
	
, and a 1-form 
	
		
			

				𝜂
			

		
	
 satisfying [9] 
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝜙
			

			

				2
			

			
				=
				−
				𝐼
				+
				𝜂
				⊗
				𝜉
				,
				𝜙
				𝜉
				=
				0
				,
				𝜂
				∘
				𝜙
				=
				0
				,
				𝜂
				(
				𝜉
				)
				=
				1
				.
			

		
	

					There always exists a Riemannian metric 
	
		
			

				𝑔
			

		
	
 on an almost contact manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 satisfying the following compatibility condition: 
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝜂
				(
				𝑋
				)
				=
				𝑔
				(
				𝑋
				,
				𝜉
				)
				,
				𝑔
				(
				𝜙
				𝑋
				,
				𝜙
				𝑌
				)
				=
				𝑔
				(
				𝑋
				,
				𝑌
				)
				−
				𝜂
				(
				𝑋
				)
				𝜂
				(
				𝑌
				)
				,
			

		
	

					where 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 are vector fields on 
	
		
			
				
			
			

				𝑀
			

		
	
 [9].
 An almost contact structure 
	
		
			
				(
				𝜙
				,
				𝜉
				,
				𝜂
				)
			

		
	
 is said to be  normal if the almost complex structure 
	
		
			

				𝐽
			

		
	
 on the product manifold 
	
		
			
				
			
			
				𝑀
				×
				ℝ
			

		
	
 given by 
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝐽
				
				𝑑
				𝑋
				,
				𝑓
			

			
				
			
			
				
				=
				
				𝑑
				𝑑
				𝑡
				𝜙
				𝑋
				−
				𝑓
				𝜉
				,
				𝜂
				(
				𝑋
				)
			

			
				
			
			
				
				,
				𝑑
				𝑡
			

		
	

					where 
	
		
			

				𝑓
			

		
	
 is a 
	
		
			

				𝐶
			

			

				∞
			

			

				-
			

		
	
function on 
	
		
			
				
			
			
				𝑀
				×
				ℝ
			

		
	
, has no torsion, that is,  
	
		
			

				𝐽
			

		
	
 is integrable, and the condition for normality in terms of 
	
		
			
				𝜙
				,
				𝜉
			

		
	
 and 
	
		
			

				𝜂
			

		
	
 is 
	
		
			
				[
				𝜙
				,
				𝜙
				]
				+
				2
				𝑑
				𝜂
				⊗
				𝜉
				=
				0
			

		
	
 on 
	
		
			
				
			
			

				𝑀
			

		
	
, where 
	
		
			
				[
				𝜙
				,
				𝜙
				]
			

		
	
 is the Nijenhuis tensor of 
	
		
			

				𝜙
			

		
	
. Finally the fundamental 2-form 
	
		
			

				Φ
			

		
	
 is defined by 
	
		
			
				Φ
				(
				𝑋
				,
				𝑌
				)
				=
				𝑔
				(
				𝑋
				,
				𝜙
				𝑌
				)
			

		
	
.
 An almost contact metric structure 
	
		
			
				(
				𝜙
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
 is said to be cosymplectic, if it is normal and both 
	
		
			

				Φ
			

		
	
 and 
	
		
			

				𝜂
			

		
	
 are closed [9]. The structure is said to be nearly cosymplectic if 
	
		
			

				𝜙
			

		
	
 is Killing, that is, if 
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				
				
				𝑌
				+
			

			
				
			
			

				∇
			

			

				𝑌
			

			
				𝜙
				
				𝑋
				=
				0
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
			

			
				
			
			

				𝑀
			

		
	
, where 
	
		
			

				𝑇
			

			
				
			
			

				𝑀
			

		
	
 is the tangent bundle of 
	
		
			
				
			
			

				𝑀
			

		
	
 and 
	
		
			
				
			
			

				∇
			

		
	
 denotes the Riemannian connection of the metric 
	
		
			

				𝑔
			

		
	
. Equation (2.4) is equivalent to 
	
		
			

				(
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				)
				𝑋
				=
				0
			

		
	
, for each 
	
		
			
				𝑋
				∈
				𝑇
			

			
				
			
			

				𝑀
			

		
	
. The structure is said to be closely cosymplectic if 
	
		
			

				𝜙
			

		
	
 is Killing and 
	
		
			

				𝜂
			

		
	
 is closed. It is well known that an almost contact metric manifold is cosymplectic if and only if 
	
		
			
				
			
			
				∇
				𝜙
			

		
	
 vanishes identically, that is, 
	
		
			

				(
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				)
				𝑌
				=
				0
			

		
	
 and 
	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜉
				=
				0
			

		
	
.
Proposition 2.1 (see [9]).  On a nearly cosymplectic manifold, the vector field  
	
		
			

				𝜉
			

		
	
 is Killing.
From the above proposition we have 
	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜉
				=
				0
			

		
	
, for any vector field 
	
		
			

				𝑋
			

		
	
 tangent to 
	
		
			
				
			
			

				𝑀
			

		
	
, where 
	
		
			
				
			
			

				𝑀
			

		
	
 is a nearly cosymplectic manifold.
 Let 
	
		
			

				𝑀
			

		
	
 be submanifold of an almost contact metric manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 with induced metric 
	
		
			

				𝑔
			

		
	
, and if 
	
		
			

				∇
			

		
	
 and 
	
		
			

				∇
			

			

				⟂
			

		
	
 are the induced connections on the tangent bundle 
	
		
			
				𝑇
				𝑀
			

		
	
 and the normal bundle 
	
		
			

				𝑇
			

			

				⟂
			

			

				𝑀
			

		
	
 of 
	
		
			

				𝑀
			

		
	
, respectively, then, Gauss and Weingarten formulae are given by 
	
 		
 			
				(
				2
				.
				5
				)
			
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝑌
				+
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑁
				=
				−
				𝐴
			

			

				𝑁
			

			
				𝑋
				+
				∇
			

			
				⟂
				𝑋
			

			
				𝑁
				,
			

		
	

					for each 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

		
	
 and 
	
		
			
				𝑁
				∈
				𝑇
			

			

				⟂
			

			

				𝑀
			

		
	
, where 
	
		
			

				ℎ
			

		
	
 and 
	
		
			

				𝐴
			

			

				𝑁
			

		
	
 are the second fundamental form and the shape operator (corresponding to the normal vector field 
	
		
			

				𝑁
			

		
	
), respectively, for the immersion of 
	
		
			

				𝑀
			

		
	
 into 
	
		
			
				
			
			

				𝑀
			

		
	
. They are related as 
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				
				𝐴
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝑁
				)
				=
				𝑔
			

			

				𝑁
			

			
				
				,
				𝑋
				,
				𝑌
			

		
	

					where 
	
		
			

				𝑔
			

		
	
 denotes the Riemannian metric on 
	
		
			
				
			
			

				𝑀
			

		
	
 as well as being induced on 
	
		
			

				𝑀
			

		
	
.
 For any 
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

		
	
, we write 
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				𝜙
				𝑋
				=
				𝑇
				𝑋
				+
				𝐹
				𝑋
				,
			

		
	

					where 
	
		
			
				𝑇
				𝑋
			

		
	
 is the tangential component and 
	
		
			
				𝐹
				𝑋
			

		
	
 is the normal component of 
	
		
			
				𝜙
				𝑋
			

		
	
.
 Similarly for any 
	
		
			
				𝑁
				∈
				𝑇
			

			

				⟂
			

			

				𝑀
			

		
	
, we write 
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝜙
				𝑁
				=
				𝐵
				𝑁
				+
				𝐶
				𝑁
				,
			

		
	

					where 
	
		
			
				𝐵
				𝑁
			

		
	
 is the tangential component and 
	
		
			
				𝐶
				𝑁
			

		
	
 is the normal component of 
	
		
			
				𝜙
				𝑁
			

		
	
. The covariant derivatives of the tensor fields 
	
		
			

				𝑃
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 are defined as 
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				
				∇
			

			

				𝑋
			

			
				𝑇
				
				𝑌
				=
				∇
			

			

				𝑋
			

			
				𝑇
				𝑌
				−
				𝑇
				∇
			

			

				𝑋
			

			
				
				𝑌
				,
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝐹
				
				𝑌
				=
				∇
			

			
				⟂
				𝑋
			

			
				𝐹
				𝑌
				−
				𝐹
				∇
			

			

				𝑋
			

			

				𝑌
			

		
	

					for all 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

		
	
.
 Let 
	
		
			

				𝑀
			

		
	
 be a Riemannian manifold isometrically immersed in an almost contact metric manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. then for every 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
 there exists a maximal invariant subspace denoted by 
	
		
			

				𝒟
			

			

				𝑥
			

		
	
 of the tangent space 
	
		
			

				𝑇
			

			

				𝑥
			

			

				𝑀
			

		
	
 of 
	
		
			

				𝑀
			

		
	
. If the dimension of 
	
		
			

				𝒟
			

			

				𝑥
			

		
	
 is the same for all values of 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
, then 
	
		
			

				𝒟
			

			

				𝑥
			

		
	
 gives an invariant distribution 
	
		
			

				𝒟
			

		
	
 on 
	
		
			

				𝑀
			

		
	
.
 A submanifold 
	
		
			

				𝑀
			

		
	
 of an almost contact metric manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 is called semi-invariant submanifold if there exists on 
	
		
			

				𝑀
			

		
	
 a differentiable invariant distribution 
	
		
			

				𝒟
			

		
	
 whose orthogonal complementary distribution 
	
		
			

				𝒟
			

			

				⟂
			

		
	
 is anti-invariant, that is,  (i)
	
		
			
				𝑇
				𝑀
				=
				𝒟
				⊕
				𝒟
			

			

				⟂
			

			
				⊕
				⟨
				𝜉
				⟩
			

		
	
, (ii)
	
		
			
				𝜙
				(
				𝒟
			

			

				𝑥
			

			
				)
				⊆
				𝐷
			

			

				𝑥
			

		
	
, (iii)
	
		
			
				𝜙
				(
				𝒟
			

			
				⟂
				𝑥
			

			
				)
				⊂
				𝑇
			

			
				⟂
				𝑥
			

			

				𝑀
			

		
	


				for any 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
, where 
	
		
			

				𝑇
			

			
				⟂
				𝑥
			

			

				𝑀
			

		
	
 denotes the orthogonal space of 
	
		
			

				𝑇
			

			

				𝑥
			

			

				𝑀
			

		
	
 in 
	
		
			

				𝑇
			

			

				𝑥
			

			
				
			
			

				𝑀
			

		
	
. A semi-invariant submanifold is called anti-invariant if 
	
		
			

				𝒟
			

			

				𝑥
			

			
				=
				{
				0
				}
			

		
	
 and invariant if 
	
		
			

				𝒟
			

			
				⟂
				𝑥
			

			
				=
				{
				0
				}
			

		
	
, respectively, for any 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
. It is called the proper semi-invariant submanifold if neither 
	
		
			

				𝒟
			

			

				𝑥
			

			
				=
				{
				0
				}
			

		
	
 nor 
	
		
			

				𝒟
			

			
				⟂
				𝑥
			

			
				=
				{
				0
				}
			

		
	
, for every 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
.
 Let 
	
		
			

				𝑀
			

		
	
 be a semi-invariant submanifold of an almost contact metric manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Then, 
	
		
			
				𝐹
				(
				𝑇
			

			

				𝑥
			

			
				𝑀
				)
			

		
	
 is a subspace of 
	
		
			

				𝑇
			

			
				⟂
				𝑥
			

			

				𝑀
			

		
	
. Then for every 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
, there exists an invariant subspace 
	
		
			

				𝜈
			

			

				𝑥
			

		
	
 of 
	
		
			

				𝑇
			

			

				𝑥
			

			
				
			
			

				𝑀
			

		
	
 such that 
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝑇
			

			
				⟂
				𝑥
			

			
				
				𝑇
				𝑀
				=
				𝐹
			

			

				𝑥
			

			
				𝑀
				
				⊕
				𝜈
			

			

				𝑥
			

			

				.
			

		
	

A semi-invariant submanifold 
	
		
			

				𝑀
			

		
	
 of an almost contact metric manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 is called Riemannian product if the invariant distribution 
	
		
			

				𝒟
			

		
	
 and anti-invariant distribution 
	
		
			

				𝒟
			

			

				⟂
			

		
	
 are totally geodesic distributions in 
	
		
			

				𝑀
			

		
	
.
 Let 
	
		
			
				(
				𝑀
			

			

				1
			

			
				,
				𝑔
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑀
			

			

				2
			

			
				,
				𝑔
			

			

				2
			

			

				)
			

		
	
 be two Riemannian manifolds, and let 
	
		
			

				𝑓
			

		
	
 be a positive differentiable function on 
	
		
			

				𝑀
			

			

				1
			

		
	
. The warped product of 
	
		
			

				𝑀
			

			

				1
			

		
	
 and 
	
		
			

				𝑀
			

			

				2
			

		
	
 is the product manifold 
	
		
			

				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

			
				=
				(
				𝑀
			

			

				1
			

			
				×
				𝑀
			

			

				2
			

			
				,
				𝑔
				)
			

		
	
, where 
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑔
				=
				𝑔
			

			

				1
			

			
				+
				𝑓
			

			

				2
			

			

				𝑔
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			

				𝑓
			

		
	
 is called the warping function of the warped product. The warped product 
	
		
			

				𝑁
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑁
			

			

				2
			

		
	
 is said to be trivial or simply Riemannian product if the warping function 
	
		
			

				𝑓
			

		
	
 is constant. This means that the Riemannian product is a special case of warped product.
 We recall the following general results obtained by Bishop and O'Neill [10] for warped product manifolds.
Lemma 2.2.  Let  
	
		
			
				𝑀
				=
				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

		
	
 be a warped product manifold with the warping function  
	
		
			

				𝑓
			

		
	
. Then (i)
	
		
			

				∇
			

			

				𝑋
			

			
				𝑌
				∈
				𝑇
				𝑀
			

			

				1
			

		
	
,  for each 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

			

				1
			

		
	
, (ii)
	
		
			

				∇
			

			

				𝑋
			

			
				𝑍
				=
				∇
			

			

				𝑍
			

			
				𝑋
				=
				(
				𝑋
				l
				n
				𝑓
				)
				𝑍
			

		
	
, for each  
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

			

				1
			

		
	
 and 
	
		
			
				𝑍
				∈
				𝑇
				𝑀
			

			

				2
			

		
	
, (iii)
	
		
			

				∇
			

			

				𝑍
			

			
				𝑊
				=
				∇
			

			

				𝑀
			

			

				2
			

			

				𝑍
			

			
				𝑊
				−
				(
				𝑔
				(
				𝑍
				,
				𝑊
				)
				/
				𝑓
				)
				g
				r
				a
				d
				𝑓
			

		
	
,
								where  
	
		
			

				∇
			

		
	
 and  
	
		
			

				∇
			

			

				𝑀
			

			

				2
			

		
	
 denote the Levi-Civita connections on  
	
		
			

				𝑀
			

		
	
 and  
	
		
			

				𝑀
			

			

				2
			

		
	
, respectively.
In the above lemma 
	
		
			
				g
				r
				a
				d
				𝑓
			

		
	
 is the gradient of the function 
	
		
			

				𝑓
			

		
	
 defined by 
	
		
			
				𝑔
				(
				g
				r
				a
				d
				𝑓
				,
				𝑈
				)
				=
				𝑈
				𝑓
			

		
	
, for each 
	
		
			
				𝑈
				∈
				𝑇
				𝑀
			

		
	
. From the Lemma 2.2, we have that on a warped product manifold 
	
		
			
				𝑀
				=
				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

		
	
(i)
	
		
			

				𝑀
			

			

				1
			

		
	
 is totally geodesic in 
	
		
			

				𝑀
			

		
	
; (ii)
	
		
			

				𝑀
			

			

				2
			

		
	
 is totally umbilical in 
	
		
			

				𝑀
			

		
	
. 
 Now, we denote by 
	
		
			

				𝒫
			

			

				𝑋
			

			

				𝑌
			

		
	
 and 
	
		
			

				𝒬
			

			

				𝑋
			

			

				𝑌
			

		
	
 the tangential and normal parts of 
	
		
			

				(
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				)
				𝑌
			

		
	
, that is, 
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				
				𝑌
				=
				𝒫
			

			

				𝑋
			

			
				𝑌
				+
				𝒬
			

			

				𝑋
			

			

				𝑌
			

		
	

					for all 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

		
	
. Making use of (2.5), (2.6), and (2.8)–(2.11), the following relations may easily be obtained 
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			

				𝒫
			

			

				𝑋
			

			
				
				∇
				𝑌
				=
			

			

				𝑋
			

			
				𝑇
				
				𝑌
				−
				𝐴
			

			
				𝐹
				𝑌
			

			
				𝒬
				𝑋
				−
				𝐵
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
			

			

				𝑋
			

			
				
				𝑌
				=
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝐹
				
				𝑌
				+
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				−
				𝐶
				ℎ
				(
				𝑋
				,
				𝑌
				)
				.
			

		
	

It is straightforward to verify the following properties of 
	
		
			

				𝒫
			

		
	
 and 
	
		
			

				𝒬
			

		
	
, which we enlist here for later use: 
	
		
			
				(
				𝑝
			

			

				1
			

			

				)
			

		
	
(i) 
	
		
			

				𝒫
			

			
				𝑋
				+
				𝑌
			

			
				𝑊
				=
				𝒫
			

			

				𝑋
			

			
				𝑊
				+
				𝒫
			

			

				𝑌
			

			

				𝑊
			

		
	
, (ii) 
	
		
			

				𝒬
			

			
				𝑋
				+
				𝑌
			

			
				𝑊
				=
				𝒬
			

			

				𝑋
			

			
				𝑊
				+
				𝒬
			

			

				𝑌
			

			

				𝑊
			

		
	
,
	
		
			
				(
				𝑝
			

			

				2
			

			

				)
			

		
	
(i) 
	
		
			

				𝒫
			

			

				𝑋
			

			
				(
				𝑌
				+
				𝑊
				)
				=
				𝒫
			

			

				𝑋
			

			
				𝑌
				+
				𝒫
			

			

				𝑋
			

			

				𝑊
			

		
	
, (ii) 
	
		
			

				𝒬
			

			

				𝑋
			

			
				(
				𝑌
				+
				𝑊
				)
				=
				𝒬
			

			

				𝑋
			

			
				𝑌
				+
				𝒬
			

			

				𝑋
			

			

				𝑊
			

		
	
,
	
		
			
				(
				𝑝
			

			

				3
			

			

				)
			

		
	

	
		
			
				𝑔
				(
				𝒫
			

			

				𝑋
			

			
				𝑌
				,
				𝑊
				)
				=
				−
				𝑔
				(
				𝑌
				,
				𝒫
			

			

				𝑋
			

			
				𝑊
				)
			

		
	


				for all 
	
		
			
				𝑋
				,
				𝑌
				,
				𝑊
				∈
				𝑇
				𝑀
			

		
	
.
 On a submanifold 
	
		
			

				𝑀
			

		
	
 of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
, we obtain from (2.4) and (2.14) that 
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				(
				i
				)
				𝒫
			

			

				𝑋
			

			
				𝑌
				+
				𝒫
			

			

				𝑌
			

			
				𝑋
				=
				0
				,
				(
				i
				i
				)
				𝒬
			

			

				𝑋
			

			
				𝑌
				+
				𝒬
			

			

				𝑌
			

			
				𝑋
				=
				0
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

		
	
.
3. Warped Product Semi-Invariant Submanifolds
 Throughout the section we consider the submanifold 
	
		
			

				𝑀
			

		
	
 of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 such that the structure vector field 
	
		
			

				𝜉
			

		
	
 is tangent to 
	
		
			

				𝑀
			

		
	
. First, we prove that the warped product 
	
		
			
				𝑀
				=
				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

		
	
 is trivial when 
	
		
			

				𝜉
			

		
	
 is tangent to 
	
		
			

				𝑀
			

			

				2
			

		
	
, where 
	
		
			

				𝑀
			

			

				1
			

		
	
 and 
	
		
			

				𝑀
			

			

				2
			

		
	
 are Riemannian submanifolds of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Thus, we consider the warped product 
	
		
			
				𝑀
				=
				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

		
	
, when 
	
		
			

				𝜉
			

		
	
 is tangent to the submanifold 
	
		
			

				𝑀
			

			

				1
			

		
	
. We have the following nonexistence theorem.
Theorem 3.1.  A warped product submanifold  
	
		
			
				𝑀
				=
				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

		
	
 of a nearly cosymplectic manifold  
	
		
			
				
			
			

				𝑀
			

		
	
 is a usual Riemannian product if the structure vector field  
	
		
			

				𝜉
			

		
	
 is tangent to  
	
		
			

				𝑀
			

			

				2
			

		
	
, where  
	
		
			

				𝑀
			

			

				1
			

		
	
 and  
	
		
			

				𝑀
			

			

				2
			

		
	
 are the Riemannian submanifolds of  
	
		
			
				
			
			

				𝑀
			

		
	
.
Proof. For any 
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

			

				1
			

		
	
 and 
	
		
			

				𝜉
			

		
	
 tangent to 
	
		
			

				𝑀
			

			

				2
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜉
				=
				∇
			

			

				𝑋
			

			
				𝜉
				+
				ℎ
				(
				𝑋
				,
				𝜉
				)
				.
			

		
	

						Using the fact that 
	
		
			

				𝜉
			

		
	
 is Killing on a nearly cosymplectic manifold (see Proposition 2.1) and Lemma 2.2(ii), we get 
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				0
				=
				(
				𝑋
				l
				n
				𝑓
				)
				𝜉
				+
				ℎ
				(
				𝑋
				,
				𝜉
				)
				.
			

		
	

						Equating the tangential component of (3.2), we obtain 
	
		
			
				𝑋
				l
				n
				𝑓
				=
				0
			

		
	
, for all 
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

			

				1
			

		
	
, that is, 
	
		
			

				𝑓
			

		
	
 is constant function on 
	
		
			

				𝑀
			

			

				1
			

		
	
. Thus, 
	
		
			

				𝑀
			

		
	
 is Riemannian product. This proves the theorem. 
Now, the other case of warped product 
	
		
			
				𝑀
				=
				𝑀
			

			

				1
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				2
			

		
	
 when 
	
		
			
				𝜉
				∈
				𝑇
				𝑀
			

			

				1
			

		
	
, where 
	
		
			

				𝑀
			

			

				1
			

		
	
 and 
	
		
			

				𝑀
			

			

				2
			

		
	
 are the Riemannian submanifolds of 
	
		
			
				
			
			

				𝑀
			

		
	
. For any 
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

			

				2
			

		
	
, we have 
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜉
				=
				∇
			

			

				𝑋
			

			
				𝜉
				+
				ℎ
				(
				𝑋
				,
				𝜉
				)
				.
			

		
	

					By Proposition 2.1, and Lemma 2.2(ii), we obtain 
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				(
				i
				)
				𝜉
				l
				n
				𝑓
				=
				0
				,
				(
				i
				i
				)
				ℎ
				(
				𝑋
				,
				𝜉
				)
				=
				0
				.
			

		
	

					Thus, we consider the warped product semi-invariant submanifolds of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 of the types:  (i)
	
		
			
				𝑀
				=
				𝑀
			

			

				⟂
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				𝑇
			

		
	
, (ii)
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
, 

				where 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 are invariant and anti-invariant submanifolds of 
	
		
			
				
			
			

				𝑀
			

		
	
, respectively. In the following theorem we prove that the warped product semi-invariant submanifold of the type (i) is CR-product.
Theorem 3.2.  The warped product semi-invariant submanifold  
	
		
			
				𝑀
				=
				𝑀
			

			

				⟂
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				𝑇
			

		
	
 of a nearly cosymplectic manifold  
	
		
			
				
			
			

				𝑀
			

		
	
 is a usual Riemannian product of  
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and  
	
		
			

				𝑀
			

			

				𝑇
			

		
	
, where  
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and  
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 are anti-invariant and invariant submanifolds of  
	
		
			
				
			
			

				𝑀
			

		
	
, respectively.
Proof. When 
	
		
			
				𝜉
				∈
				𝑇
				𝑀
			

			

				𝑇
			

		
	
, then by Theorem 3.1, 
	
		
			

				𝑀
			

		
	
 is a Riemannian product. Thus, we consider 
	
		
			
				𝜉
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
. For any 
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

			

				𝑇
			

		
	
 and 
	
		
			
				𝑍
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝜙
				𝑋
				)
				,
				𝐹
				𝑍
				)
				=
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝜙
				𝑋
				)
				,
				𝜙
				𝑍
				)
				=
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				
				𝜙
				𝜙
				𝑋
				,
				𝜙
				𝑍
				=
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				𝑋
				,
				𝜙
				𝑍
				+
				𝑔
				
				
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				
				
				.
				𝑋
				,
				𝜙
				𝑍
			

		
	

						From the structure equation of nearly cosymplectic, the second term of right hand side vanishes identically. Thus from (2.2), we derive 
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝜙
				𝑋
				)
				,
				𝐹
				𝑍
				)
				=
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				
				𝑋
				,
				𝑍
				−
				𝜂
				(
				𝑍
				)
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				
				𝑋
				,
				𝜉
				=
				−
				𝑔
				𝑋
				,
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑍
				
				
				+
				𝜂
				(
				𝑍
				)
				𝑔
				𝑋
				,
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜉
				
				.
			

		
	

						Then from (2.5), Lemma 2.2(ii), and Proposition 2.1, we obtain 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝜙
				𝑋
				)
				,
				𝐹
				𝑍
				)
				=
				−
				(
				𝑍
				l
				n
				𝑓
				)
				‖
				𝑋
				‖
			

			

				2
			

			

				.
			

		
	

						Interchanging 
	
		
			

				𝑋
			

		
	
 by 
	
		
			
				𝜙
				𝑋
			

		
	
 in (3.7) and using the fact that 
	
		
			
				𝜉
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
, we obtain 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝜙
				𝑋
				)
				,
				𝐹
				𝑍
				)
				=
				(
				𝑍
				l
				n
				𝑓
				)
				‖
				𝑋
				‖
			

			

				2
			

			

				.
			

		
	

						It follows from (3.7) and (3.8) that 
	
		
			
				𝑍
				l
				n
				𝑓
				=
				0
			

		
	
, for all 
	
		
			
				𝑍
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
. Also, from (3.4) we have 
	
		
			
				𝜉
				l
				n
				𝑓
				=
				0
			

		
	
. Thus, the warping function 
	
		
			

				𝑓
			

		
	
 is constant. This completes the proof of the theorem. 
From the above theorem we have seen that the warped product of the type 
	
		
			
				𝑀
				=
				𝑀
			

			

				⟂
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				𝑇
			

		
	
 is a usual Riemannian product of an anti-invariant submanifold 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and an invariant submanifold 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
. Since both 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 are totally geodesic in 
	
		
			

				𝑀
			

		
	
, then 
	
		
			

				𝑀
			

		
	
 is CR-product. Now, we study the warped product semi-invariant submanifold 
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
.
Theorem 3.3.  Let  
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 be a warped product semi-invariant submanifold of a nearly cosymplectic manifold  
	
		
			
				
			
			

				𝑀
			

		
	
. Then the invariant distribution  
	
		
			

				𝒟
			

		
	
 and the anti-invariant distribution  
	
		
			

				𝒟
			

			

				⟂
			

		
	
 are always integrable.
Proof. For any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝒟
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				𝐹
				[
				]
				𝑋
				,
				𝑌
				=
				𝐹
				∇
			

			

				𝑋
			

			
				𝑌
				−
				𝐹
				∇
			

			

				𝑌
			

			
				𝑋
				.
			

		
	

						Using (2.11), we obtain 
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				𝐹
				[
				]
				=
				
				𝑋
				,
				𝑌
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝐹
				
				
				𝑌
				−
			

			
				
			
			

				∇
			

			

				𝑌
			

			
				𝐹
				
				𝑋
				.
			

		
	

						Then by (2.16), we derive 
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				𝐹
				[
				]
				𝑋
				,
				𝑌
				=
				𝒬
			

			

				𝑋
			

			
				𝑌
				−
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				+
				𝐶
				ℎ
				(
				𝑋
				,
				𝑌
				)
				−
				𝒬
			

			

				𝑌
			

			
				𝑋
				+
				ℎ
				(
				𝑌
				,
				𝑇
				𝑋
				)
				−
				𝐶
				ℎ
				(
				𝑋
				,
				𝑌
				)
				.
			

		
	

						Thus from (2.17)(ii), we get 
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				𝐹
				[
				]
				𝑋
				,
				𝑌
				=
				2
				𝒬
			

			

				𝑋
			

			
				𝑌
				+
				ℎ
				(
				𝑌
				,
				𝑇
				𝑋
				)
				−
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				.
			

		
	

						Now, for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝐷
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				+
				∇
			

			

				𝑋
			

			
				𝑇
				𝑌
				=
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑇
				𝑌
				=
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				𝑌
				.
			

		
	

						Using the covariant derivative property of 
	
		
			
				
			
			
				∇
				𝜙
			

		
	
, we obtain 
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				+
				∇
			

			

				𝑋
			

			
				
				𝑇
				𝑌
				=
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				
				𝑌
				+
				𝜙
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑌
				.
			

		
	

						Then by (2.5) and (2.14), we get 
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				+
				∇
			

			

				𝑋
			

			
				𝑇
				𝑌
				=
				𝑃
			

			

				𝑋
			

			
				𝑌
				+
				𝒬
			

			

				𝑋
			

			
				
				∇
				𝑌
				+
				𝜙
			

			

				𝑋
			

			
				
				.
				𝑌
				+
				ℎ
				(
				𝑋
				,
				𝑌
				)
			

		
	

						Since 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 is totally geodesic in 
	
		
			

				𝑀
			

		
	
 (see Lemma 2.2(i)), then using (2.8) and (2.9), we obtain 
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				+
				∇
			

			

				𝑋
			

			
				𝑇
				𝑌
				=
				𝒫
			

			

				𝑋
			

			
				𝑌
				+
				𝒬
			

			

				𝑋
			

			
				𝑌
				+
				𝑇
				∇
			

			

				𝑋
			

			
				𝑌
				+
				𝐵
				ℎ
				(
				𝑋
				,
				𝑌
				)
				+
				𝐶
				ℎ
				(
				𝑋
				,
				𝑌
				)
				.
			

		
	

						Equating the normal components of (3.16), we get 
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				=
				𝒬
			

			

				𝑋
			

			
				𝑌
				+
				𝐶
				ℎ
				(
				𝑋
				,
				𝑌
				)
				.
			

		
	

						Similarly, we obtain 
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑌
				,
				𝑇
				𝑋
				)
				=
				𝒬
			

			

				𝑌
			

			
				𝑋
				+
				𝐶
				ℎ
				(
				𝑋
				,
				𝑌
				)
				.
			

		
	

						Then from (3.17) and (3.18), we arrive at 
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑌
				,
				𝑇
				𝑋
				)
				−
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				=
				𝒬
			

			

				𝑌
			

			
				𝑋
				−
				𝒬
			

			

				𝑋
			

			
				𝑌
				.
			

		
	

						Hence, using (2.17)(ii), we get 
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑌
				,
				𝑇
				𝑋
				)
				−
				ℎ
				(
				𝑋
				,
				𝑇
				𝑌
				)
				=
				−
				2
				𝒬
			

			

				𝑋
			

			
				𝑌
				.
			

		
	

						Thus, it follows from (3.12) and (3.20) that 
	
		
			
				𝐹
				[
				𝑋
				,
				𝑌
				]
				=
				0
			

		
	
, for all 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝐷
			

		
	
. This proves the integrability of 
	
		
			

				𝐷
			

		
	
. Now, for the integrability of 
	
		
			

				𝐷
			

			

				⟂
			

		
	
, we consider any 
	
		
			
				𝑋
				∈
				𝐷
			

		
	
 and 
	
		
			
				𝑍
				,
				𝑊
				∈
				𝐷
			

			

				⟂
			

		
	
, and we have 
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				[
				]
				
				𝑔
				(
				𝑍
				,
				𝑊
				,
				𝑋
				)
				=
				𝑔
			

			
				
			
			

				∇
			

			

				𝑍
			

			
				𝑊
				−
			

			
				
			
			

				∇
			

			

				𝑊
			

			
				
				.
				
				∇
				𝑍
				,
				𝑋
				=
				−
				𝑔
			

			

				𝑍
			

			
				
				
				∇
				𝑋
				,
				𝑊
				+
				𝑔
			

			

				𝑊
			

			
				
				.
				𝑋
				,
				𝑍
			

		
	

						Using Lemma 2.2(ii), we obtain 
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				𝑔
				(
				[
				]
				𝑍
				,
				𝑊
				,
				𝑋
				)
				=
				−
				(
				𝑋
				l
				n
				𝑓
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				+
				(
				𝑋
				l
				n
				𝑓
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				=
				0
				.
			

		
	

						Thus from (3.22), we conclude that 
	
		
			
				[
				𝑍
				,
				𝑊
				]
				∈
				𝒟
			

			

				⟂
			

		
	
, for each 
	
		
			
				𝑍
				,
				𝑊
				∈
				𝒟
			

			

				⟂
			

		
	
. Hence, the theorem is proved completely. 
Lemma 3.4.  Let  
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 be a warped product submanifold of a nearly cosymplectic manifold  
	
		
			
				
			
			

				𝑀
			

		
	
. If  
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

			

				𝑇
			

		
	
 and  
	
		
			
				𝑍
				,
				𝑊
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
, then (i)
	
		
			
				𝑔
				(
				𝒫
			

			

				𝑋
			

			
				𝑌
				,
				𝑍
				)
				=
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝐹
				𝑍
				)
				=
				0
			

		
	
, (ii)
	
		
			
				𝑔
				(
				𝒫
			

			

				𝑋
			

			
				𝑍
				,
				𝑊
				)
				=
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑊
				)
				−
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑊
				)
				,
				𝐹
				𝑍
				)
				=
				−
				(
				𝜙
				𝑋
				l
				n
				𝑓
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				−
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑊
				)
			

		
	
, (iii)
	
		
			
				𝑔
				(
				ℎ
				(
				𝜙
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑍
				)
				=
				(
				𝑋
				l
				n
				𝑓
				)
				‖
				𝑍
				‖
			

			

				2
			

		
	
. 								
Proof. For a warped product manifold 
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
, we have that  
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 is totally geodesic in 
	
		
			

				𝑀
			

		
	
; then by (2.10), 
	
		
			

				(
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝑇
				)
				𝑌
				∈
				𝑇
				𝑀
			

			

				𝑇
			

		
	
, for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝑇
				𝑀
			

			

				𝑇
			

		
	
, and therefore from (2.15), we get 
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				𝑌
				,
				𝑍
				=
				−
				𝑔
				(
				𝐵
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝑍
				)
				=
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝐹
				𝑍
				)
				.
			

		
	

						The left-hand side of (3.23) is skew symmetric in 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 whereas the right hand side is symmetric in 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
, which proves (i). Now, from (2.10) and (2.15), we have 
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			

				𝒫
			

			

				𝑋
			

			
				𝑍
				=
				−
				𝑇
				∇
			

			

				𝑋
			

			
				𝑍
				−
				𝐴
			

			
				𝐹
				𝑍
			

			
				𝑋
				−
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
			

		
	

						for any 
	
		
			
				𝑋
				∈
				𝑇
				𝑀
			

			

				𝑇
			

		
	
 and 
	
		
			
				𝑍
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
. Using Lemma 2.2(ii), the first term of right-hand side is zero. Thus, taking the product with 
	
		
			
				𝑊
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
, we obtain 
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				
				𝐴
				𝑍
				,
				𝑊
				=
				−
				𝑔
			

			
				𝐹
				𝑍
			

			
				
				𝑋
				,
				𝑊
				−
				𝑔
				(
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝑊
				)
				,
			

		
	

						Then by (2.2) and (2.7), we get 
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				𝑍
				,
				𝑊
				=
				−
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑊
				)
				,
				𝐹
				𝑍
				)
				+
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑊
				)
				.
			

		
	

						which proves the first equality of (ii). Again, from (2.10) and (2.15), we have 
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			

				𝒫
			

			

				𝑍
			

			
				𝑋
				=
				∇
			

			

				𝑍
			

			
				𝑇
				𝑋
				−
				𝑇
				∇
			

			

				𝑍
			

			
				𝑋
				−
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
				.
			

		
	

						Thus using Lemma 2.2(ii), we derive 
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			

				𝒫
			

			

				𝑍
			

			
				𝑋
				=
				(
				𝑇
				𝑋
				l
				n
				𝑓
				)
				𝑍
				−
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
				.
			

		
	

						Taking inner product with 
	
		
			
				𝑊
				∈
				𝑇
				𝑀
			

			

				⟂
			

		
	
 and using (2.2), we obtain 
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑍
			

			
				
				𝑋
				,
				𝑊
				=
				(
				𝜙
				𝑋
				l
				n
				𝑓
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				+
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑊
				)
				.
			

		
	

						Then from (2.17)(i), we get 
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				𝑍
				,
				𝑊
				=
				−
				(
				𝜙
				𝑋
				l
				n
				𝑓
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				−
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑊
				)
				.
			

		
	

						This is the second equality of (ii). Now, from (3.24) and (3.28), we have 
							
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			

				𝒫
			

			

				𝑋
			

			
				𝑍
				+
				𝒫
			

			

				𝑍
			

			
				𝑋
				=
				−
				𝑇
				∇
			

			

				𝑋
			

			
				𝑍
				−
				𝐴
			

			
				𝐹
				𝑍
			

			
				𝑋
				+
				(
				𝑇
				𝑋
				l
				n
				𝑓
				)
				𝑍
				−
				2
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
				.
			

		
	

						Left-hand side and the first term of right-hand side are zero on using (2.17)(i) and Lemma 2.2(i), respectively. Thus the above equation takes the form 
							
	
 		
 			
				(
				3
				.
				3
				2
				)
			
 		
	

	
		
			
				(
				𝑇
				𝑋
				l
				n
				𝑓
				)
				𝑍
				=
				𝐴
			

			
				𝐹
				𝑍
			

			
				𝑋
				+
				2
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
				.
			

		
	

						Taking the product with 
	
		
			

				𝑍
			

		
	
 and on using (2.2) and (2.7), we get 
							
	
 		
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			
				(
				𝜙
				𝑋
				l
				n
				𝑓
				)
				‖
				𝑍
				‖
			

			

				2
			

			
				=
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑍
				)
				−
				2
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑍
				)
				=
				−
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑍
				)
				.
			

		
	

						Interchanging 
	
		
			

				𝑋
			

		
	
 by 
	
		
			
				𝜙
				𝑋
			

		
	
 and using (2.1), we obtain 
							
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			
				{
				−
				𝑋
				+
				𝜂
				(
				𝑋
				)
				𝜉
				}
				l
				n
				𝑓
				‖
				𝑍
				‖
			

			

				2
			

			
				=
				−
				𝑔
				(
				ℎ
				(
				𝜙
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑍
				)
				.
			

		
	

						Thus by (3.4)(i), the above equation reduces to 
							
	
 		
 			
				(
				3
				.
				3
				5
				)
			
 		
	

	
		
			
				(
				𝑋
				l
				n
				𝑓
				)
				‖
				𝑍
				‖
			

			

				2
			

			
				=
				𝑔
				(
				ℎ
				(
				𝜙
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑍
				)
				.
			

		
	

						This proves the lemma completely. 
Theorem 3.5.   A proper semi-invariant submanifold  
	
		
			

				𝑀
			

		
	
 of a nearly cosymplectic manifold  
	
		
			
				
			
			

				𝑀
			

		
	
 is locally a semi-invariant warped product if and only if the shape operator of  
	
		
			

				𝑀
			

		
	
 satisfies 
							
	
 		
 			
				(
				3
				.
				3
				6
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝜙
				𝑍
			

			
				𝑋
				=
				−
				(
				𝜙
				𝑋
				𝜇
				)
				𝑍
				,
				𝑋
				∈
				𝒟
				⊕
				⟨
				𝜉
				⟩
				,
				𝑍
				∈
				𝒟
			

			

				⟂
			

		
	

						for some function  
	
		
			

				𝜇
			

		
	
 on  
	
		
			

				𝑀
			

		
	
 satisfying  
	
		
			
				𝑉
				(
				𝜇
				)
				=
				0
			

		
	
 for each  
	
		
			
				𝑉
				∈
				𝒟
			

			

				⟂
			

		
	
.
Proof.   If 
	
		
			
				𝑀
				=
				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
 is a warped product semi-invariant submanifold, then by Lemma 3.4 (iii), we obtain (3.36). In this case 
	
		
			
				𝜇
				=
				l
				n
				𝑓
			

		
	
.Conversely, suppose 
	
		
			

				𝑀
			

		
	
 is a semi-invariant submanifold of a nearly cosymplectic manifold 
	
		
			
				
			
			

				𝑀
			

		
	
 satisfying (3.36). Then 
							
	
 		
 			
				(
				3
				.
				3
				7
				)
			
 		
	

	
		
			
				
				𝐴
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝜙
				𝑍
				)
				=
				𝑔
			

			
				𝜙
				𝑍
			

			
				
				𝑋
				,
				𝑌
				=
				−
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑌
				,
				𝑍
				)
				=
				0
				.
			

		
	

						Now, from (2.5) and the property of covariant derivative of 
	
		
			
				
			
			

				∇
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				3
				8
				)
			
 		
	

	
		
			
				
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝜙
				𝑍
				)
				=
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				
				𝜙
				𝑌
				,
				𝜙
				𝑍
				=
				−
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				
				𝑌
				,
				𝑍
				=
				−
				𝑔
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				
				𝜙
				𝑌
				,
				𝑍
				+
				𝑔
				
				
			

			
				
			
			

				∇
			

			

				𝑋
			

			
				𝜙
				
				
				.
				𝑌
				,
				𝑍
			

		
	

						Then from (2.5), (2.14), and (3.37), the above equation takes the form 
							
	
 		
 			
				(
				3
				.
				3
				9
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑋
			

			
				
				
				𝑃
				𝑇
				𝑌
				,
				𝑍
				=
				𝑔
			

			

				𝑋
			

			
				
				.
				𝑌
				,
				𝑍
			

		
	

						Using (2.10) and (2.15), we obtain 
							
	
 		
 			
				(
				3
				.
				4
				0
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑋
			

			
				
				
				∇
				𝑇
				𝑌
				,
				𝑍
				=
				𝑔
			

			

				𝑋
			

			
				
				
				𝑇
				𝑌
				,
				𝑍
				−
				𝑔
				𝑇
				∇
			

			

				𝑋
			

			
				
				𝑌
				,
				𝑍
				−
				𝑔
				(
				𝐵
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝑍
				)
				.
			

		
	

						Thus by (2.2), the above equation reduces to 
							
	
 		
 			
				(
				3
				.
				4
				1
				)
			
 		
	

	
		
			
				𝑔
				
				𝑇
				∇
			

			

				𝑋
			

			
				
				𝑌
				,
				𝑍
				=
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑌
				)
				,
				𝜙
				𝑍
				)
				.
			

		
	

						Hence using (2.7) and (3.36), we get 
							
	
 		
 			
				(
				3
				.
				4
				2
				)
			
 		
	

	
		
			
				𝑔
				
				𝑇
				∇
			

			

				𝑋
			

			
				
				
				𝐴
				𝑌
				,
				𝑍
				=
				𝑔
			

			
				𝜙
				𝑍
			

			
				
				𝑋
				,
				𝑌
				=
				0
				,
			

		
	

						which implies 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑌
				∈
				𝒟
				⊕
				⟨
				𝜉
				⟩
			

		
	
, that is, 
	
		
			
				𝒟
				⊕
				⟨
				𝜉
				⟩
			

		
	
 is integrable and its leaves are totally geodesic in 
	
		
			

				𝑀
			

		
	
. Now, for any 
	
		
			
				𝑍
				,
				𝑊
				∈
				𝒟
			

			

				⟂
			

		
	
 and 
	
		
			
				𝑋
				∈
				𝒟
				⊕
				⟨
				𝜉
				⟩
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				4
				3
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑍
			

			
				
				
				𝑊
				,
				𝜙
				𝑋
				=
				𝑔
			

			
				
			
			

				∇
			

			

				𝑍
			

			
				
				
				𝜙
				𝑊
				,
				𝜙
				𝑋
				=
				−
				𝑔
			

			
				
			
			

				∇
			

			

				𝑍
			

			
				
				𝑊
				,
				𝑋
				=
				𝑔
				
				
			

			
				
			
			

				∇
			

			

				𝑍
			

			
				𝜙
				
				
				
				𝑊
				,
				𝑋
				−
				𝑔
			

			
				
			
			

				∇
			

			

				𝑍
			

			
				
				.
				𝜙
				𝑊
				,
				𝑋
			

		
	

						Then, using (2.6) and (2.14), we obtain 
							
	
 		
 			
				(
				3
				.
				4
				4
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑍
			

			
				
				
				𝒫
				𝑊
				,
				𝜙
				𝑋
				=
				𝑔
			

			

				𝑍
			

			
				
				
				𝐴
				𝑊
				,
				𝑋
				+
				𝑔
			

			
				𝜙
				𝑊
			

			
				
				.
				𝑍
				,
				𝑋
			

		
	

						Thus from (2.7) and the property 
	
		
			
				(
				𝑝
			

			

				3
			

			

				)
			

		
	
, we arrive at 
							
	
 		
 			
				(
				3
				.
				4
				5
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑍
			

			
				
				
				𝑊
				,
				𝜙
				𝑋
				=
				−
				𝑔
				𝑊
				,
				𝒫
			

			

				𝑍
			

			
				𝑋
				
				+
				𝑔
				(
				ℎ
				(
				𝑍
				,
				𝑋
				)
				,
				𝜙
				𝑊
				)
				.
			

		
	

						Again using (2.7) and (2.17)(i), we get 
							
	
 		
 			
				(
				3
				.
				4
				6
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑍
			

			
				
				
				𝒫
				𝑊
				,
				𝜙
				𝑋
				=
				𝑔
			

			

				𝑋
			

			
				
				
				𝐴
				𝑍
				,
				𝑊
				+
				𝑔
			

			
				𝜙
				𝑊
			

			
				
				.
				𝑋
				,
				𝑍
			

		
	

						On the other hand, from (2.10) and (2.15), we have 
							
	
 		
 			
				(
				3
				.
				4
				7
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑋
			

			
				𝑍
				=
				−
				𝑇
				∇
			

			

				𝑋
			

			
				𝑍
				−
				𝐴
			

			
				𝐹
				𝑍
			

			
				𝑋
				−
				𝐵
				ℎ
				(
				𝑋
				,
				𝑍
				)
				.
			

		
	

						Taking the product with 
	
		
			
				𝑊
				∈
				𝐷
			

			

				⟂
			

		
	
 and using (3.36), we obtain 
							
	
 		
 			
				(
				3
				.
				4
				8
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				
				𝑍
				,
				𝑊
				=
				−
				𝑔
				𝑇
				∇
			

			

				𝑋
			

			
				
				𝑍
				,
				𝑊
				+
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				+
				𝑔
				(
				ℎ
				(
				𝑋
				,
				𝑍
				)
				,
				𝐹
				𝑊
				)
				.
			

		
	

						The first term of right-hand side of above equation is zero using the fact that 
	
		
			
				𝑇
				𝑊
				=
				0
			

		
	
, for any 
	
		
			
				𝑊
				∈
				𝒟
			

			

				⟂
			

		
	
. Again using (2.7), we get 
							
	
 		
 			
				(
				3
				.
				4
				9
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				
				𝐴
				𝑍
				,
				𝑊
				=
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				+
				𝑔
			

			
				𝜙
				𝑊
			

			
				
				.
				𝑋
				,
				𝑍
			

		
	

						Thus from (3.36), we derive 
							
	
 		
 			
				(
				3
				.
				5
				0
				)
			
 		
	

	
		
			
				𝑔
				
				𝒫
			

			

				𝑋
			

			
				
				𝑍
				,
				𝑊
				=
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				−
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				=
				0
				.
			

		
	

						Then from (3.36), (3.46), and (3.50), we obtain 
							
	
 		
 			
				(
				3
				.
				5
				1
				)
			
 		
	

	
		
			
				𝑔
				
				∇
			

			

				𝑍
			

			
				
				𝑊
				,
				𝜙
				𝑋
				=
				−
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				.
			

		
	

						Let 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 be a leaf of 
	
		
			

				𝒟
			

			

				⟂
			

		
	
, and let 
	
		
			

				ℎ
			

			

				⟂
			

		
	
 be the second fundamental form of the immersion of 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 into 
	
		
			

				𝑀
			

		
	
. Then for any 
	
		
			
				𝑍
				,
				𝑊
				∈
				𝒟
			

			

				⟂
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				5
				2
				)
			
 		
	

	
		
			
				𝑔
				
				ℎ
			

			

				⟂
			

			
				
				
				∇
				(
				𝑍
				,
				𝑊
				)
				,
				𝜙
				𝑋
				=
				𝑔
			

			

				𝑍
			

			
				
				.
				𝑊
				,
				𝜙
				𝑋
			

		
	

						Hence, from (3.51) and (3.52), we conclude that 
							
	
 		
 			
				(
				3
				.
				5
				3
				)
			
 		
	

	
		
			
				𝑔
				
				ℎ
			

			

				⟂
			

			
				
				(
				𝑍
				,
				𝑊
				)
				,
				𝜙
				𝑋
				=
				−
				(
				𝜙
				𝑋
				𝜇
				)
				𝑔
				(
				𝑍
				,
				𝑊
				)
				.
			

		
	

						This means that integral manifold 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 of 
	
		
			

				𝒟
			

			

				⟂
			

		
	
 is totally umbilical in 
	
		
			

				𝑀
			

		
	
. Since the anti-invariant distribution 
	
		
			

				𝒟
			

			

				⟂
			

		
	
 of a semi-invariant submanifold 
	
		
			

				𝑀
			

		
	
 is always integrable (Theorem 3.3) and 
	
		
			
				𝑉
				(
				𝜇
				)
				=
				0
			

		
	
 for each 
	
		
			
				𝑉
				∈
				𝒟
			

			

				⟂
			

		
	
, which implies that the integral manifold of 
	
		
			

				𝒟
			

			

				⟂
			

		
	
 is an extrinsic sphere in 
	
		
			

				𝑀
			

		
	
; that is, it is totally umbilical and its mean curvature vector field is nonzero and parallel along 
	
		
			

				𝑀
			

			

				⟂
			

		
	
. Hence by virtue of results obtained in [11], 
	
		
			

				𝑀
			

		
	
 is locally a warped product 
	
		
			

				𝑀
			

			

				𝑇
			

			

				×
			

			

				𝑓
			

			

				𝑀
			

			

				⟂
			

		
	
, where 
	
		
			

				𝑀
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝑀
			

			

				⟂
			

		
	
 denote the integral manifolds of the distributions 
	
		
			
				𝒟
				⊕
				⟨
				𝜉
				⟩
			

		
	
 and 
	
		
			

				𝒟
			

			

				⟂
			

		
	
, respectively and 
	
		
			

				𝑓
			

		
	
 is the warping function. Thus the theorem is proved.
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