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Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes
have been studied during past decades. In practice, the effects of soil-structure interaction on the
dynamic response of structures are usually neglected. In this study, the effect of soil-structure
interaction on the dynamic response of structures has been examined. The substructure method
using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based
on finite element method and scaled boundary finite element method is applied. Finite element
method is used to analyze the structure, and scaled boundary finite element method is applied
in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the
radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to
be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in
time domain. A computer program is prepared to analyze the soil-structure system. Comparing
the results with those in literature shows the exactness and competency of the proposed method.

1. Introduction

In a dynamic soil-structure interaction problem, the structure is supported by an unbounded
soil medium subjected to a dynamic load like an earthquake. The dynamic response of the
structure is affected by the interaction between the structure, foundation, and soil.

In dynamic soil-structure interaction analysis, usually the higher modes of the struc-
ture are affected significantly by soil-structure interaction (SSI) effects. As the influence of
higher modes on the seismic response of flexible high structures with small mass remains
small, the SSI effects are negligible for these structures. On the other hand for stiff and mas-
sive structures on relatively soft ground, the effects of SSI are noticeable and lead to an in-
crease in the natural period and a change in the damping ratio of the system [1–3]. Effects of
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interaction can be expressed as inertial interaction and kinematic interaction. The interaction
effect associated with the stiffness of the structure is termed kinematic interaction, and the
corresponding mass-related effect is called inertial interaction [4]. Jennings and Bielak [5],
Veletsos and Nair [6], and Bielak [7] studied effects of inertial interaction, and Todorovska
and Trifunac [8], Aviles and Perez-Rocha [9], Betti et al. [10], and Aviles et al. [11] studied the
effects of kinematic interaction.

In dynamic soil-structure interaction problems, analysis methods can be classified into
three groups [12]: (1) time domain and frequency domain analysis methods, (2) substructure
method and direct method, (3) rigorous methods and approximate simple physical models.

Time domain methods are capable of studying nonlinear behavior of soil medium,
effects of pore water, and nonlinear conditions along the interface between soil and structure.
In frequency domain, the solving procedure is easier than time domain but it can deal only
with linear aspects.

In substructure, method the whole media is represented by an impedance matrix
which could be attached to the dynamic stiffness of the structure. This hypothesis renders the
soil-structure interaction problem simpler and reduces the analysis efforts. In direct method
the soil region near the structure is modeled directly; hence, complex geometry, variations of
soil properties, and nonlinear behavior of the medium could be considered. As mentioned
in this method, the unbounded soil medium is replaced by a bounded region with artificial
boundaries. It should be considered that in the numerical modeling of unbounded media, the
boundaries should be expressed, so that the radiation condition is satisfied exactly, and the
wave energy dissipates in the medium. Several studies have been performed, and methods
to impose a wave-absorbing boundary condition have been proposed [13–17].

Simple physical models can be applied to help the analyst identify the key parameters
of the dynamic system for preliminary design or investigate alternative designs. They are
used to check the results of more rigorous procedures determinedwith sophisticated comput-
er programs [12].

To solve the soil-structure interaction problems, several analytical and numerical
methods have been developed. Applying analytical methods is limited to simple structures
and uniform soil media, while numerical methods such as finite element method (FEM), in-
finite element method, and boundary element method (BEM) are widely used. The FEM
method is well suited for nonhomogeneous, anisotropic materials of arbitrary-shaped struc-
ture with non-linear behavior [18]. BE methods require a fundamental solution satisfying the
governing differential equations exactly [19–22]. This analytical solution is often complicated,
exhibiting singularities. Certain shortage in modeling nonhomogeneous soil media is exhi-
bited using BE methods. Cone models have been used to determine dynamic stiffness of
foundations and the seismic effective foundation input motion as an alternative to rigorous
boundary-element solutions [23–30]. The concept of infinite element method was introduced
by Ungless [31] and Bettess [32, 33]. The concepts and formulation procedure in this method
are similar to those of FEM methods. The scaled boundary finite element method (SBFEM)
which is a semianalytical computational procedure can be used for modeling bounded and
unbounded medium considering nonhomogeneous and incompressible material properties.
This method has been applied to soil-structure interaction problems both in time and freq-
uency domain by Wolf and Song [34, 35].

Combinedmodels are used in soil-structure interaction analysis. Themost widely used
combined model is the coupled finite element and boundary element method in both time
and frequency domain [36–38]. Qian et al. [39] Estorff and Prabucki [40], and Israil and
Banerjee [41] used the coupled FEM-BEM model for analysis of homogeneous media.
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Zhang et al. presented the analysis in time domain for layered soils [42]. Tanikulu et al. ex-
tended BEM formulation for infinite nonhomogeneous media [43]. They could model only
three different layers. Coupled finite element-Infinite element models have been used in dy-
namic soil-structure interaction analysis [44–46]. Coupled finite element/boundary element/
scaled boundary finite element model [47] has been used to solve soil-structure interaction
problems.

Jeremić et al. [48] have studied the effects of nonuniformity of soils in large structures
where they developed various models to simulate wave propagation through soils with ela-
stoplastic behavior.

Ghannad and Mahsuli [49] studied the effect of foundation embedment using a sim-
plified single degree of freedom model with idealized bilinear behavior for the structure and
considered the soil as a homogeneous half-space as a discrete model based on cone model
concepts. The foundation is modeled as a rigid cylinder embedded in the soil.

The scaled boundary finite element method is a boundary-element method based on
finite elements. This method combines the advantages of the boundary and finite element
methods. It also combines the advantages of the numerical and analytical procedures. This
method can be applied in both frequency and time domains [35]. This method is a semianal-
ytical procedure which transforms the partial differential equation to an ordinary differential
equation using a virtual work statement as in finite elements. In this method, no fundamental
solution is required, and no singular integrals occur. Only the boundary is discretized which
results in a reduction of the spatial discretization by one. The analytical solution in the radial
direction permits the boundary condition at infinity to be satisfied exactly [35]. A computer
program named SIMILAR based on SBFEM is presented byWolf and Song [50]. This program
calculates the dynamic stiffness of the unbounded media in frequency and time domain.

In this study, the dynamic behavior of partially embedded structures is examined. The
substructure method is used, and a coupled finite element, scaled boundary finite element
model is applied. The scaled boundary finite element method is used to calculate the dynamic
stiffness of the soil, and the finite element method is applied to analyze the dynamic behavior
of the structure. In continuation, firstly, the equation of motion of the soil structure system in
total and relative displacements is introduced. The dynamic stiffness matrix of the soil is ob-
tained using SBFEM in the second section. In the third section, an iterative procedure is pre-
sented to calculate dynamic load using dynamic stiffness matrix of the soil. Applying New-
mark method, the equation of motion of the system is solved, and the displacements of the
structure are obtained. It is worth noting that although the formulation in the paper is not
innovative, this is the first time a complete model of structure is studied and the dynamic res-
ponse of the structure is examined. Previous studies have used simplified soil model or
simplified structural model and/or both. Therefore, the present results seem to be the first
ones obtained based on a complete soil-structure model. Moreover, from a practical point of
view, the present results could lead to an interesting conclusion in the important topic of
“choosing base shear level” which is not clearly defined in practice codes

Numerical examples are presented, and the final section is devoted to concluding
remarks.

2. Equation of Motion

The dynamic behavior of the structure could be described by its static stiffnessmatrix [K] and
the mass matrix [M]. The equation of motion of the structure in total displacements in time



4 Mathematical Problems in Engineering

Soil-structure interface
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Figure 1: Soil-structure system.

domain is formulated as follows [35]:

[
[Mss] [Msb]

[Mbs] [Mbb]
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}
. (2.1)

Considering damping matrix of the structure, [C], the above equation is written as follows:
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(2.2)

where {üt}, {u̇t}, and {ut} are the acceleration, velocity, and displacement vectors of the struc-
ture. Subscripts are used to denote the nodes of the discretized system. As shown in Figure 1,
nodes on the foundation structure interface are denoted by b, and the remaining nodes related
to the structure are denoted by s. {R(t)} denotes the interaction forces of the unbounded soil
acting on the interface nodes of soil-structure system. The interaction forces of the soil depend
upon the motion relative to the effective foundation input motion{ug

b}. The interaction force-
displacement relationship in the time domain is formulated as:

{R(t)} =
∫ t

0
[S∞(t − τ)]{u(τ)}dτ, (2.3)

where [S∞(t)] is called the displacement unit impulse response matrix in time domain. The
interaction force-displacement relationship can alternatively be written as

{R(t)} =
∫ t

0
[M∞(t − τ)]{ü(τ)}dτ, (2.4)

in which [M∞(t)] is the acceleration unit-impulse response matrix in time domain.
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Superscript ∞ denotes the unbounded medium. For an unbounded medium initially
at rest, we have

{u(t = 0)} = 0,

{u̇(t = 0)} = 0.
(2.5)

Substituting (2.6) in (2.1) results the equation of motion in total displacement [35]:
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})
dτ

⎫⎬
⎭,

(2.6)

in which {üg} is the ground motion acceleration induced to the base of the structure during
an earthquake.

In this paper, the equation of motion of soil-structure system in relative displacement
is used
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(2.7)

As can be seen in (2.7), the unit impulse response matrix should be obtained a priori. The dy-
namic load on the right hand side of the equation is calculated a posteriori. In the next section,
the unit impulse responsematrix is obtained applying scaled boundary finite elementmethod
[35].

3. Obtaining Acceleration Unit-Impulse Response Matrix

The force displacement relationship in the frequency domain could be written as follows [35]:

{R(ω)} = [M∞(ω)](iω)2{u(ω)}, (3.1)

where {R(ω)} and {u(ω)} are force and displacement in frequency domain. [M∞(ω)] is de-
noted as acceleration dynamic stiffness matrix in the frequency domain. The relationship bet-
ween the acceleration and displacement dynamic stiffness matrices is

[M∞(ω)] =
[S∞(ω)]

(iω)2
. (3.2)
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The scaled boundary finite element equation in dynamic stiffness for the unboundedmedium
is formulated as follows [35]:

(
[S∞(ω)]+

[
E1
])[

E0
]−1(

[S∞(ω)] +
[
E1
]T)−(s−2)[S∞(ω)]−ω[S∞(ω)],ω−

[
E2
]
+ω2
[
M0
]
=0,

(3.3)

in which [E0], [E1], and [E2] are coefficient matrices in the Scaled Boundary Finite Element
method introduced in [35].

Dividing (3.3) by (iω)4 and substituting (3.2) yields [35]
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Applying the inverse Fourier transformation to (3.4) results in

∫ t
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(3.5)

The positive definite coefficient matrix [E0] is decomposed by Cholesky’s method as follows:

[
E0
]
= [U]T [U], (3.6)

where [U] is an upper-triangular matrix. Substituting (3.6) in (3.5) and premultiplying by

([U]−1)
T
and postmultiplying by [U]−1 yields

∫ t
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(3.7)

where

[m∞(t)] =
(
[U]−1

)T
[M∞(t)][U]−1. (3.8)
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And the coefficient matrices are

[
e1
]
=
(
[U]−1

)T[
E1
]
[U]−1 − s + 1

2
[I],

[
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]
=
(
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Once obtained [m∞(t)] from (3.7), the acceleration unit-impulse response matrix is
obtained as

[M∞(t)] = [U]T [m∞(t)][U]. (3.10)

In this paper, [M∞(t)] is obtained using the program SIMILAR presented by Jeremić et al.
[48].

4. Calculating Dynamic Load

The dynamic load on the right hand side of (2.7) could be written as follows:

{Fr(t)} = {Fs
r (t)} +

{ {0}{
Fb
r (t)
}
}
,

{Fs
r (t)} =

{{Fss
r (t)}{

Fsb
r (t)

}
}
,

(4.1)

where {Fs
r (t)} represents the dynamic load due to ground motion, respectively, and affects

the total nodes of the system, while {Fb
r (t)} is the dynamic load related to interaction effects

and affects the nodes on the foundation-structure interface denoted by b in Figure 2. The
dynamic load vector on the right hand side of (2.7) could be written as follows:

⎧⎪⎨
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üg
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üg

}
}
+

⎧⎨
⎩

{0}
−
∫ t

0
[M∞(t − τ)]({üb})dτ
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(4.2)

Comparing (4.1) and (4.2) results

{Fs
r (t)} =

{−[M]
{
üg

}}
, (4.3)

{
Fb
r (t)
}
=

{
−
∫ t

0
[M∞(t − τ)]({üb})dτ

}
, (4.4)
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where [M] is the total mass matrix of structure, and [M∞(t)] is the acceleration unit-impulse
response matrix.

The dynamic load Fb
r (t) could be written in discrete form as follows [51]:

Fb
r (tn) =

n∑
j=1

M∞
n−j

∫ jΔt

(j−1)Δt

üb(τ)dτ =
n∑
j=1

M∞
n−j
(
u̇b(j) − u̇b(j−1)

)
, (4.5)

where Fr(tn) is the dynamic load at nth step. ü and u̇ are the acceleration and velocity at the
corresponding time step. In this paper, an iterative method is adopted to calculate Fb

r (tn). It is
supposed that the acceleration is constant at each time step, so (4.5) could be written as fol-
lows:

Fb
r (tn) =

n∑
j=1

M∞
n−j
(
üb(j)Δt

)
. (4.6)

For the first time step, the dynamic load is calculated assuming that üb = 0 (2.7) is solved
applying Newmark scheme, and acceleration, velocity, and displacement vectors are obtain-
ed. The dynamic load is then calculated using calculated acceleration. Equation (2.7) is solved
again and the magnitudes of acceleration, velocity, and displacements are obtained. This pro-
cedure is iterated until the convergence is achieved. In this study, the tolerance between two
successive iterations is taken as 0.001.

The above procedure is outlined as in Table 1.
According to the above algorithm, an FORTRAN program is prepared to examine the

dynamic behavior of the structure considering interaction effects. Numerical examples are
presented in the next section.

5. Examples

2D frames on soft ground have been analyzed applying a coupled scaled boundary finite
element-Finite element models. The analysis is performed in time domain and the material
behavior of soil and structure is assumed to be linear. The soil-structure system is subjected to
sine excitations, El Centro, and Tabas ground motions. The displacement and base shear are
calculated. Base shear is assumed to be the algebraic summation of horizontal forces induced
in the structure. Results are compared with those obtained by cone model.

Example 5.1. As the first example, the frames shown in Figures 2 and 3 are used in analysis.
The damping ratio of the structure is considered as five percent of the mass matrix.

Structure properties are assumed as:

Frame no. 1: a = b = 6m, h = 3m,

Frame no. 2: a = 6m, h = 3m.
(5.1)

The soil properties are

ρ = 1600 kg/m3, Vs = 150m/s, υ = 0.3. (5.2)
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Table 1: The Newmark algorithm and iteration procedure used in the analysis.

(A) Initial conditions
(1) Form stiffness, mass, and damping

matrices of the structure K,M,C

(2) Initial values u0, u̇0, ü0

(3) Select time step and parameters
α = 0.25, δ = 0.5. Calculate integration
constants

a0 =
1

αΔt2
, a1 =

δ

αΔt
, a2 =

1
αΔt

, a3 =
1
2α

− 1

a4 =
δ

α
− 1, a5 =

Δt

2

(
δ

α
− 2
)
, a6 = Δt(1 − δ), a7 = δΔt

(4) Form effective stiffness matrix K̂ K̂ = K + a0M + a1C

(B) For each time step
(1) Use t+Δtüg and calculate dynamic

load due to ground motion (4.2)
t+ΔtFs

r

(2) Iterative procedure
(2.1) Consider t+Δtük

b
, k = 1, 2, 3, . . . t+Δtü1

b =
tüb

(2.2) Calculate the interaction load
induced on soil structure interface (4.6)
using t+Δtük

b

t+Δt
Fb
r

(2.3) Calculate the dynamic load
t+Δt

R

t+Δt
R =
{ t+ΔtFss

r
t+ΔtFsb

r + t+ΔtFb
r

}

(2.4) Calculate effective load R̂ at
time t + Δt

t+Δt
R̂ = t+Δt

R+ M(a0
tU+a2

t
U̇+a3

t
Ü)

+C(a1
tU +a4

t
U̇ +a5

t
Ü)

(2.5) Applying Gauss reduction
scheme, displacements are calculated at
time t + Δt

K̂ t+ΔtU =
t+Δt

R̂

(2.6) Calculate acceleration and
velocities at time t + Δt

t+Δt
Ük+1 =

{
ük+1
s

üK+1
b

}
= a0( t+ΔtU− tU) − a2

t
U̇−a3

t
Ü

t+Δt
U̇= t

U̇+a6
t
Ü +a7

t+4Δt
Ü

(2.7) Calculate the tolerance
between two successive iterations

TLR =
∥∥∥ t+Δt

üK+1
b − t+Δt

üK
b

∥∥∥
(2.8) Check TLR. If TLR < 0.001, the

iterative procedure finishes otherwise
steps 2.2 to 2.8 are repeated using t+Δtük+1

b

Table 2: Properties of structural elements.

Element r (kgf/m3) A (m2) I (m4) E (kgf/m2)

Beam 2400 0.36 1.08E − 2 2.531E9
Column 2400 0.36 1.08E − 2 2.531E9

Firstly, a dynamic analysis is performed (ignoring SSI effects). The natural frequencies and
periods of the structures are calculated and presented in Tables 3 and 4. Then the soil-struc-
ture system is subjected to sine excitations with unit amplitude. The loading frequency is con-
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b

h

a

Figure 2: Frame no. 1 used in analysis.

a a a a

h

Figure 3: Frame no. 2 used in analysis.

Table 3: Natural frequencies and periods of first five modes of frame no. 1.

Modes Natural frequency (Hz) Period (s)

First mode 0.84 1.189
Second mode 2.579 0.388
Third mode 4.474 0.224
Fourth mode 6.594 0.152
Fifth mode 8.959 0.112

Table 4: Natural frequencies and periods of first five modes of frame no. 2.

Modes Natural frequency (Hz) Period (s)

First mode 1.66 0.603
Second mode 5.24 0.191
Third mode 9.41 0.106
Fourth mode 13.93 0.072
Fifth mode 17.64 0.057
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Table 5: Relative reduction of displacement and base shear considering SSI effects for frame no. 1 subjected
to sine excitation.

Maximum of
Relative reduction (%)

First mode Second mode

Displacement 15.3 35.6
Base shear 12.7 60.65

Table 6: Relative reduction of displacement and base shear considering SSI effects for frame no. 2 subjected
to sine excitation.

Maximum of
Relative reduction (%)

First mode Second mode

Displacement 40.9 41.3
Base shear 63.8 82

Table 7: Relative reduction of displacement and base shear considering SSI effects for frame no. 1 subjected
to El Centro ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 10.9 214855
Dynamic analysis considering SSI effect 7.55 109885
Relative reduction (%) 30.73 48.75

Table 8: Relative reduction of displacement and base shear considering SSI effects for frame no. 2 subjected
to El Centro ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 6.61 357693
Dynamic analysis considering SSI effect 2.63 149835
Relative reduction (%) 60.2 58.1

sidered to be variable and selected so that it would be close to natural frequencies of the struc-
ture. The harmonic load used in the analysis could be expressed as follows:

F = sin
(
2π
T

t

)
, (5.3)

where T is the period of sine function. The SSI effect on dynamic response of the structure
is examined. Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 show the results obtained in
analysis. Figures 17, 18, 19, and 20 show the variation of displacement and base shear ver-
sus period of dynamic load. The maximums (peaks) represent the obtained magnitudes with
loading period close to the first and the second natural periods of the structure. As can be seen
considering SSI effects, the maximum displacement and base shear are decreased. In Tables 5
and 6 the percentage of the relative reduction of displacement and base shear due to first and
second modes is presented.

It is observed that considering SSI effect leads to reduction in displacement and base
shear. The reduction in displacement and base shear is more significant when the loading
frequency is close to natural frequencies of the structure. As shown in Tables 5 and 6, the
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Table 9: Relative reduction of displacement and base shear considering SSI effects for frame no. 1 subjected
to Tabas ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 8.58 194230
Dynamic analysis considering SSI effect 4.03 41399
Relative reduction (%) 53 78.6
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Figure 4: Comparison of displacement at the top of frame no. 1 subjected to sine excitation (T = 1.2 s).

Table 10: Relative reduction of displacement and base shear considering SSI effects for frame no. 2 sub-
jected to Tabas ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 5.86 367403
Dynamic analysis considering SSI effect 2.19 102447
Relative reduction (%) 62.6 72.1

percentage of relative reduction in displacement and base shear is more significant for the
second mode than the first one. It could be concluded that SSI effect is more pronounced for
higher modes of the structure. Comparing the results presented in Tables 5 and 6 shows that
the relative reduction is more significant for farme no. 2. It could be concluded that SSI effects
are more significant for stiff structures.

Example 5.2. In the second example, the fames are subjected to El Centro ground motion. It is
worth noting that the predominant period of El Centro ground motion is 0.56 (sec) which is
close to the first natural period of frame no. 2. The results are given in Figures 21, 22, 23, and
24. As can be observed in Tables 7 and 8, the relative reduction in displacement and shear base
is more significant for frame no. 2. It can be concluded that when the predominant period of
the earthquake is close to natural period of the structure, considering SSI effects leads to more
significant reduction, and the dynamic response of the structure is more affected.
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Figure 6: Comparison of displacement at the top of frame no. 1 subjected to sine excitation (T = 1 s).
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Figure 9: Comparison of base shear of frame no. 1 subjected to sine excitation (T = 1.1 s).
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Figure 10: Comparison of base shear of frame no. 1 subjected to sine excitation (T = 0.4 s).
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Figure 13: Comparison of displacement at top of frame no. 2 subjected to sine excitation (T = 0.1 s).
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Figure 14: Comparison of base shear of frame no. 2 subjected to sine excitation (T = 0.6 s).

−300000

−200000

−100000

0

100000

200000

300000

B
a
se

sh
ea
r
(k
g
f)

Dynamic analysis

Present study

2 4 60 8

Time (s)

Figure 15: Comparison of base shear of frame no. 2 subjected to sine excitation (T = 0.2 s).
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Figure 16: Comparison of base shear of frame no. 2 subjected to sine excitation (T = 0.1 s).
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Figure 22: Comparison of base shear of frame no. 1 subjected to El Centro ground motion.
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Figure 24: Comparison of base shear of frame no. 2 subjected to El Centro ground motion.
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Figure 25: Comparison of displacement at top of frame no. 1 subjected to Tabas ground motion.
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−0.08
−0.06
−0.04
−0.02

0.08

0.06

0.04

0.02

0

Dynamic analysis

Present study

D
is
p
la
ce
m
en

t
(m

)

0 5 10 15 20 25

Time (s)

Figure 27: Comparison of displacement at the top of frame no. 2 subjected to Tabas ground motion.
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Figure 28: Comparison of base shear of frame no. 2 subjected to Tabas ground motion.
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Example 5.3. In the third example, the frames are subjected to Tabas ground motion. The pre-
dominant period of Tabas ground motion is 0.2 (sec)which is close to the second natural per-
iod of frame no. 2. The results are given in Figures 25, 26, 27, and 28. As it is observed, con-
sidering SSI effect has a pronounced effect on results (Tables 9 and 10).

6. Conclusion

Analysis and design of structures subjected to arbitrary dynamic loadings especially earth-
quakes have been studied during past decades. In practice, the effects of soil-structure inter-
action on the dynamic response of structures are usually neglected. In this paper, a coupled
scaled boundary finite element-finite element model is presented to examine the dynamic res-
ponse of the structure considering soil-structure interaction. The substructure method is used
to analyze the soil-structure interaction problem. The analysis is performed in time domain.
The material behavior of soil and structure is assumed to be linear. The scaled boundary finite
element method is used to calculate the dynamic stiffness of the soil, and the finite element
method is applied to analyze the dynamic behavior of the structure. 2D frames have been
analyzed using the proposed model. The results are compared with those obtained by cone
model. Considering SSI effect leads to reduction in displacement and base shear. When the
system is subjected to sine excitation, the reduction in displacement and base shear is more
significant when the loading frequency is close to natural frequencies of the structure. The
reduction in displacement and base shear is more significant for the second mode than the
first one, thus considering SSI in dynamic analysis of the structure affects the higher modes
more significantly. It is observed that when the soil-structure system is subjected to
an earthquake whose predominant period is close to natural period of the structure, consider-
ing SSI effects leads to more significant reduction, and the dynamic response of the structure
is more affected. It is obvious that considering SSI effects results in more effective design
without decreasing safety margin.
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