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We extend the analysis of queueing systems for real-life situations, where the arrival pattern of
customers is unknown. In real systems, we must understand how the choice of a method of esti-
mation influences the configuration of the system. Using kernel smoothing, we evaluate algorithms
to estimate performance measures of a GIX/M/c/N system, including the invariant probability
distribution of the number of customers in the system, the blocking probability, the average queue
size, and the average client queue time. We successfully apply the method to the arrivals to a call
center to plan and improve the performance of these important queueing systems.

1. Introduction

There is a large practical interest in investigating the behavior of general-arrival queueing
systems, namely, those of GIX/M/c/N type, because when managing real queueing sys-
tems, the behavior of the arrival process generally is not Markovian. In Kendall [1] notation,
in these queueing systems, the interarrival times are independent and follow a general dis-
tribution (GI), the service times follow an exponential distribution (M), we have c identical
servers working in parallel, and a maximum capacity of N users that are simultaneously
allowed in the system, including those in service. Finally,X is a random variable representing
the size of group (bulk) arrivals. Such queueing systems could be used in situations where
we have relative control over how the servers work, but we do not know beforehand how the
customers arrive at the system.

Naturally, the mathematical model depends on the type of queueing system consid-
ered, and there are several methods to obtain such models. The most widely used methods
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are those that attempt to explain the density functions of interarrival and service times by
means of parametric statistical models. Nevertheless, real data sometimes do not fit well into
parametric models; instead, they produce intractable models. Exact results for performance
evaluation of Markovian and some simple general queueing systems are known [2], but such
systems sometimes are not found in real life.

An alternative approach is using nonparametric methods to study queueing systems.
Nonparametric methods that use kernel smoothing have received much attention lately [3].
Kernel estimators provide a simple way of finding structure in data sets without imposing
a specific parametric model [4], which gives us flexibility to handle virtually any data set.
There is extensive literature discussing queueing systems [5] and kernel smoothing [4] as
separate concepts, but virtually no study has brought the two concepts together.

The contribution of this paper is twofold. First, we implement algorithms to calculate
performance measures of queueing systems, where the density of the interarrival time is
estimated by the kernel method. Second, we evaluate the performance of these algorithms as
a function of the kernel estimator, the smoothing window, the intensity rate, and the system
size. We also present a case study in a call center that illustrates the usefulness of the method.

First, we present a literature review about queueing systems and kernel estimators
as well as the fundamental concepts required to understand the proposed queueing system
model. We also discuss the use of kernel estimators, the chosen models, and the issue of
selecting the smoothing parameter. Then, we describe howwe estimated system performance
and present the comparative results of simulations with the different methods discussed. We
then apply our methods to a call center case and end with our main conclusions and some
ideas for future work in the area.

2. Literature Review and Fundamental Concepts

2.1. Previous Works

There are many situations in real life where queues occur and queueing models may be
helpful. Recently, queueing models have been used successfully in manufacturing processes
[6, 7], transportation [8], airports, ports, and product distribution systems [9], computer and
telecommunication systems [10], call center modeling [11], and the analysis of health systems
[12]. Queues may cause the quality of the services or the prices of the goods to rise or fall,
depending on their efficiency [8], which may be estimated by means of the mathematical
tools developed in queueing theory.

As we mentioned earlier, there is not much literature that incorporates both general
arrival queueing systems and kernel smoothing. Takács [13] analyzed a closed solution
for various systems that have nonspecific distributions, including some multiserver queues
such as GI/M/c and M/G/c. Hokstad [14] established some closed form results to the
GI/M/c/N system. Chaudhry and Templeton [15] analyzed various types of queue with
bulk arrivals. Zhao [16] proposed a closed form solution for the GIX/M/c system, and
Bareche and Aı̈ssani [17] proposed a method to evaluate the proximity of GI/M/1 and
M/M/1 systems when the density of the interarrival time is estimated by kernel estimators.

Concerning kernel smoothing, Wand and Jones [4] introduced general fundamental
concepts. Regarding the issues related to the asymmetry of the random variable under analy-
sis (e.g., nonnegativity), Zhang et al. [18] proposed a boundary corrected kernel estimator
based on pseudodata generation, transformation, and reflection around the Y -axis. Chen
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[19] proposed the use of a gamma kernel to avoid boundary problems present in certain
situations. Scaillet [20] studied the application of other asymmetric kernels. Bouezmarni and
Scaillet [21] were concerned about the consistency of these asymmetrical estimators. For
recent developments in the area of kernel smoothing and a thorough literature review, see
Atuncar et al. [22] and de Lima and Atuncar [3].

2.2. The GIX/M/c/N Model with Partial Blocks

Vijaya Laxmi and Gupta [23] described a generalization of the system GI/M/c/N when
customers arrive in groups of size X with P(X = i) = gi (i ≥ 1) and mean E(X) = g. The
GIX/M/c/N is a finite capacity system such that a customer that arrives to the saturated
system is refused with a probability that we will call PBL, or partial blocks. This refers
to the case in which an arrival group of a size greater than the remaining spots in the
system is partially denied according to the number of the remaining vacancies until the
system is complete. Let Bn be the number of clients who were served between the arrival
of the nth customer and its successor. Therefore, the number of clients the nth customer
finds in the system at the arrival, Yn, would depend on Xn and Bn such that Yn+1 =
[min(Yn +Xn,N) − Bn]

+. Because Yn+1 depends only on Yn, Bn, and Xn but not on Yn−1, Yn−2,
and so on, the stochastic process {Yn} is a first-order Markov Chain.

Vijaya Laxmi and Gupta [23] report that when the traffic intensity rate ρ = (λg/cμ),
where λ is the arrival rate and μ service rate, is smaller than 1, this Markov Chain has an
invariant probability distribution of πk = limn→∞P(Yn = k), k = 0, 1, 2, . . . associated with
the number of clients an arbitrary customer finds in the system at arrival. The πk’s are often
called prearrival probabilities.

Prearrival probabilities can be determined by the following system of linear equations:

πk =
N∑

j=0

pjkπj , (2.1)

for k = 0, 1, 2, . . . ,N − 1, and

N∑

j=0

πj = 1, (2.2)

which gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
p0,0 − 1

)
p1,0 · · · pN,0

p0,1
(
p1,1 − 1

) ...

...
. . .

...

p0,N−1 · · · · · · (
pN,N−1 − 1

)

1 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π0

π1

...

...

πN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3)
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where pjk are named transition probabilities such that

pjk = P
{
Yn+1 = k | Yn = j

}
=

∞∑

i=1

P
{
Xn = i, Yn+1 = k | Yn = j

}

=
∞∑

i=1

giP
{
Yn+1 = k | Yn = j, Xn = i

}
=

∞∑

i=1

giP
(
Bn = min

(
j + i,N

) − k
)

=
N−j∑

i=max(1,j−k)
giP

(
Bn = j + i − k

)
+

∞∑

i=N−j+1
giP(Bn = N − k)

=
N−j∑

i=max(1,j−k)
gi

∫∞

0
πj+i,k(z)dτ(z) +

∞∑

i=N−j+1
gi

∫∞

0
πN,k(z)dτ(z),

(2.4)

where, j ≤ N, k ≤ N, πj+i,k(z) is the serving probability of (j − k + i) clients under the
assumption of the interarrival time τn = z and τ(z) is the interarrival time distribution.

We will analyze how πj+i,k(z) behaves for all possibilities of (j + 1) and (k) in regard
to the number of servers c.

(a) (j + i) ≥ c and k ≥ c

When j + i ≥ c and k ≥ c, there will be more clients than the servers can handle in the entire
interval. Because the service process is Markovian, we can treat the server group as a single
unit that serves customers at a rate cμz and a Poisson distributed transition probability

πj+i,k(z) = e−cμz
(
cμz

)j+i−k
(
j + i − k

)
!
. (2.5)

(b) (j + i) < c

When j+i < c, all clients within the system are being served and only k customers will remain
in the system to time z. Knowing that the probability of a service time greater than z is e−μz,
we can describe this transition probability as a Binomial distribution

πj+i,k(z) =

(
j + i

k

)
e−kμz

(
1 − e−μz

)j+i−k
. (2.6)

(c) (j + i) ≥ c and k < c

When j + i ≥ c and k < c, there will be (j + i − c) customers waiting and c customers being
served at the beginning of the interval, but there will be (c − k) free servers at the end. Let
y be the interval ending immediately before (j + i − c + 1) clients are served. If each service
time is exponentially distributed with a rate cμ, then y is gamma distributed with a shape
(j + i − c + 1) and rate a cμ. The other c customers will be served in a time (z − y), and only k
will remain. The transition probability of this subinterval will follow a Binomial distribution
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with success probability e−μ(z−y). The values πj+i,k(z) can be obtained by the convolution of
these two variables

πj+i,k(z) =
∫z

0
e−cμy

(
cμ

)j+i−c+1
yj+i−c

(
j + i − c

)
!

(
c

k

)
e−kμ(z−y)

(
1 − e−μ(z−y)

)c−k
dy

=

(
c

k

)
e−kμz

∫z

0

(
cμy

)j+i−c
(
j + i − c

)
!
ekμye−cμy

(
1 − eμye−μz

)c−k
cμ dy

=

(
c

k

)
e−kμz

∫z

0

(
cμy

)j+i−c
(
j + i − c

)
!

[
e−μy

(
1 − eμye−μz

)]c−k
cμ dy

=

(
c

k

)
e−kμz

[∫z

0

(
cμy

)j+i−c
(
j + i − c

)
!

(
e−μy − e−μz

)c−k
cμ dy

]
.

(2.7)

Therefore, from (2.4), we can get the transitions probabilities pjk given by (2.4)when we take
each transition probability πj+i,k(z) as πN,k(z) when i > N − j

pjk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−j∑

i=max{1,k−j}
βj+i−kgi + βN−k

∞∑

k=N−j+1
gi, k ≥ c,

N−j∑

i=max{1,k−j}
Vj+i,kgi + VN,k

∞∑

k=N−j+1
gi, 0 < k < c,

1 −
N∑

r=1

pjr , k = 0,

(2.8)

where Vj+i,k and βj+i−k are as follows:

Vj+i,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j < k < c,

∫∞

0

⎛

⎝
j + i

k

⎞

⎠e−kμz(1 − e−μz)j+i−kdτ(z), k ≤ j ≤ c,

∫∞

0

∫z

0

⎛

⎝
c

k

⎞

⎠e−kμz
(
cμy

)j−c
(
j − c

)
!
cμ(e−μy − e−μz)c−kdy dτ(z), k < c < j,

βj+i−k =
∫∞

0
e−cμz

(
cμz

)j+i−k
(
j + i − k

)
!
dτ(z), j + i − k ≥ 0.

(2.9)

There is a relationship between the vector of prearrival probabilities π and the vector of
arbitrary time probabilities P, related to the number of people that an outside observer
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finds in the system. Viajaya Laxmi and Gupta [23] established a method that proved the
relationship

Pk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρc

min{k, c}g
k−1∑

i=0

πi

∞∑

j=k−i
gj , 0 < k ≤ N,

1 −
N∑

i=1

Pi, k = 0.

(2.10)

Performance measures (below) are used, including the average queue length Lq, blocking
probability of an arbitrary customer PBL, and average waiting time in the queue Wq, to
analyze the efficiency of queueing systems

Lq =
N∑

i=0
(i − c)Pi,

PBL =
N∑

i=0

πi

∞∑

j=N−i
g−1

∞∑

k=j+1

gj ,

Wq =
Lq[

gλ
(
1 − PBL)

] .

(2.11)

2.3. Kernel Estimators

Suppose that we have a sample of the interarrival times,X1, . . . , Xn, with an unknown density
τ(t). The kernel estimator is an analytical tool that provides an effective way of revealing the
structure behind such a sample.

2.3.1. Gamma Kernel Estimator

Recently, Chen [19] suggested an asymmetric kernel with naturally varying shape as a way
to avoid allocating weight for negative values. The gamma kernel estimators are always
nonnegative, free of boundary bias, and achieve the optimal rate of convergence for the
mean square error (MSE) in the nonnegative kernel estimator class. Bouezmarni and Scaillet
[21] showed that this estimator is consistent and able to avoid boundary bias. Let KG(p, q)
be the gamma density function with parameters p (shape) and q (rate). The gamma kernel
considered is

KG

(
t

b
+ 1, b

)(
Xj

)
=

Xj
t/be−Xj/b

b(t/b)+1Γ[(t/b) + 1]
, (2.12)

where b is a smoothing parameter that satisfies the condition b → 0, nb → ∞ as n → ∞.
The gamma kernel estimator is

τ̂(t; b) = n−1
n∑

j=1

KG

(
t

b
+ 1, b

)(
Xj

)
. (2.13)
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The smoothing parameter b is critical for the overall performance of the kernel estimator
considered. A small b leads to a relatively bumpy density, while a large one results in a
smooth density. There are several methods to determine the best fit, from a minimization
of the mean integrated squared error (MISE) of τ̂(t; b) to the asymptotic behavior of the MISE
(AMISE).

(a) Least Squares Cross-Validation (LSCV) Method

The least squares cross-validation (LSCV) method starts from the MISE expansion

MISE{τ̂(x; b)} = E

∫
τ̂(x; b)2dx − 2E

∫
τ̂(x; b)τ(x)dx + E

∫
τ(x)2dx. (2.14)

The minimization of the first term is equivalent to the minimization of

MISE{τ̂(x;h)} − E

∫
τ(x)2dx = E

[∫
τ̂(x;h)2dx − 2

∫
τ̂(x;h)τ(x)dx

]
. (2.15)

The right-hand side is unknown, because it depends on τ . However, an unbiased estimator
for this quantity is

LSCV(h) =
∫
τ̂(x;h)2dx − 2n−1

n∑

i=1

τ̂−i(Xi;h), (2.16)

where τ̂−i = (Xi;h) is the density estimate based on the sample with Xi deleted; this is often
called the “leave-one-out” density estimator. A disadvantage of this method is that it suffers
from high variation.

(b) Asymptotic Behavior of the MISE (AMISE) Method

An alternative parameter selector is to consider the asymptotic behavior of the MISE of the
gamma kernel estimator. Chen [19] uses some aspects of the gamma distribution and a Taylor
expansion to determine the MISE as follows:

MISE(τ̂) = b2
∫∞

0

{
xτ ′(x) +

1
2
xτ ′′(x)

}2

dx

+
(
2n

√
bπ

)−1 ∫∞

0
x−1/2τ(x)dx +O

(
n−1b−1/2 + b2

)
.

(2.17)

The asymptotic MISE disregards the last term; therefore, the optimal b that minimizes the
leading terms above is

bAMISE =

⎡

⎣
(
2
√
π
)−1 ∫∞

0 x−1/2τ(x)dx

4n
∫∞
0

(
xτ ′(x) + 2−1xτ ′′(x)

)2
dx

⎤

⎦
2/5

, (2.18)
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where the functions τ , τ ′, and τ ′′ are unknown. These quantities are obtained from the fitted
gamma density with parameters adjusted from the sample. This solution still requires further
study, but our paper shows promising results.

2.3.2. Zhang et al. [18] Estimator

Zhang et al. [18] submitted a model that works particularly well when τ(0) > 0 and combines
pseudodata creation, its transformation, and its reflection around the Y -axis in the following
three steps.

Step 1. Transform the original data X1, . . . , Xn to g(X1), . . . , g(Xn), while keeping the original
data, where g is a nonnegative, continuous, and monotonically increasing function from
[0,∞) to [0,∞).

Based on extensive simulations, the transformation that best suits a broad variety of
densities is

g(x) = x + dx2 +Adx3, (2.19)

where A > 1/3 and d = f ′(0)/f(0).

Step 2. Reflect the pseudodata, g(X1), . . . , g(Xn), around the origin.

Step 3. Based on the enlarged data sample, −g(X1), . . . ,−g(Xn), X1, . . . , Xn, define the new
estimator as

τ̂n(x, h) =
1
nh

n∑

j=1

{
K

(
x −Xj

h

)
+K

(
x + g

(
Xj

)

h

)}
, x ≥ 0, (2.20)

where h is a smoothing parameter and K is a symmetric probability function with support
[−1, 1] like the Epanechnikov kernel

K(t) =
3
4

(
1 − t2

)
I[−1,1]. (2.21)

Notice that the transformation g defined above is not available in practice, because d is
unknown. A good estimator can be obtained when d is written as (d/dx) log f(x)|x=0,

dn =
log fn(h) − log fn(0)

h
, (2.22)
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where fn(h) = f∗
n(h) + 1/n2, fn(0) = max(f∗

n(0), 1/n
2 ), f∗

n(h) = (1/nh)
∑n

j=1 K((x − Xj)/h),
f∗
n(0) = (1/nh0)

∑n
j=1 K0(Xj/h0), and K0 is a so-called endpoint kernel, satisfying

∫0

−1
K0(t)dt = 1,

∫0

−1
tK0(t)dt = 0,

∫0

−1
t2K0(t)dt /= 0,

h0 =

⎧
⎪⎨

⎪⎩

[∫1
−1 K(t)dt

]2 ∫0
−1 K0(t)2dt

[∫0
−1 t

2K0(t)dt
]2 ∫1

−1 K(t)2dt

⎫
⎪⎬

⎪⎭
h.

(2.23)

Zhang et al. [18] proved that for t ≥ h, the effect of reflected pseudodata is insignificant, and
the estimator can be reduced to the Parzen-Rosenblatt estimator

τ̂n(t, h) =
1
nh

n∑

j=1

K

(
t −Xj

h

)
. (2.24)

They also established that

∫∞

0
τ̂n(t)dt = 1 +

1
n

n∑

i=1

∫−g(Xi)/h

−Xi/h

K(z)dz. (2.25)

Thus, τ̂n(t) only integrates to 1 when dn = 0, so gn(Xi) = Xi, or when Xi = 0 for all Xi’s,
because gn(0) = 0. However, when n → ∞, both limits of the second term will eventually
converge to 0 and τ̂n(t)will integrate to 1 asymptotically.

Zhang and Karunamuni [24] used the endpoint kernel

K0(t) = 12(1 + t)
(
1
2
+ t

)
I[−1,0] (2.26)

and showed that this kernel minimizes the MSE when estimating τ(0). Therefore, h0 = 2h is
approximately the optimal smoothing parameter for estimating τ(0) except when τ(0) = 0.

Chiu [25] described a parameter selecting method that considered the optimal h that
minimizes the asymptotic MISE when K is a symmetric probability function with up to the
fourth moment being finite

hAMISE =

[ ∫
K(x)2dx

n
(∫

x2K(x)dx
)2 ∫

τ ′′(x)2dx

]1/5

, (2.27)

where the function
∫
τ ′′(x)2dx is unknown.

Chiu’s [25] “plug-in” method consists of estimating this quantity through the charac-
teristic function of the sample

ϕ̂(λ) = n−1
n∑

j=1

eiλXj , (2.28)
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and calculating the optimal h with the previous formula. The characteristic function of τ is

ϕ(λ) =
∫
eiλxτ(x)dx. (2.29)

By the inversion formula, we have

τ(x) = (2π)−1
∫
eiλxϕ(λ)dλ, (2.30)

thus,

τ ′′(x) = (2π)−1
∫
λ2eiλxϕ(λ)dλ,

∫
τ ′′(x)2dx =

∫ [
(2π)−1

∫
λ2eiλxϕ(λ)dλ

]2
dx

=
∫
λ4

[
(2π)−1

∫
eiλxϕ(λ)dλ

]2
dx

=
∫
λ4[τ(x)]2dx.

(2.31)

Using Parseval’s identity, we can show that

∫
λ4[τ(x)]2dx = (2π)−1

∫
λ4

∣∣ϕ(λ)
∣∣2dλ. (2.32)

Chiu [25] introduced a cutoff value Λ for λ such that |ϕ̂(λ)|2 < c/n. Extensive computational
experiments from Bessegato et al. [26] show that c = 3 is the value that minimizes the
estimator variance. The final “plug in” estimator is then

ĥAMISE =

⎡
⎢⎣

∫
K(x)2dx

n
(∫

x2K(x)dx
)2
π−1 ∫Λ

0 λ4
[∣∣ϕ̂(λ)

∣∣2 − n−1
]
dλ

⎤
⎥⎦

1/5

. (2.33)

3. Experimental Results

This section presents some results of simulations for GIX/M/c/N systems with partial
blocks, where the interarrival time is estimated through the following kernel methods:

(i) gamma kernel estimator with LSCV method,

(ii) gamma kennel estimator with optimal bAMISE,

(iii) Zhang et al. [18] estimator with Chiu’s [25] “plug in” method.

To evaluate the performance of the estimators above, we will compare the mean square error
(MSE) of each estimated prearrival probability in the following way.
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Step 1. Generate a sample of size n of general interarrival distribution τ .

Step 2. Calculate the mean service rate μ = g/ρcE(τ) .

Step 3. Estimate the optimal smoothing parameter h or b.

Step 4. Use the kernel density method to estimate the theoretical density function τ(x).

Step 5. Find each estimated transition probability.

Step 6. Solve the linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
p̂0,0 − 1

)
p̂1,0 · · · p̂N,0

p̂0,1
(
p̂1,1 − 1

) ...

...
. . .

...

p̂0,N−1 · · · · · · (
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The algorithm above was coded in R 2.8.0 (or earlier versions, see [27]) and is available upon
request from the authors for educational and research purposes.

The experiments are based on random samples of interarrival times of size n = 100.
Slightly larger and smaller samples were also tested, but the results (not shown) are similar.
The theoretical interarrival distributions considered in this experiment were

(i) Weibull distribution with shape = 2 and rate = 20,

(ii) gamma distribution with shape = 10 and rate = 2,

(iii) gamma mixture distribution of 0.45 × gamma (5; 2) + 0.55 × gamma (30; 1).

The Weibull density has τ ′(0)/= 0, the pure gamma has τ ′(0) = 0, and the gamma mixture is
bimodal. We chooseWeibull and gamma distributions because of their well-known flexibility
for modeling real databases. For simplicity, the group size X is constant and equal to 1. Two
different numbers of servers were considered, c = 5 and 10, with maximum capacities of
N = 20 and 25, respectively, (which result in buffers of fixed sizes equal to 15). Figures 1
and 2 show the results, where πk is the theoretical distribution of the number of clients and
MSE(π̂k) is the mean square error of the estimates.

4. Discussion

In general, the errors decreased as the number of servers c increased, and they were de-
pendent on the theoretical distribution considered. We obtained the largest errors for the
last distribution (gamma mixture). The LSCV method is better than bAMISE on the first and
last distributions. Zhang et al.’s [18] estimator has the worst performance on the first and a
competitive performance on the second distribution (gamma distribution). All the estimators
performed well with the second distribution. The last distribution (gamma mixture) has a
particular behavior. Although the errors are large for most of the estimates, the error is small
for the blocking probability (i.e., π̂20, for the system with c = 5, Figure 1, and π̂25, for c = 10,
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Figure 1: πk and MSE(π̂k) for c = 5.

Figure 2). The blocking probability is an important performancemeasure, because it indicates
the fraction of costumers lost by the system.

Finally, simulations showed that when τ ′(0)/= 0 the gamma kernel method had the
best performance. This suggests the Zhang et al. [18] method does not work well when
τ(0) > 0. At the same time, its behavior with the bimodal density showed a very low MSE
for probabilities near the maximum state. This implies a good estimation of the blocking
probability and other performance measures.

The method used to select the smoothing parameter for the gamma kernel estimator
had no effect. A better selector would have the function of its AMISE optimal parameter
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Figure 2: πk and MSE(π̂k) for c = 10.

estimated like the “plug-in” method for symmetric kernels. The combined use of smoothing
parameter selection and Bayesian techniques is promising (see de Lima and Atuncar [3]).

5. Application to a Real Call Center Data Set

We analyzed a real database of 7,761 phone calls made on April 7, 2006, from 8:00 am until
1:00 pm to a call center (data available from the authors upon request). We worked on a
set of interarrival and service times to find the required minimum size of the server facility
taking into account that the arrival rates are not homogeneous. In fact, larger interarrival
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Table 1: Observed frequency of group sizes X and fitted distributionsD.

Time: 8 am-9 am 9 am-10 am 10 am-11 am 11 am-12 am 12 am-1 pm

1 arrival 0.915 0.808 0.794 0.882 0.916

2 arrivals 0.085 0.158 0.172 0.108 0.075

3 arrivals 0.000 0.031 0.030 0.009 0.009

4 arrivals 0.000 0.003 0.004 0.001 0.000

D ∼ Poisson
(0.082)

Geom.
(0.813)

Geom.
(0.804)

Geom.
(0.885)

Geom.
(0.914)

Table 2: AMISE smoothing parameter for gamma kernel.

Time: 8 am-9 am 9 am-10 am 10 am-11 am 11 am-12 am 12 am-1 pm

bAMISE 0.1509 0.0505 0.0476 0.0625 0.0932

timeswere detected toward the beginning of the day rather than throughout the day. This will
lead to the adjustment of a different system for each hour of service that had an approximately
homogeneous arrival rate. Using this data, we will model a GIX/M/c/N system with a
kernel interarrival density estimate for each hour of service.

The data set is presented in seconds, which is the precision given by the data
acquisition system. This constraint will lead to ties in the arrival times (i.e., more than one
call can arrive in the same second). Therefore, we treated same-time calls as part of a single
arrival group and fit a discrete probability distribution. Table 1 shows the observed frequency
of group sizes X and the fitted distribution D by hour. These arrivals were observed in each
second.

We used the gamma kennel-estimator with optimal bAMISE as the kernel density
estimationmethod. This method gave estimated densities bounded at τ = 0 and illustrates the
information we miss when data is rounded. We also considered the gamma kernel estimator
with LSCV method, but it did not behave as well with discrete data. Table 2 shows the
smoothing parameter calculated, and Figure 3 shows the estimated densities.

Service time distribution fits an exponential distribution with parameter λ = 0.003339
and standard error of 3.8 × 10−5. The behavior of the system then becomes restricted to the
choice of the number of servers c and capacity of the system N. In Table 3, the minimum
number of servers required is set to maintain the stability of the system at each hour
considered.

To optimize system performance, it is necessary to establish some criterion function
for the adopted design. If we only consider the effective arrival rate (λEF = λ[1−PBL]), we can
describe this performance measure according to the number of servers and the maximum
queue size. Figure 4 shows this relationship from 8 to 9 am. We saw similar results (not
shown) for different periods. A good criterion would be the C = (C1/λEF+C2c+C3N), where
C1, C2, and C3 are costs related to each parameter and defined by the system environment. As
an example, if we have C1 = 500, C2 = 1 and C3 = 1, the state with minimal criterion would
be c = 19 and N = 20. If cost C1 is raised to 600, the best configuration would be c = 21 and
N = 21.
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Figure 3: Estimated interarrival times by hour.
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Table 3:Minimum number of servers.

Time: 8 am-9 am 9 am-10 am 10 am-11 am 11 am-12 am 12 am-1 pm

min{c} 19 97 110 64 40

19 21 23Maximum queue size
Number o

f

serve
rs

12
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E
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20 18 16 14 12 10 8 6 4 2 0

Figure 4: Effective arrival rate as a function of N and c.

Figure 5 shows the invariant distributions estimated for other periods with different
queue and server facility sizes. The method seems helpful for adjusting the maximum size
N, and it is clear that the period plays a key role.

6. Conclusions

The main focus of this paper is on using kernels in the analysis of queuing systems. We
studied the adequacy of the kernel estimatormethods for calculating the invariant probability
distribution and performance measures of queueing systems that have general interarrival
distribution times with bulk arrivals. Discussions in simulations showed that the method is
effective. Also, we successfully applied the method to the calls from a call center to plan and
improve the performance of these important queueing systems.

Future researchmay take other directions—for instance, determining how the estimate
of the prearrival invariant distribution moves away from its real value. One approach is from
the variance of the bias and variance of each probability estimated. For example, the variance
of an estimate of transition probability pij could depend on the variance of term β̂0, so we
would need to find

var
(
β̂0
)
= var

(∫∞

0
e−cμzτ̂(z, h)dz

)
. (6.1)

This research can be applied to several areas of practical interest, including health and indus-
try. For example, it could be critical in a medical emergency room that must optimize resource
allocation.

Another possible future direction for research in this field involves the development
of models to deal with dependency for the interarrival times. Such a case is particularly true
in computer networks. Thus, in computer communications networks, people are interested
in finding proper bounds of arrivals (see Li and Zhao [28]), with the assumption that arrivals
are dependent (see Li and Zhao [29]), which are recently published results based on the so-
called deterministic queuing theory (for details, see Le Boudec and Thiran [30]).
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Figure 5: Continued.
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[22] G. S. Atuncar, C. C. Y. Dorea, and C. R. Gonçalves, “Strong consistency of kernel density estimates for
Markov chains failure rates,” Statistical Inference for Stochastic Processes, vol. 11, no. 1, pp. 1–10, 2008.

[23] P. Vijaya Laxmi and U. C. Gupta, “Analysis of finite-buffer multi-server queues with group arrivals:
GIX/M/c/N,” Queueing Systems, vol. 36, no. 1–3, pp. 125–140, 2000.

[24] S. Zhang and R. J. Karunamuni, “On kernel density estimation near endpoints,” Journal of Statistical
Planning and Inference, vol. 70, no. 2, pp. 301–316, 1998.

[25] S.-T. Chiu, “Bandwidth selection for kernel density estimation,” The Annals of Statistics, vol. 19, no. 4,
pp. 1883–1905, 1991.

[26] L. F. Bessegato, G. S. Atuncar, and L. H. Duczmal, “Routines in R for kernel smoothing techniques,”
Tech. Rep., Departamento de Estatı́stica—ICEx—UFMG, Belo Horizonte, Brazil, http://www.est
.ufmg.br/portal/arquivos/rts/rtp0601.pdf.

[27] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2010, http://www.R-project.org/.

[28] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010.

[29] M. Li and W. Zhao, “Asymptotic identity in min-plus algebra: a report on CPNS,” Computational and
Mathematical Methods in Medicine, vol. 2012, Article ID 154038, 11 pages, 2012.

[30] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deterministic Queuing Systems for the
Internet, vol. 2050 of Lecture Notes in Computer Science, Springer, Berlin, Germany, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


