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Electroless deposition for fabricating copper (Cu) interconnects of integrated circuits has drawn
attention due to its low processing temperature, high deposition selectivity, and high coverage.
In this paper, three-dimensional computer simulations of the qualitative growth properties of
Cu particles and two-dimensional simulations of the trench-filling properties are conducted. The
mathematical model employed in the study is a reaction-diffusion equation. An implicit finite
difference discretization with a red-black Gauss-Seidel method as a solver is proposed for solving
the reaction-diffusion equation. The simulated deposition properties agree with those observed in
experimentation. Alternatives to improve the deposition properties are also discussed.

1. Introduction

Copper is widely used as the interconnecting metal of integrated circuits because of its
low resistivity and high resistance to electromigration and stress voiding. Electroless copper
deposition has been shown to be a viable technology due to its low processing temperature,
deposition selectivity, and high conformity. Generally, the electroless copper deposition
solution contains a copper compound, ethylenediaminetetraacetic acid (EDTA) ligand as a
complexing agent for copper, formaldehyde (HCHO) as a reducing agent capable of reducing
the copper compound to metallic copper, and additives as surfactant and stabilizer. Copper
is then deposited from the solution onto catalytic seeds on the dielectric layers such as silicon
dioxide. The overall reaction on the copper surface is

CuEDTA2− + 2HCHO + 4OH− −→ Cu +H2 + 2H2O + 2HCOO− + EDTA4−, (1.1)
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with the overall reaction rate

R = K
[
Cu2+

]a
[HCHO]b

[
OH−]c[Lig]d, (1.2)

where the constants K, a, b, c, and d have to be determined experimentally. The electroless
deposition occurs in stationary solution. Therefore, the convection and drift terms can be
ignored.

Under some process conditions, Schacham-Diamand et al. [1] have shown that Cu
deposition rate is primarily determined by the concentration of the dissolved Cu(II) ions.
Based on these conditions, Smy et al. [2] proposed a two-dimensional reaction-diffusion
equation for simulating the Cu deposition for trench-filling. The reaction-diffusion equation
is given as

Ct = D
(
Cxx + Cyy

)
, (1.3)

where C is the ionic copper concentration and D is the diffusion coefficient. The boundary
conditions for (1.3) are (i) C = C0 well away from the reaction surface, and (ii) D(dC/dn) =
FCr where F and r are related to the rate constant and reaction order, respectively. Smy et
al. [2] used the thin film growth simulator package SIMBAD to simulate the trench-filling
process for fabrication of very large scale integration (VLSI) interconnections. A sequence
of grid generation followed by solving the quasi-steady-state of (1.3) was performed. Their
numerical results compared well with the experimental films over a range of topography
with aspect ratios varying from 1 : 1 to 4 : 1.

This paper is concerned with the computer simulation of the qualitative properties of
the growth of Cu deposits. Equation (1.3) with the corresponding boundary conditions is
extended to a three-dimensional problem. In order to simulate the evolution of the growth
of Cu particles, both spatial and temporal discretization are applied. An implicit finite
difference scheme with red-black Gauss-Seidel iterative method as a solver is employed
in this paper. This numerical method has been successfully applied to reaction diffusion
systems of two species with nonlinear reaction terms [3]. It was proven to be unconditionally
stable and convergent under some conditions, and the numerical results showed that this
numerical method was efficient. In this study, the residual of the linear system arising from
discretization is computed to confirm the convergence of the numerical approximations.

The feature size in recent integrated circuits has already reached sub-100 nm
scale. Moreover, electroless deposition has been recently introduced in fabrication of
nanostructured barrier layers against Cu diffusion. In this application, ultrathin films with
thicknesses of tens of nm are required [4, 5]. Although electroless deposition is a promising
technique for fabricating Cu-metallization thin films, some problems arise such as low plating
rate and void formation. Understanding the mechanism of the film growth helps to minimize
the thickness and improve the quality of thin films. Some factors that cause these problems
andmethods for solving them are studied by numerical simulation. The numerical results are
compared with experimental results.

The outline of this paper is as follows. The numerical method is detailed in Section 2.
Examples are given with discussion in Section 3. Section 4 provides a brief conclusion.
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2. Numerical Method

Suppose the deposition solution is prepared in a container of dimension [0, α] × [0, β] × [0, d]
without agitation, and the substrate is placed horizontally on the bottom of the solution as
shown in Figure 1(a). The copper films are required to have a thickness of tens of nm. The
reaction takes place only on the surfaces of the Cu particles grown on the substrate. Because
the depth of the solution is usually larger than 1 cm, that is, γ > 1 cm in Figure 1(a), and the
concentration of the solution is uniform as it is prepared, the computation focuses on a part of
the solution below a level cwith an appropriate boundary condition imposed to the problem,
as proposed in [2].

Consider a rectangular region E = [0, a] × [0, b] × [0, c]. Let Γ1 = {(x, y, z) ∈ E | z = 0},
Γ2 = {(x, y, z) ∈ E | x = 0} ∪ {(x, y, z) ∈ E | x = a} ∪ {(x, y, z) ∈ E | y = 0} ∪ {(x, y, z) ∈
E | y = b} and Γ3 = {(x, y, z) ∈ E | z = c} the boundary of E. In the process of electroless
Cu deposition, the Cu-complex ions in the solution are reduced to Cu and deposited on the
surfaces of Cu particles. The sizes of the Cu particles are dependent on the plating time t.
Let Γ1i(t) ⊂ E, i = 1, 2, . . . ,N, be the surfaces of the regions occupied by N Cu particles
at time t as shown in Figure 1(b). The set Γ1N+1(t) = Γ1 \ {(x, y, 0) | (x, y, z0) ∈ Γ1i(t), i =
1, 2, . . . ,N for somez0 ∈ [0, c]} represents the region on the bottom of the solution that is not
covered by Cu particles. The domainΩ(t) of the problem is formed by the region bounded by
∪N+1
i=1 Γ1i(t)∪Γ2∪Γ3. Let u(t, x, y, z) be the ionic copper concentration at the point (x, y, z) ∈ Ω(t)

and plating time t. At t = 0, Γ1i(0), i = 1, 2, . . . ,N, are the surfaces of the catalytic seeds
deposited on the substrate to initiate the plating process. Let

u
(
0, x, y, z

)
= u0,

(
x, y, z

) ∈ Ω(0), (2.1)

be the initial concentration of the solution. Equation (1.3) is extended to the following
reaction-diffusion problem with a nonlinear reaction acting on ∪N

i=1Γ1i:

ut = D
(
uxx + uyy + uzz

)
, in Ω(t), t > 0, (2.2)

∂u

∂n
= 0, on Γ1N+1 ∪ Γ2, t > 0, (2.3)

D
∂u

∂n
= Fur, on

N⋃
i=1

Γ1i, t > 0, (2.4)

u = u0, on Γ3, t > 0. (2.5)

To describe and track themoving boundaries, Γ1i(t) ⊂ E, i = 1, 2, . . . ,N, a level set method [6]
is used to formulate the motion of these boundaries. Let v(t, x, y, z) defined on R × E be the
so-called level set function: v(t, x, y, z) = v∗ for (x, y, z) inside the interface Γ1i(t), 1 ≤ i ≤ N,
and v(t, x, y, z) = 0 otherwise. Here, v∗ is a prescribed value related to the density of Cu so
that the deposition rate is Fur/v∗ at any point on the surface [2]. The motion of the interfaces
Γ1i(t), 1 ≤ i ≤ N is transported under the velocity field −→v = −Fur/v∗−→n, where −→n = ∇v/|∇v|.
The level set equation [6] is

vt +
−→v · ∇v = 0. (2.6)
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Figure 1: The computational domain.

This is equivalent to

vt =
Fur

v∗ |∇v|. (2.7)

Consider a uniform rectangular mesh on E with mesh size h = a/N1 = b/N2 = c/N3.
Let (xi, yj , zk) = (ih, jh, kh) ∈ E be a grid point where 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, and
0 ≤ k ≤ N3. The increment in t is denoted by Δt and tn = nΔt for n ≥ 0. The approximation
of u(tn, xi, yj , zk) is denoted by the standard notation un

ijk
. Equation (2.2) is discretized

using the backward-time central-space scheme [7]. The backward-time discretization for time
derivatives is given by ut(tn, xi, yj , zk) ≈ (un

ijk
− un−1

ijk
)/Δt, and the central-space discretization

for second-order spatial derivatives is given by

uxx

(
tn, xi, yj , zk

)
+ uyy

(
tn, xi, yj , zk

)
+ uzz

(
tn, xi, yj , zk

)

=
un
i−1jk − 2un

ijk + un
i+1jk

h2
+
un
ij−1k − 2un

ijk + un
ij+1k

h2

+
un
ijk−1 − 2un

ijk + un
ijk+1

h2
+O

(
h2
)
.

(2.8)

Equation (2.3) is discretized by the central difference method for first derivatives. For
example,

∂u

∂n

(
tn, 0, yj , zk

)
=

∂u

∂x

(
tn, 0, yj , zk

)
=

un
1jk − un

−1jk
2h

+O
(
h2
)
. (2.9)

Therefore, (2.3) gives

un
−1jk = un

1jk, un
i−1k = un

i1k, un
ij−1 = un

ij1,

un
N1+1jk

= un
N1−1jk, un

iN2+1k
= un

iN2−1k.
(2.10)

Equation (2.4) is also discretized by the central difference method analogous to (2.9). Let
(xi, yj , zk) ∈ Γ1p(tn) with 1 ≤ p ≤ N. Suppose that all of its neighboring grid points are in
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Ω(tn) except for (xi−1, yj , zk), which is inside the Cu particle p at t = tn. The reaction term in
(2.4) is estimated by the backward time approximation Fur ≈ F(un−1

ijk
)r . Equation (2.4) is then

discretized by

un
i+1jk − un

i−1jk
2h

=
F

D

(
un−1
ijk

)r
. (2.11)

So,

un
i−1jk = un

i+1jk −
2hF
D

(
un−1
ijk

)r
. (2.12)

Suppose two of the neighboring grid points, say (xi−1, yj , zk) and (xi, yj−1, zk), are located
inside the Cu particle p at t = tn. Let un

(i−1/2)(j−1/2)k ≈ u(tn, xi − h/2, yj − h/2, zk), and
un
(i−1/2)(j−1/2)k = (un

i−1jk + un
ij−1k)/2. Similar approximation is made for un

(i+1/2)(j+1/2)k. Equation
(2.4) for this case is then approximated by

un
(i+1/2)(j+1/2)k − un

(i−1/2)(j−1/2)k√
2h

=
F

D

(
un−1
ijk

)r
. (2.13)

So,

un
i−1jk + un

ij−1k = un
i+1jk + un

ij+1k −
2
√
2hF
D

(
un−1
ijk

)r
. (2.14)

If three of the neighboring grid points, say (xi−1, yj , zk), (xi, yj−1, zk), and (xi, yj , zk−1), are
located inside the Cu particle p. The approximation is analogous

un
i−1jk + un

ij−1k + un
ijk−1 = un

i+1jk + un
ij+1k + un

ijk+1 −
2
√
3hF
D

(
un−1
ijk

)r
. (2.15)

Hence, the discretization of (2.1)–(2.5) is given as follows: u0
ijk

= u0 for 0 ≤ i ≤ N1, 0 ≤ j ≤ N2,
and 0 ≤ k ≤ N3; un

ijN3
= u0 for 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, and n > 0

un
ijk

− un−1
ijk

Δt
=

D

h2

(
un
i−1jk + un

i+1jk + un
ij+1k + un

ij−1k + un
ijk−1 + un

ijk+1 − 6un
ijk

)
−wn−1

ijk

F
(
un−1
ijk

)r

h
,

(2.16)

for 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, 0 ≤ k < N3, and n > 0 with the substitution of (2.10)–(2.15) for
the grid points outside Ω(t). The weight wn−1

ijk = 0 if (xi, yj , zk) is in Ω(tn), and wn−1
ijk > 0 if

(xi, yj , zk) is on ∪N
l=1Γ1l(t

n). Since the Cu deposits also depend on the size of the surface, the
weight wn−1

ijk is determined not only by the coefficients of the reaction terms in (2.12)–(2.15)
but also the location of (xi, yj , zk), which will be explained later.
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Let vn
ijk be the approximation of v(tn, xi, yj , zk). From the definition of the level set

function v, let vn
ijk

= v∗ if (xi, yj , zk) is inside the Cu particle p, 1 ≤ p ≤ N, and vn
ijk

= 0 if

(xi, yj , zk) is in Ω(tn). Here, let 0 ≤ vn
ijk < v∗ if (xi, yj , zk) is on ∪N

l=1Γ1l(t
n) for computational

purpose. Only vn
ijk
, where (xi, yj , zk) is on ∪N

l=1Γ1l(t
n), has to be computed. For a boundary

point (xi, yj , zk) as described in (2.12), we have vn−1
i−1jk = v∗ and vn−1

i+1jk = 0. Equation (2.7) is
discretized using the backwark-time central-space scheme

vn
ijk − vn−1

ijk

Δt
=

Fun−1
ijk

v∗
vn−1
i−1jk − vn−1

i+1jk

2h

=
Fun−1

ijk

2h
.

(2.17)

For a boundary point as described in (2.14), we have vn−1
(i−1/2)(j−1/2)k = (vn−1

i−1jk + vn−1
ij−1k)/2 = v∗

and vn−1
(i+1/2)(j+1/2)k = (vn−1

i+1jk + vn−1
ij+1k)/2 = 0. The discretization of (2.7) becomes

vn
ijk

− vn−1
ijk

Δt
=

Fun−1
ijk

v∗
vn−1
(i−1/2)(j−1/2)k − vn−1

(i+1/2)(j+1/2)k√
2h

=
Fun−1

ijk√
2h

.

(2.18)

Similarly, the discretization for a boundary point as described in (2.15) is

vn
ijk

− vn−1
ijk

Δt
=

√
3Fun−1

ijk

2h
. (2.19)

From (2.17)–(2.19), the discretization of (2.7) can be writen as

vn
ijk = vn−1

ijk + μn−1
ijk

F
(
un−1
ijk

)r

h
Δt. (2.20)

Again, the weight μn−1
ijk

is determined not only by the coefficients in (2.17)–(2.19) but also the
location of (xi, yj , zk). Rewrite (2.16) as

(
1 + 6

DΔt

h2

)
un
ijk −

DΔt

h2

(
un
i−1jk + un

i+1jk + un
ij−1k + un

ij+1k + un
ijk−1 + un

ijk+1

)

= un−1
ijk −wn−1

ijk

F
(
un−1
ijk

)r

h
Δt.

(2.21)

Now, wn−1
ijk (F(un−1

ijk )r/h )Δt in (2.21) estimates the Cu ions consumed at (xi, yj , zk) over

[tn−1, tn] in the deposition process, while μn−1
ijk

(F(un−1
ijk

)r/h)Δt in (2.20) estimates the Cu
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deposits at (xi, yj , zk) over [tn−1, tn]. In the simulation, we set wn−1
ijk = μn−1

ijk for a boundary
grid point (xi, yj , zk) so that the Cu ions consumed equal the Cu deposits.

Let Γnin,p be the approximation of Cu particle p, Γ̃np the approximation of Γ1p(tn), and Ω̃n

the approximation of Ω(tn). Γ̃np is formed by the grid points satisfying (xi, yj , zk) /∈ ∪N
l=1Γ

n
in,l

and at least one of (xi±ii, yj±jj , zk±jj) lies in Γnin,p, where ii = 0,±1, jj = 0,±1, and kk = 0,±1.
Then, vn

ijk = 0 if (xi, yj , zk) ∈ Ω̃n, 0 ≤ vn
ijk < v∗ if (xi, yj , zk) ∈ ∪N

l=1Γ̃
n
l , and vn

ijk = v∗ if

(xi, yj , zk) ∈ ∪N
l=1Γ

n
in,l

. At the beginning of the deposition, let Γ0in,p, 1 ≤ p ≤ N, be given for the

deposition of catalytic seeds. Then, the set of boundary points ∪N
l=1Γ̃

0
p and Ω̃0 are determined

by the above definition. The initial value v0
ijk is given as above for n = 0 except for v0

ijk = 0

when (xi, yj , zk) ∈ ∪N
l=1Γ̃

0
l
. At t = tn, let (xi, yj , zk) ∈ ∪N

l=1Γ̃
n−1
l

. Then, vn
ijk

is computed by (2.20).

Now, suppose vn
ijk

≥ v∗. Set vn
ijk

= v∗, add (xi, yj , zk) to ∪N
l=1Γ

n
in,l

, delete it from ∪N
l=1Γ̃

n
l
, and add

its neighboring grid points which are in Ω̃n−1 to the set ∪N
l=1Γ̃

n
l . Here, the neighboring points

of (xi, yj , zk) are (xi+ii, yj+jj , zk+kk)with ii, jj, kk = 0, ±1, but are not all zero. In this paper, we
assume the rate of Cu deposits at a boundary grid point also depends on the its distance from
a nearest grid point in ∪N

l=1Γ
n
in,l

. For example, suppose (xi, yj , zk) ∈ Γ̃n−1p and (xi, yj , zk) ∈ Γnin,p.

If (xi+1, yj , zk), (xi, yj+1, zk), and (xi+1, yj+1, zk) are added to Γ̃np , then it is assumed that the rate
of Cu deposits at (xi+1, yj+1, zk) is smaller than that at (xi+1, yj , zk) and (xi, yj+1, zk). Thus, μn

ijk

may have three different vales. In this paper, μn
ijk

= 1, 1/2, or, 1/3 is used in the numerical

simulation. A larger μn
ijk value is corresponding to a smaller distance from (xi, yj , zk) ∈ ∪N

l=1Γ̃
n
l

to its nearest grid point in ∪N
l=1Γ

n
in,l

. The computation procedure is summarized as follows:
given the initial conditions Γ0in,p for 1 ≤ p ≤ N, and u0

ijk for 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, and

0 ≤ k ≤ N3, then Γ̃0p, Ω̃
0, and v0

ijk can be determined. At each time step tn, vn
ijk is computed

by (2.20) at each boundary grid point in ∪N
l=1Γ̃

n−1
l

. Then, vn
ijk

is used to update the set ∪N
l=1Γ

n
in,l

,

the boundary set ∪N
l=1Γ̃

n
l
, and the domain Ω̃n. It is followed by the computation of un

ijk
using

(2.21) at the points which are not in ∪N
l=1Γ

n
in,l.

3. Numerical Simulations and Discussion

Since the Cu deposition from an aqueous solution takes place during the plating time, the
growth of Cu particles is computed at each time step over the plating time. To simulate a
particle size of tens of nm, the mesh step h defined in Section 2 has to be set at about 1 nm
and the diffusion coefficient D = 10−5 cm2/sec = 109 nm2/sec. Thus, h2/(DΔt) = 10−9/Δt is
very close to zero unless Δt is small enough, for example, Δt < 10−8. When h2/(DΔt) is close
to zero, the linear system defined by (2.21) may be nearly singular by the Gerschgorin Circle
Theorem [8]. On the other hand, using such a small Δt value results in a running time that
is too large to be practical. In this paper, qualitative simulations are performed by choosing
the proper parameter values in (2.2)–(2.4) so that the simulated growth properties agree with
those in experimentation and the running time is short. The linear system (2.21) is solved by
red-black Gauss-Seidel iterative method [9]. The maximum norm of the residual after thirty
iterations at each time step is less than 5 × 10−9 for all numerical examples presented in this
section. Thus, the convergence of the iterative method is assumed.
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Figure 2: The growth of Cu particles using parameter values in (3.1) at (a) t = 2, (b) t = 10, and (c) t = 18.
(d) The in-plane growth and out-plane growth over the plating time.

3.1. Simulation of the Growth of Cu Particles

Consider the rectangular domain R = [0, 60] × [0, 60] × [0, 44]. Let the parameter values be

F = 40, D = 1000, r = 0.8, h = 1,

Δt = 0.001, u0 = 0.03, u∗ = 1.4.
(3.1)

Suppose that four catalytic seeds are deposited on the substrate. Figures 2(a)–2(c) show the
sizes of particles after plating time t = 2, 10, and 20, respectively. The in-plane and out-plane
growth are plotted in Figure 2(d). At first, conformal deposition is observed. As Cu particles
grow larger, the space on the bottom of the film between particles becomes smaller. This
situation makes it difficult for ions to diffuse from upper part to the lower part of the particles
in the deposition solution. When 70%–80% of the bottom region is covered by the particles,
the in-plane growth starts to decrease dramatically. As the deposition time is prolonged,
the difference between in-plane growth and out-plane growth becomes significant. At this
point, the concentration on the bottom of the film is close to zero and the concentration
at the top of the Cu particles is much higher. The out-plane growth remains at a constant
rate while the in-plane growth rate is close to zero. The simulated growth properties agree
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Figure 3: The deposition simulated with F = 60 and all other parameter values set as in (3.1). (a) The
nonconformal growth becomes more severe when the reaction rate increases. (b)Voids form on the bottom
between particles.

with experimental observations of electroless deposition of Ag films and Co-P barrier layers
[10, 11]. The thickness of the film increases due to this nonconformal growth. Moreover, Tong
and Wang [10] pointed out that the nonconformal growth may produce voids on the bottom
of the film between particles. Let the rate constant F increase to 60. Figure 3(a) shows that
the nonconformal growth is more significant due to the fast consumption of Cu ions and
difficulty of diffusion. Copper ions are deposited on the surface of a Cu particle as they
diffuse from the top to the bottom of the particle. Thus, two particles connect to each other
at the middle and a void forms at the bottom as shown in Figure 3(b). In contrast, let the
rate constant F decrease to 15. The difference between in-plane growth and out-plane growth
becomes smaller as shown in Figures 4(a) and 4(b). The thickness of the deposits decreases
by 17% compared with the case of F = 40.

The nonconformal growth occurs when a particle grows faster at the top than at the
bottom. The combination of accelerating and inhibiting additives has been proposed to obtain
bottom-up growth of the deposits [12]. Thus, the reaction rate can be assumed to be a function
of z. Define

F(z) =

⎧
⎨
⎩
F̃
(
2 − z

d

)
, if z < d,

F̃, if z ≥ d.
(3.2)

The reaction rate is 2F̃ at the bottom, F̃ for z ≥ d, and decreases linearly from the bottom to
z = d. Consider F̃ = 20 and d = 15. The in-plane growth is faster than out-plane growth as
shown in Figures 4(c) and 4(d). The thickness of the deposition is 31% less than the case of
F = 40. Another factor that affects the thickness of the deposits is the population density of
the catalytic seeds. Using the same computational domain as above with parameter values
in (3.1), let nine catalytic seeds be deposited. Figures 4(e) and 4(f) show the growth of the
particles are more conformal, the particle size is smaller, and the plating time is shorter.
The thickness and plating time of the deposits are reduced by nearly half compared with
Figures 2(c) and 2(d). Thus, improving the density of the catalytic seeds is the most effective
method for reducing the film thickness. Chen et al. [5] developed a new seeding process in
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Figure 4: The growth of Cu particles with (a) a low reaction rate F = 15, (c) a reaction rate function F(z)
in (3.2), and (e) densely populated catalytic seeds. (b), (d), and (f) The in-plane growth and out-plane
growth for deposition in (a), (c), and (e), respectively.

the fabrication of nanostructured barrier layers. This seeding process significantly increased
the population density of catalytic seeds, and barrier layers of thicknesses of 10 nm were
fabricated.

Further simulations show that the nonconformal growth and voids may also occur as
the diffusivity D decreases. For example, let D = 300, F = 15, and all other parameter values
are set as in (3.1). The growth of the particles is similar to Figure 3, where D = 1000 and
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Table 1: Void-free trench filling with constant reaction rate F.

k
Aspect ratio

F
Plating time

k : 1 t

1 1 : 1 3.0 110
2 2 : 1 0.5 600
3 3 : 1 0.3 900
4 4 : 1 0.1 3000

Table 2: Void-free trench filling with reaction rate F(y) defined by (3.2) for d = kw and w = 20.

k
Aspect ratio

F̃
Plating time

k : 1 t

2 2 : 1 2.0 130
3 3 : 1 1.0 300
4 4 : 1 0.5 560

F = 60, with nonconformal growth and void formation. Detailed discussion of the growth
problem caused by low diffusivity will not be given here since it is a repeat of the discussion
given above.

3.2. Simulation of Trench Filling

Electroless copper deposition is a promising method for the fabrication of copper
interconnections. In this subsection, simulations of trench filling are performed by directly
applying the numerical method in Section 2 to a two-dimensional problem and assuming
the seed layer is uniformly deposited on the substrate as shown in Figure 5(a). Consider
the rectangular domain R = [0, 40] × [0, 40 + kw] for a k : 1 aspect-ratio feature, and let the
parameter values be set as in (3.1)withw = 20. Figure 5(b) shows that voids occur for the 1 : 1
aspect-ratio feature even at a low reaction rate F = 6. To achieve void-free trench filling, the
deposition rate has to be very small. Figure 5(c) shows F = 3 for void-free filling. As aspect
ratio increases from 1 : 1 to 2 : 1, F = 3 fails to be void-free filling as shown in Figure 6(a).
Void-free filling can be achieved if F = 0.5 as shown in Figure 6(b). However, the plating time
is large when the deposition rate is small. This problem becomes more severe as the aspect
ratio increases. Table 1 shows the reaction rate and plating time in void-free trench filling for
the k : 1 aspect-ratio feature, k = 1, 2, 3, and 4. The simulated trench-filling property agrees
with the bottom-up growth of copper by electroless deposition studied in recent years [13].
Inhibiting additives in plating solution have demonstrated successful void-free filling in high
aspect-ratio features. However, the resulting deposition rate is too small.

Void formation in trench filling is caused by the larger deposition rate at the trench
openings than at the trench bottom. Similar to the previous subsection, we may assume a
larger reaction rate at the trench bottom than at the trench openings to simulate the effect of
accelerating and inhibiting additives. Equation (3.2) is used in this simulation with d = kw,
where w = 20 and k is the aspect ratio. Table 2 shows the reaction rate at trench opening and
the plating time in void-free trench filling for the k : 1 aspect ratio feature, k = 2, 3, and 4.
Larger deposition rate at the bottom than at the trench openings allows bottom-up growth.
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Figure 5: (a) The seed layer in the trench. (b) Void formation occurs at F = 6 for a 1 : 1 aspect ratio feature.
(c) Void-free filling is achieved at F = 3.
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Figure 6: (a) Void formation occurs at F = 3 for a 2 : 1 aspect ratio feature. (b) Void-free filling is achieved
at F = 0.5.

The overall reaction rate can be set much larger than the constant reaction rate shown in
Table 1, and the void-free filling can still be achieved. Thus, the deposition is more efficient.

4. Conclusion

A numerical method is proposed for simulating the growth properties of electroless Cu
deposits. The mathematical model used in this paper is a reaction-diffusion equation of the



Mathematical Problems in Engineering 13

dominant ionic species. The simulation shows that the copper particles grow conformally
at the first stage of the deposition. The out-plane growth becomes faster than the in-plane
growth when 70%–80% of the substrate is covered by the particles. The nonconformal growth
is more significant if the deposition time is prolonged. This results in large thickness of the
films. As the reaction rate increases or the diffusivity decreases, this problem becomes more
severe and void formation occurs at the bottom of the film between Cu particles. The growth
properties observed in the simulation agree with those observed in experimentation. A lower
reaction rate or accelerating and inhibiting additives in the solution can resolve this problem.
However, improving the density of seeds is more efficient if ultrathin films are desired.
Similarly, the simulation of trench filling shows that void-free trench filling can be achieved
with a very small reaction rate or accelerating and inhibiting additives. However, a small
reaction rate results in a large plating time. In contrast, the combination of accelerating and
inhibiting additives is much more efficient.
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