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We consider Liénard type and frequency-damped oscillator equations. Integrating factors and the
associated first integrals are derived from the method to compute λ-symmetries and the associated
reduction algorithm. The knowledge of a λ-symmetry of the equation permits the determination
of an integrating factor or a first integral by means of coupled first-order linear systems of partial
differential equations. We will compare our results with those gained by the other methods.

1. Introduction

Integrating factors and first integrals are powerful tools in the study of ordinary differential
equations (ODEs). In this area, we observe plenty of studies. Some of them are listed in [1–8].
Several authors have obtained necessary and sufficient conditions for a function μ(t, x, ẋ) to
be an integrating factor of a second-order ODEs. Most of their approaches rest on the fact that
the multiplication of function μ with second-order ODE is a total derivative, and therefore
its variational derivative is null. As a consequence, integrating factors can be determined
as solutions of a second-order linear system of partial differential equations (PDEs). Since
solving this system is usually a more difficult task than solving the original ODE, many
studies have been done to investigate special classes of integrating factors, through specific
ansatze for μ [9]. For instance, in [10] Anco and Bluman derive integrating factors as the
solutions of the adjoint equation of the linearized equation and an additional equation that
describes an extra adjoint-invariance condition.

In their recent papers, Muriel and Romero [11, 12] presented what they termed a
systematic algorithm for the construction of integrating factors of the form μ(t, x, ẋ) for
second-order ODEs. With this new powerful method, integrating factors and the associated
first integrals are derived from the method to compute λ-symmetries and the associated
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reduction algorithm. In addition, the knowledge of a λ-symmetry of the equation permits
the determination of an integrating factor or a first integral by means of coupled first-order
linear systems of PDEs.

The main purpose of this paper is to study integrating factors and first integrals of two
important oscillation equations which are Liénard type and frequency-damped oscillation
equations by the λ-symmetry methods. An interesting feature of our study is that the method
of [10] does not produce integrating factors for Liénard type oscillation equation; however,
λ-symmetry methods yield integrating factor and first integral. Moreover, we obtain new
integrating factor by λ-symmetry methods different from that which is previously derived
by [10] for frequency-damped oscillation equation.

The paper is structured thusly. In Section 2, we present the necessary preliminaries.
This section is devoted to integrating factors and the associated first integrals which are
derived from the method to compute λ-symmetries and the associated reduction algorithm.
In addition, we introduce Anco and Bluman’s method [10].

In Section 3, we study the λ-symmetries, integrating factors, first integrals for Liénard
type, and frequency-damped oscillator equations. In addition, we make comparisons
between two methods which are pointed out briefly above. The final section includes some
conclusions.

2. Necessary Preliminaries

We first present notation to be used and recall the definitions and theorems that appear in
[10, 11].

Consider an nth-order ordinary differential equation

˜Δ
(

t, x(n)
)

= 0, (2.1)

where variables (t, x) are in some open set M ⊂ T × X � �
2 . For k ∈ �, Mk ⊂ T × X(k)

denotes the corresponding k-jet space, and the elements of M(k) are denoted by (t, x(k)) =

(t, x, ẋ, . . . ,
k
x).

Suppose that (2.1) admits an integrating factor, μ(t, x(k)), for some k such that 0 ≤ k ≤
n − 1. The multiplication by μ converts the left-hand side of (2.1) into the total derivative of
some function Δ(t, x(n−1)),

μ
(

t, x(k)
)

· ˜Δ
(

t, x(n)
)

= Dt

(

Δ
(

t, x(n−1)
))

. (2.2)

The exact equation Dt(Δ(t, x(n−1))) = 0 admits a λ-symmetry, and the trivial reduction
of order Δ(t, x(n−1)) = C, C ∈ �, appears as a consequence of the reduction algorithm
associated to that λ-symmetry [13]. If λ ∈ C∞(M(k)), 0 ≤ k ≤ n − 1, is any solution of the
partial differential equation

n−1
∑

i=0
(Dt + λ)i(1)

∂Δ
∂x(i)

= 0 when x(n) = F
(

t, x(n−1)
)

, (2.3)
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then the vector field v = ∂x is a λ-symmetry of (2.1) where F is an analytic function of its
arguments in some open subsetM(n−1), and it appears when (2.1) is locally written in explicit
form.

Theorem 2.1 (see [12]). Assume that (2.1) is an nth-order ordinary differential equation that admits
an integrating factor μ such that μ|

˜Δ=0 /= 0. If λ is any particular solution of (2.3), then the vector field
v = ∂x is a λ-symmetry of (2.1).

An algorithm to obtain an integrating factor (or first integral) of a given ODE once
a λ-symmetry is known has been derived in [12]. For second-order equations, the method
reads as follows.

For n = 2, the corresponding second-order ODEs can be written in explicit form as

ẍ = F(t, x, ẋ). (2.4)

We denote by A = ∂t + ẋ∂x + F(t, x, ẋ)∂ẋ the vector field associated with (2.4). In terms of A,
a first integral of (2.4) is any function I(t, x, ẋ) such that A(I) = 0.

Let v be a λ-symmetry of (2.4), Then w(t, x, ẋ) is a first-order invariant of v[λ,(1)], that
is, any particular solution of the equation

wx +wẋλ(t, x, ẋ) = 0. (2.5)

The reduction process associated to the λ-symmetry v gives a first-order reduced equation of
the form ΔR(t, x, ẋ) = 0, the general solution of which is implicitly given by an equation of
the form G(t, w) = C, C ∈ �. It is clear that Dt(G(t, w(t, x, ẋ)) = 0 is an equivalent form of
(2.4). Therefore,

μ(t, x, ẋ) = Gw(t, x,w(t, x, ẋ)) ·wẋ(t, x, ẋ) (2.6)

is an integrating factor of (2.4).
For second-order ODEs, there is a correspondence between λ-symmetries and first

integrals in the sense of Theorem 2 in [11].

Theorem 2.2 (see [11]). (a) If I(t, x, ẋ) is a first integral of (2.4), then the vector field v = ∂x is a
λ-symmetry of (2.4) for λ = −Ix/Iẋ and v[λ,(1)]I = 0.

(b) Conversely, if v = ∂x is a λ-symmetry of (2.4) for some function λ(t, x, ẋ), then there
exists a first integral I(t, x, ẋ) of (2.4) such that v[λ,(1)]I = 0.

Theorem 2.2 works when v = ∂x is a λ-symmetry. If I is a first integral of (2.4), then
μ = Iẋ is an integrating factor of (2.4) and −μφ = Ix + ẋIx. If I is also a first integral of v[λ,(1)]

for some function λ(t, x, ẋ), then Ix = −λIẋ = −λμ and the system

Ix = μ
(

λẋ − φ
)

, Ix = −λμ, Iẋ = μ (2.7)

is compatible; that is, when λ(t, x, ẋ) is such that v = ∂x is λ-symmetry, we know that system
(2.7) is compatible. Therefore, system (2.7) could be used to obtain through a line integral a
first integral of (2.4) associated with μ.
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Similarly, for second-order ODEs, there is a correspondence between integrating
factors and Lie point symmetries in the sense of Theorem 7 in [11].

Theorem 2.3 (see [11]). If v is a Lie point symmetry of (2.4) and Q = η − ξẋ is its characteristic,
then v = ∂x is a λ-symmetry of (2.4) for λ = A(Q)/Q, and any solution of the first-order linear
system

A
(

μ
)

+
(

Fẋ − A(Q)
Q

)

μ = 0, μx +
(

A(Q)
Q

μ

)

ẋ

= 0 (2.8)

is an integrating factor of (2.4).

Now, we briefly summarize the approach which is presented in [10].
The linearized ODE for (2.4) is given by

L[x]σ =
d2σ

dt2
− Fẋ

dσ

dt
− Fxσ = 0, (2.9)

and the corresponding adjoint ODE is

L∗[x]� =
d2�

dt2
+

d

dt
(Fẋ�) − Fx� = 0. (2.10)

The solutions � = μ(t, x, ẋ) of ODE (2.10), holding for any x(t) satisfying the second-order
ODE (2.4), are the adjoint symmetries of (2.4). The adjoint invariance conditions for μ(t, x, ẋ)
to be an integrating factor of (2.4) are

μtt + 2ẋμtx + 2Fμtẋ + (ẋ)2μxx + 2ẋFμxẋ + F2μẋẋ + (Ft + ẋFx + 2FFẋ)μẋ

+ (F + ẋFẋ)μx + Fẋμt + (Ftẋ + ẋFẋẋ + FFẋẋ − Fx)μ = 0,
(2.11)

μtẋ + ẋμxẋ + Fμẋẋ + 2Fẋμẋ + 2μx + Fẋẋμ = 0. (2.12)

Equations (2.11)-(2.12) must hold for arbitrary values of t, x, ẋ.

3. λ-Symmetries, Integrating Factors, and First Integrals

3.1. Liénard Type Oscillator Equation

Liénard type nonlinear oscillators of the form

ẍ + kxẋ +
k2

9
x3 + ax = 0 (3.1)

and their generalizations are widely used in applications in the context of nonlinear
oscillations [14–18].
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We know that (3.1), that is,

ẍ = −kxẋ − k2

9
x3 − ax = F, (3.2)

admits the vector field v = ∂/∂x as a λ-symmetry, where λ is any particular solution to the
following equation:

(Dt + λ)2(1) =
1
∑

i=0

(Dt + λ)i(1)
∂F

∂x(i)
when ẍ = −kxẋ − k2

9
x3 − ax = F, (3.3)

or equivalently,Dtλ+λ2 = λt+ ẋλx +(−kxẋ− (k2/9)x3 −ax)λẋ +λ2 = −kẋ− (k2/3)x2 −a−kλx.
Therefore, we obtain the following equation:

λt + ẋλx +

(

−kxẋ − k2

9
x3 − ax

)

λẋ + λ2 + kλx + kẋ +
k2

3
x2 + a = 0, (3.4)

that corresponds to (3.3).
For the sake of simplicity, we try to find a solution λ of (3.4) of the form λ(t, x, ẋ) =

λ1(t, x)ẋ + λ2(t, x). This ansatz leads to the following system:

λ1t + λ2x + 2λ1λ2 + k = 0,

λ1x + λ2
1 = 0,

λ2t −
k2

9
λ1x

3 − aλ1x + λ2
2 + kλ2x +

k2

3
x2 + a = 0.

(3.5)

A particular solution of the second equation is given by λ1 = 1/x. The first and third
equations become

λ2x +
2
x
λ2 + k = 0,

λ2t +
2k2

9
x2 + λ2

2 + kλ2x = 0.

(3.6)

The general solution of the first equation is given by λ2(t, x) = −kx/3 + x−2λ21(t). Since the
last equation becomes x−1λ′

21(t) + x−3λ21(t)2 + (1/3)kλ21(t) = 0, we can choose λ21(t) = 0. In
consequence, v = ∂/∂x is a λ-symmetry for λ(t, x, ẋ) = (1/x)ẋ − kx/3.

In order to find an integrating factor associated to λ, we must find a first-order
invariant w(t, x, ẋ) of v[λ,(1)]. The equation that corresponds to (2.5) is

wx +
(

1
x
ẋ − kx

3

)

wẋ = 0. (3.7)
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It is clear that w(t, x, ẋ) = −(1/x)ẋ − kx/3 is a solution of (3.7). In terms of {t, w,wt}, (3.1)
becomes wt −w2 − a = 0, the general solution of which is given by (1/

√
a)Arctan(w/

√
a) =

t + c, c ∈ �. According to (2.6), an integrating factor is given by

μ(t, x, ẋ) = Gw(t, x,w(t, x, ẋ)) ·wẋ = − 1
(

a + (ẋ/x + kx/3)2
)

x
. (3.8)

We observe that the method we have followed not only provides the integrating factor but
also gives the conserved form of the equationwithout additional computation. The conserved
form of the resulting equation is given by

Dt

(

1√
a
Arctan

(

− 1√
ax

ẋ − kx

3
√
a

))

= 0. (3.9)

We note that (3.1) is a particular case of a family of equations

ẍ + a1(x)ẋ + a0(x) = 0, (3.10)

with a1(x) = kx, a0(x) = (k2/9)x3+ax appearing in [19]. Muriel and Romero in that reference
suggest a well-defined algorithm through general Sundman transformations for the class
of nonlinear second-order ODEs. They propose considering the problem of linearization
through nonlocal transformations from the point of the λ-symmetries admitted by the
equation and their associated first integrals. In our study without considering nonlocal
transformations, integrating factors and the associated first integrals are derived from the
method to compute λ-symmetries and the associated reduction algorithm. Moreover, our
results (3.8) and (3.9) are compatible with the results obtained in [19].

Now, we try to obtain the integrating factor of (3.1)with the method of [10]. The ODE
(3.1) is not self-adjoint, so that its adjoint symmetries are not symmetries.
Here, the adjoint symmetry determining equation (2.11) for� = μ(t, x, ẋ) is the following;

μtt + 2ẋμtx + 2

(

−kxẋ − k2

9
x3 − ax

)

μtẋ + ẋ2μxx + 2ẋ

(

−kxẋ − k2

9
x3 − ax

)

μxẋ

+

(

−kxẋ− k2

9
x3−ax

)2

μẋẋ+

[

ẋ

(

−kẋ− 1
3
k2x2−a

)

+2

(

−kxẋ−k2

9
x3−ax

)

(−kx)
]

μẋ

+

[(

−kxẋ − k2

9
x3 − ax

)

+ ẋ(−kx)
]

μx + (−kx)μt +
[

−kẋ −
(

−kẋ − 1
3
k2x2 − a

)]

μ = 0.

(3.11)

The extra adjoint-invariance determining equation (2.12) becomes

μtẋ + ẋμxẋ +

(

−kxẋ − k2

9
x3 − ax

)

μẋẋ + 2(−kx)μẋ + 2μx = 0. (3.12)
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If we consider the special case μ = μ(t, x), then (3.11) becomes

ẋ2μxx + ẋ
[

2μtx − kxμx − kxμx

]

+

[

μtt −
(

k2

9
x3 + ax

)

μx − kxμt +
(

1
3
k2x2 + a

)

μ

]

= 0.

(3.13)

Seperating by monomials, that is,

ẋ2 : μxx = 0,

ẋ : 2μtx − 2xkμx = 0,

1 : μtt −
(

k2

9
x3 + ax

)

μx − kxμt +
(

1
3
k2x2 + a

)

μ = 0,

(3.14)

we get μ = 0. The situations for μ = μ(x, ẋ) and μ = μ(t, ẋ) are a more difficult task than
solving the original ODE.

3.2. Frequency-Damped Oscillator Equation

We consider the frequency-damped oscillator equation

ẍ + xẋ2 = 0 (3.15)

studied by Gordon [20], Sarlet et al. [21], and Mimura and Nono [22].
It is clear that v = ∂/∂t is a Lie point symmetry of (3.15). The vector field associated

with (3.15) is

A =
∂

∂t
+ ẋ

∂

∂x
−
(

xẋ2
) ∂

∂ẋ
, (3.16)

and the characteristic of v is Q = −ẋ. The corresponding second equation of (2.8) becomes

μx − xẋμẋ − xμ = 0. (3.17)

The solution of (3.17) can be obtained by the characteristic method of Lagrange

μ(t, x, ẋ) = ex
2/2M

(

t, ẋex
2/2

)

, (3.18)

where M is an arbitrary function of t and w = ẋex
2/2. Since μ must also satisfy the first

equation in (2.8),

Mt(t, w) = 0. (3.19)
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This implies that M depends only on w and

μ(t, x, ẋ) = ex
2/2M

(

ẋex
2/2

)

(3.20)

is an integrating factor of (3.15), whereM is an arbitrary function.
In order to find a first integral I of (3.15) such that Iẋ = μ, we must solve the system

that corresponds to (2.7). If, for example, we choose M(w) = w, then we get the particular
integrating factor

μ(t, x, ẋ) = ẋex
2
. (3.21)

The above integrating factor is different from the previously derived integrating factors for
(3.15) by Anco and Bluman [10].

Integrating factor (3.21) of (3.15), the corresponding system, (2.7), becomes

It = 0, Ix = xẋ2ex
2
, Iẋ = ẋex

2
. (3.22)

By evaluating the corresponding line integral, we get the general solution of (3.22) and a class
of first integrals of (3.15),

I(t, x, ẋ) =
ẋ2

2
ex

2
+ C, (C ∈ �). (3.23)

We note that (3.15) is a particular case of a family of equations

ẍ + a2(x)ẋ2 + a1(t)ẋ = 0, (3.24)

with a2(x) = x, a1(t) = 0 appearing in [23]. The authors characterized the (3.24) that admits
first integrals of the form A(t, x)ẋ + B(t, x) through an easy-to-check criterion expressed
in terms of functions S1, S2, S3, and S4 given by (3.3) and (3.4)–(3.6) in [23]. We could
obtained our results (3.21) and (3.23) using this novel approach.Moreover, (3.15)was studied
by the same authors from the point of view of linearizations through local and nonlocal
transformations in [24]. Our results (3.21) and (3.23) are compatible with the results obtained
in [24].

4. Conclusions

In this paper, we derived integrating factors and first integrals for Liénard type and
frequency-damped oscillator equations by λ-symmetry approach. From the λ-symmetry and
the associated algorithm of reduction, the integrating factor (3.8) and the associated first
integral (3.9) were derived for Liénard type equation. We also show the difficulties to get
integrating factors for Liénard type equation by the other methods.

The knowledge of a λ-symmetry of the equation permits the determination of an
integrating factor or a first integral by means of coupled first-order linear systems (2.8) of
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partial differential equations. Solving this system, we obtain the integrating factor (3.21) and
the associated first integral (3.23) for frequency-damped oscillator equation (3.15).
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