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The classical multivariate CUSUM and EWMA charts are commonly used to detect small shifts
in the mean vectors. It is now evident that those charts are easily affected by outliers which
may be due to small or moderate changes in the mean vector. In this paper, we propose a
robust multivariate CUSUM and Robust multivariate EWMA charts to remedy the problem of
small changed in scatter outliers. Both the empirical and simulation results indicate that the
proposed robust multivariate CUSUM and EWMA charts offer substantial improvement over
other multivariate CUSUM and EWMA charts. This article also discussed the robustness of the
proposed charts, when there is a small or moderate sustained shift in the data set.

1. Introduction

The overall quality of a process is often measured by the joint level of several correlated
characteristics.

Although, in practice, separate univariate control chart for each characteristic is often
used to detect changes in the inherent variability of a process, it can be very misleading.

One of the major drawback of using separate univariate control charts is that the
overall probability of false alarm (or overall type I error) becomes large, particularly when
the number of the quality characteristics increases. Moreover, using separate univariate
control charts for each characteristic would not have detected out of control conditions,
because it ignores the correlation between the quality characteristics. As an alternative,
multivariate control charts are recommended to simultaneously monitor more than one
quality characteristics [1, 2]. Generally, two phases, namely Phase I and Phase II, are
considered in any multivariate statistical process control application.

Phase I of monitoring scheme of a process consists of collecting a sufficient number
of data to ascertain whether or not this Historical Data Set (HDS) indicates a stable
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(or in-control) process whereas, in Phase II, future observations are monitored based on the
control limits calculated from Phase I to determine if the process continues to be stable or not.
If the process in phase I is out of control, the deviation sources must be detected and after
removing out of control points, the control charts should be re-established. In other words,
phase I is to identify multivariate outliers, recognize the root cause, and finally remedy the
sources. Consequently, the estimated control limits of phase II would become more accurate
[1, 3].

In statistical quality control, a process changes into an out-control situation when
multiple outliers exist in the data set. An outlier is defined as an observation that deviates
so much from other observations as to arouse suspicion that it was generated by a different
mechanism [4]. Multiple outliers can appear either as random distributed observations
within the HDS set (scatter outliers) or as sequential observations in a certain period of the
HDS (sustained shift).

Therefore, it is imperative to identify outliers in phase I that may otherwise lead to
model misspecification and incorrect results in phase II. phase I and phase II of monitoring
scheme of a process are usually called retrospective and prospective analysis, respectively
(see [1]).

The Hotelling’s T2 statistic was first introduced by Hotelling [5]. It is analogous to the
Shewhart control chart in the univariate cases and widely used in the multivariate control
charts for both retrospective and prospective stages of the monitoring schemes [6–10].

However, the Hotelling’s T2 multivariate types of the Shewhart control chart are
insensitive to small and moderate shifts in the mean vector due to the fact that these
charts only use the information of current sample. To rectify this problem, the MCUSUM or
MEWMA charts were introduced [11, 12]. These charts use the information from both the cur-
rent and past observations. Since the MCUSUM and the MEWMA charts are more sensitive
to the small and moderate shifts in the mean vector, they may be effective alternative to T2

charts when detection of small or moderate shift in a process are the main concerned [1, 2].
Typically, many researchers have suggested applying the MCUSUM and MEWMA in

the prospective stage of the monitoring scheme [1]. However, due to the fact that in many
real cases, the presence of observation with a small (moderate) changes or special cause in
the HDS can create problem for our estimation in phase II, it would be desirable if those
methods can also be used in the retrospective stage of the process monitoring scheme.

Sullivan and Woodall [13] suggested to employ the MCUSUM and MEWMA charts in
phase I. Ryan [2] mentioned that it is reasonable if the MCUSUM and MEWMA procedures
are used in the retrospective analysis of the monitoring scheme. Koning and Does [14] also
employed a CUSUM chart in phase I and stated that it can be extendable to multivariate
cases. Bersimis et al. [15] also pointed out to the application of the MCUSUM and MEWMA
charts in phase I by giving an overview of the multivariate statistical quality control methods
[2, 13–15].

Although the use of the MCUSUM and MEWMA charts can be helpful in phase I for
small or moderate shifts, little work has been focused in this area. Hence, in this article, the
ideas of Sullivan and Woodall [13] and other researchers already mentioned have motivated
us to investigate the performance of MCUSUM and MEWMA charts in the presence of
scatter outliers. Since the MCUSUM and MEWMA charts are based on classical location and
dispersion estimates, they are easily affected by multiple outliers. To rectify this problem, we
propose to incorporate robust location and scale estimates of the minimum volume ellipsoid
(MVE) or the minimum covariance determinant (MCD) [16] in the formulation of the robust
MCUSUM and MEWMA charts.
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The remaining parts of this paper are organized in the following structures. In
Section 2, some backgrounds of the Hotelling’s T2, MCUSUM and MEWMA charts, will be
reviewed. A brief introduction of the location and dispersion robust estimators, which are
based on the MVE and the MCD, is presented in Section 3. The proposed robust MCUSUM
and MEWMA control charts are introduced in Section 4. In Section 5, Monte Carlo simulation
study is carried out in order to evaluate the performance of the proposed robust MCUSUM
and MEWMA charts in both outlier situations, namely, the scatter outliers and the sustained
shift. Numerical examples are provided in Section 6. Finally, discussions and conclusions are
presented in Section 7.

2. Background of Multivariate Control Charts

2.1. Hotelling’s T2 Charts

The Hotelling’s T2 is a very common approach in multivariate control charts which is based
on mahalanobis distance. Consider a HDS in phase I of monitoring scheme, which consists of
m independent time-ordered observation vectors of dimension p, where p is the number of
quality characteristics that are being measured (p < m). The mahalanobis distance is defined
as

MD2
i = (Xi − T(X))′C(X)−1(Xi − T(X)), (2.1)

where Xi is a random vector containing elements for the ith time period T(X) and C(X) are
the location and scale estimates, respectively. If Xi follows the p variate normal distribution
with μ as a poulation mean vector and Σ as a population p × p covariance matrix, then MD2

i

has chi-square distribution with k degrees of freedom [17]. The general form of T2 statistic
are obtained by replacing T(X) and C(X) in (2.1) with classical sample mean vector (X) and
the classical sample covariance matrix (S). The classical Hotelling’s T2 is then defined as

T2
i =

(
Xi −X

)′
S−1

(
Xi −X

)
, (2.2)

where

X =
1
m

m∑
i=1

Xi, S =
1

m − 1

m∑
i

(
Xi −X

)(
Xi −X

)′
. (2.3)

As already been mentioned, the T2 chart is used both for retrospective and prospective
analysis [1]. In phase I, the parameters are estimated retrospectively based on the current
HDS, so the vectorXi is not independent of the estimatorsX and S. In this situation, according
to Mason and Young [7] and Tracy et al. [8], the statistical distribution of T2 is given as

T2 ∼
[
(m − 1)2

m

]
B

(
p

2
,
m − p − 1

2

)
, (2.4)

where B(p/2, (m−p−1)/2 ) represents a beta distribution with parameters p/2 and (m−p−
1)/2. The upper control limit (UCL) of the T2 in (2.4) is ((m − 1)2/m)B(α, p/2, (m−p−1)/2),
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where α, is the αth upper quantile of the beta distribution, which is the probability of false
alarm for each point plotted on the control chart. The lower control limit LCL is often set to
zero [1, 7].

2.2. Multivariate Cumulative Sum Charts

The Cumulative Sum Chart (CUSUM) was first introduced by Page in 1954 as a powerful
method in the monitoring small or moderate shifts in the mean process. The CUSUM
charts directly combine all information from a dataset in the sequence of sample values by
computing the cumulative sums of deviations of a sample values from a target value, that
is, the CUSUM charts are based on using a sequential probability ratio tests. An excellent
overview of CUSUM methods are given by Hawkins and Olwell [18] and Montgomery [1].

An inclusive review of the generalization approaches of the univariate CUSUM charts
to multivariate CUSUM can be found in Bersimis et al. [15].

Another generalization approaches was proposed by Pignatiello and Runger in 1990.
Let Xi be a random vector containing elements for the ith observation which derives from the
p variate normal distribution with an in-control poulation mean vector μ0 and an in-control
common p × p covariance matrix, Σ0. Pignatiello and Runger [19] defined Ci as

Ci = max

⎧
⎨
⎩

[
D′
i

−1∑
0

Di

]−1/2

− kni, 0

⎫
⎬
⎭ i = 1, 2, . . . , m, (2.5)

where C0 = 0 and k is the reference value based on the out-control value of μ (μ1) which is
also generally used in the univariate CUSUM schemes. A good choice of k is often chosen
about halfway between μ0 and μ1. Additionally, Di is obtained by

Di =
i∑

j=i−ni+1

(
Xj − μ0

)
. (2.6)

And ni is the number of subgroups (if any). It is formally defined as

ni =

⎧
⎨
⎩
ni−1 + 1 if Ci > o,

1 otherwise.
(2.7)

In this paper, we only focus on the individual observations, that is, (ni = 1).
Although most approaches of the MCUSUM procedures are designed for phase II, the

approach given in (2.5) can be viewed as a logical basis of phase I. This is due to the fact that
it is based on the multivariate distance of related observation from in-control mean vector,
somehow similar to T2 charts. Sullivan and Woodall [13] suggested setting k equals to zero
for phase I when employing the CUSUM in (2.5) [13, 19].
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2.3. Multivariate Exponentially Weighted Moving Average

The Exponentially Weighted Moving Average (EWMA) is another alternative to the Shewhart
chart when small or moderate shifts occur in the process mean [1]. This chart is due to Roberts
[12], who introduced a geometric moving average chart.

It is worth mentioning that the CUSUM and EWMA charts differ from each other in
how we use the obtained information from observations in the HDS, that is, EWMA statistic
assigns less and less weight to the past observations than the current observation, whereas
all observations in the CUSUM procedure are weighted equally. Lowry et al. [20] introduced
a Multivariate EWMA as a natural direct extension of the univariate case [20].

Let Xi be a random vector from the p variate normal distribution with known in-
control μ0 as a poulation mean vector and Σ0 as a known in-control common p×p covariance
matrix. Lowry et al. [20] defined MEWMA denoted as Zi

Zi = RXi + (I − R)zi−1 =
i∑
j=1

R(I − R)i−jXj Z0 = 0p = (0, . . . , 0)′, i = 1, 2, . . . , m, (2.8)

where R is a p × p diagonal matrix with diagonal elements rk, 0 ≤ rk ≤ 1, k = 1, 2, . . . , p and
I is the identity matrix. Often all rk set to be equal if there is no any reason to weight past
observation differently. The MWEMA chart signals if Z′

iΩ
−1Zi exceeds a related UCL, Where

Ωi is the covariance matrix of Zi and defined as

Ωi =

(
1 − (1 − r)2i

)
r

(2 − r)Σ0
, ∀rk = r, k = 1, . . . , p. (2.9)

When subgroup size is large enough, the MEWMA control chart can be calculated as

Ei = Z′
i

(
r

2 − rΣ0

)−1

Zi. (2.10)

Choosing the values of r determines the sensitivity of the charts to different magnitudes of
shifts. A smaller weight makes the MEWMA chart more sensitive to small shifts and larger r
leads the chart to be more sensitive for larger shifts. If r = 1, then the MEWMA is equivalent
to T2 control charts.

Montgomery [1] suggested choosing r from the range 0.05 ≤ r ≤ 0.25. In practice, a
popular choice are r = 0.05, r = 0.10, and r = 0.20. As a good compromise, Croux et al. [21]
and Gelper et al. [22] recommended r = 0.20.

Similar to MCUSUM in Section 2.2, the MEWMA chart defined in (2.10) can be used
in phase I with some modifications. Sullivan and Woodall [13] suggested choosing r = 0.05
because r smaller value is more sensitive to a small shift. They also recommended centering
the observation by modifying (2.8) to

Zi = R
(
Xi − μ0

)
+ (I − R)zi−1, Z0 = 0p. (2.11)

In phase I, the in-control mean vector and covariance matrix are not known and should be
estimated. Sullivan and Woodall [13] recommended to apply the MWEMA chart for both
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reverse time order and regular time order of data to achieve equal detection probability for
the same magnitudes of shift which start form the same number of observations from either
end of the HDS.

3. High Breakdown Estimators based on the MVE and MCD

It is now evident that the classical sample mean or classical sample covariance (like T2) are
easily affected by abnormal observations [9, 23]. One simple way to overcome this problem in
univariate cases is to use the sample median and MAD (median absolute deviation) instead
of the sample mean and variance, respectively [24].

Although this strategy cannot be applied to multivariate data, the idea can be used
in this case, by replacing the location and the scale estimators with measures of central
tendency and dispersion which are more resistant to atypical data and make the multivariate
approaches more robust. Minimum volume ellipsoid (MVE) and minimum covariance
determinant (MCD) are frequently employed in the detection of multivariate outliers in
regression contexts due to their high breakdown point and affine equivariant properties
[16, 23, 25–28]. These two high breakdown estimators were initiated first by Rousseeuw [16].
The finite sample breakdown point of an estimator shows that how many outlier, need to ruin
the estimation of the estimator completely.

The basic strategy for obtaining the MVE estimator is to search ellipsoid from all
ellipsoids which covers at least h points of dataset, where h can be taken equals to [m/2]
+ 1. Subsets of size h are called halfsets. After finding that ellipsoid, the usual sample mean
and sample covariance of the corresponding ellipsoid are computed and declared as the MVE
estimators. Rousseeuw and Leroy [23] proved that the finite sample breakdown point of these
estimators is 0.5.

Due to the difficulties of computing the MVE, there are some proposed algorithms to
calculate their values in the literatures. The interested reader can refer to Jensen et al. [29] to
see the complete reference list of these algorithms. One of these algorithms is a subsampling
method which is based on taking a fixed number of subsets randomly from the data set each
of size p + 1. These randomly chosen subsets, determine the shape of an ellipsoid. Finally, the
size of this ellipsoid inflates by multiplying it by a constant until covers h subsets of data set
[23, 27]. In this study, the subsampling algorithm is utilized because of its wide availability
in statistical software packages such as SAS, S-Plus, and R. Another popular approach for
finding robust estimates for mean vector and the covariance matrix is the MCD. The main
idea is the same as MVE, but, here, MCD is obtained by finding the half set that gives the
minimum value of the determinant of the covariance matrix. Its breakdown point is similar to
the MVE. Analogous to the MVE, due to the difficulties in the calculations of MCD, there are
some proposed algorithms to calculate its values [27, 30, 31]. Rousseeuw and Van Driessen
[31] proposed a Fast-MCD algorithm which is easily available in the software packages and
is used in this article. It is worth mentioning here that the reweighted MVE and MCD were
employed in this study to increase the efficiency of both the MVE and MCD estimators [23,
32, 33].

4. Robust Multivariate Control Charts

As already been mentioned, the Hotelling’s T2 statistic based on classical sample mean and
sample covariance matrix is badly affected by outliers [7, 9, 34, 35].
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Sullivan and Woodall [9] recommended replacing S in (2.2) with a covariance matrix
which is estimated by using the vector difference between successive observations of the
HDS. This covariance matrix is defined as

Ssd =
1

2(m − 1)

m−1∑
i=1

ViV
′
i , i = 1, 2, . . . , m, (4.1)

where Vi = Xi+1 − Xi is the difference between successive observations. Henceforth, the T2

statistic which is calculated based on (4.1) is referred, as T2
sd. Another approach to make

T2 chart more robust is to use the MVE or the MCD estimators instead of location and
dispersion estimators of the Hotelling’s T2 statistic which is applied first by Vargas in 2003.
The application of robust control charts for individual observations based on the MVE and
MCD have also been discussed extensively by Jensen et al. [29]. According to them, after
obtaining the robust multivariate location and scale estimates given by either the MVE or the
MCD, the robust Hotelling T2 statistics are defined as follows:

T2
MVE,i =

(
Xi −X¡MVE

)′
S−1

MVE

(
Xi −XMVE

)
,

T2
MCD,i =

(
Xi −XMCD

)′
S−1

MCD

(
Xi −XMCD

)
,

(4.2)

where i = 1, 2, . . . , m. It is important to note that there is no guarantee that the assumptions
of the matematical distribution of (2.2) preserved when replacing the location and scale
estimators with robust versions. Although Wilimas et al. [35] were successful in the
determination of the mathematical distribuion of the Hotelling’s T2 based on the Sd, still there
is no exact known mathematical distribution for the Hotelling’s T2 based on the MVE or the
MCD. Hence, to overcome this problem, emprical distribution of the robust T2 statistic is
used for calculating the emprical control limits. Hereinafter, the robust version of Hotelling’s
T2 statistic based on the MVE or the MCD is indicated by RT2

i . For applying the MCUSUM
and MEWMA charts in the retrospective analysis, due to the fact that usualy in phase I of
the monitoring scheme, the μ0 and Σ0 are unknown, the classical sample mean vector and
covariance matrix are utilizied to estimate them [13]. Since the MCUSUM and MEWMA
procedures in (2.5), (2.6), (2.10), and (2.11) utilize the classical covariance matrix, those
procedures may suffer from outliers. Hence, we propose using the robust covariance matrix
from the MVE or the MCD estimators to formulate the robust version of the MCUSUM chart
for individual observations, which are defined as follows:

C2
MVE,i = D

′
MVE,i S−1

MVE DMVE,i, where DMVE,i =
i∑
j=1

(
Xj −XMVE

)
,

C2
MCD,i = D

′
MCD,i S−1

MCD DMCD,i, where DMCD,i =
i∑
j=1

(
Xj −XMCD

)
,

(4.3)
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for i = 1, 2, . . . , m and C0 = 0. Likewise, the proposed robust version of the MEWMA chart
for individual observations are defined as

E2
MVE,i = Z

′
MVE,i

(
r

2 − r S
−1
MVE

)−1

ZMVE,i, where ZMVE,i = R
(
Xi −XMVE

)
+ (I − R)zMVE,i−1,

E2
MCD,i = Z

′
MCD,i

(
r

2 − r S
−1
MCD

)−1

ZMCD,i, where ZMCD,i = R
(
Xi −XMCD

)
+ (I − R)zMCD,i−1,

(4.4)

for i = 1, 2, . . . , m and Z0 = 0.
In the next section, we investigate the performance of our proposed robust MCUSUM

and MEWMA charts for small and moderate shifts in the mean vector in the presence of both
scatter and sustained shift outliers.

5. Simulation Study

In this section, a Monte Carlo simulation study is carried out to assess the performance of the
control charts already discussed. The simulation is designed based on three subgroups each of
sizem = 30, 50, and 100 with the number of characteristics p = 2, 3, 5, and 10. Let us assume
that the in-control process is a p-variate Normal distribution with the mean vector μ0 and the
variance-covariance matrix Σ0. The out-control process is a p-variate Normal distribution
with the same variance-covariance matrix but with shifted mean vector as μ1. The amount of
the shift is measured by a scalar that is defined as

(
μ1 − μ0

)T −1∑
0

(
μ1 − μ0

)
. (5.1)

This measure is called noncentrality parameter and, hereafter, is referred as ncp. It is clear
from (5.1), that the severity of the shift only depends on the values of μ1. Additionally, it can
be assumed that μ0 is a zero vector and Σ is a p × p identity matrix.

Due to the unknown distribution of the proposed robust statistics when replacements
of estimators were made, the approximated empirical control limits are obtained by
simulation. The control limits are exact when applied to a single point in phase I, despite
this phase is a retrospective analysis of all observations. In this situation, α is the probability
of false alarm for each point plotted on the control chart. Therefore, if all of the statistics
were distributed independently, the probability of false alarm would be 1 − (1 − α)m, where
m denotes the number of subgroups. In this case, the probability of false alarm is called the
overall false alarm.

Practically, it is preferred to determine the control limits by simulation to give a
specified overall false alarm even though the distributions of statistics are known [2, 13, 35].
Hereafter, we refer to α as the overall false alarm. Since, the lower control limits for all control
charts which are discussed earlier are often set to zero [1, 7, 13, 29], the simulated empirical
upper control limits (UCLs) are obtained by generating 5000 in-control datasets for each
combination of m and p.

Due to the affine equivariant property of all preceding statistics, these limits are
applicable to any values of μ and Σ. In this article, the overall false alarm is given by α = 0.05.
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Table 1: The empirical simulated UCLs for different types of Hotelling’s T2.

p m T2 charts

T2 T2
MVE T2

MCD T2
sd

2
30 10.561 24.351 58.812 12.284

50 12.302 21.042 34.615 13.443

100 14.124 20.478 24.441 14.712

3
30 12.202 29.028 108.530 15.038

50 13.976 25.145 50.430 15.984

100 16.503 23.011 30.371 17.115

5
30 14.950 49.371 319.625 19.930

50 17.581 33.792 111.725 20.496

100 20.054 28.448 41.639 21.798

10
30 20.033 80.693 1555.711 36.008

50 24.250 63.427 393.625 31.856

100 27.964 44.287 84.655 31.902

Table 2: The empirical simulated UCLs for different types of MCUSUM and MEWMA.

p m MCUSUM charts MEWMA charts

C2 C2
sd C2

MVE C2
MCD E2 E2

sd E2
MVE E2

MCD

2
30 60.71 82.80 172.93 977.19 3.70 5.17 9.28 39.39

50 110.08 132.04 264.99 867.38 5.57 6.85 10.52 24.55

100 225.50 249.03 427.95 872.99 8.52 9.66 12.57 17.77

3
30 72.11 109.30 200.86 1829.22 4.43 6.81 10.82 73.41

50 127.32 165.45 252.84 1370.61 6.43 8.45 11.14 38.35

100 278.79 317.81 468.20 1244.82 9.85 11.63 13.55 22.44

5
30 93.39 174.05 337.15 4930.11 5.63 10.61 17.59 194.71

50 169.22 244.99 309.70 3290.83 8.27 12.35 13.67 88.67

100 360.53 426.13 525.88 1972.71 12.40 15.24 16.24 32.64

10
30 134.60 417.99 290.08 15236.53 7.99 24.69 17.60 673.30

50 250.92 473.44 558.16 10122.93 11.71 22.92 24.20 272.41

100 541.31 739.27 747.96 4812.36 17.79 24.95 22.88 69.34

The empirical simulated UCLs were determined by calculating all the related statistics
for each observation in the generated datasets and record the maximum value for the
corresponding dataset. In order to retain α = 0.05, the 95th percentile of the recorded
maximum values is declared as the simulated UCLs.

The obtained simulated UCLs for different types of T2, MCUSUM and MEWMA
charts, are exhibited in Tables 1 and 2 for different sizes of m and p. Following the idea of
Sullivan and Woodall [13], the value of r is chosen to be 0.05.

The estimated value, of C2, E2, and T2 in all tables refer to the MCUSUM, MEWMA
and Hotelling’s T2 charts, respectively which are computed by using the classical covariance
matrix. Likewise, the C2

sd, E
2
sd, and T2

sd denote the MCUSUM, MEWMA, and Hotelling’s T2

charts respectively which are based on the successive covariance matrix, respectively.
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Table 3: The probability of signals for scatter outliers, where p = 2 and m = 30.

ε ncp MCUSUM charts MEWMA charts T2 charts

C2 C2
sd C2

MVE C2
MCD E2 E2

sd E2
MVE E2

MCD T2
MVE T2

MVE

5%

1 0.05 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.05

3 0.03 0.04 0.05 0.05 0.04 0.04 0.05 0.06 0.06 0.07

5 0.04 0.05 0.09 0.05 0.05 0.05 0.1 0.06 0.10 0.08

10 0.04 0.04 0.12 0.07 0.04 0.04 0.14 0.08 0.25 0.17

10%

1 0.07 0.06 0.06 0.04 0.06 0.06 0.06 0.04 0.05 0.05

3 0.06 0.06 0.08 0.06 0.06 0.05 0.08 0.07 0.08 0.08

5 0.05 0.04 0.10 0.08 0.05 0.04 0.09 0.07 0.09 0.09

10 0.04 0.05 0.23 0.12 0.05 0.05 0.23 0.12 0.24 0.17

15%

1 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.06

3 0.05 0.05 0.09 0.08 0.06 0.06 0.10 0.10 0.06 0.06

5 0.06 0.05 0.13 0.11 0.06 0.05 0.13 0.11 0.07 0.08

10 0.05 0.04 0.31 0.20 0.04 0.04 0.29 0.22 0.17 0.14

20%

1 0.05 0.06 0.05 0.04 0.05 0.05 0.05 0.03 0.05 0.04

3 0.05 0.04 0.10 0.10 0.06 0.05 0.10 0.10 0.05 0.06

5 0.05 0.06 0.16 0.16 0.06 0.06 0.15 0.15 0.06 0.06

10 0.04 0.05 0.38 0.31 0.04 0.05 0.37 0.32 0.16 0.14

Traditionally, the performance of control charts is evaluated by using the Average
Run Length (ARL) index. However, in the retrospective analysis, the ARL is not meaningful
because a signal is generated for all observations in the HDS. Instead, for comparing control
charts in phase I, the signal probability is used to achieve a specified overall false alarm.
For estimating the probability of signals in the existence of scatter outliers, four percentage
of outliers, denoted as ε = 5%, 10%, 15%, and 20%, are generated for each dataset. Then a
contaminated dataset of size m in the p dimensions is generated for different values of ncp.
Each generated dataset is compared with the corresponding empirical UCL in Tables 1 or 2.

This process is repeated for 5000 times, and eventually the proportion of datasets that
have at least one point greater than the UCLs is reported as the probability of signal for each
respective chart. Due to space constraint, only the results for m = 30, and m = 100 and p = 2
are exhibited in Tables 3 and 4. Other results are consistent.

As shown in Tables 3 and 4, both proposed Robust MCUSUM and MEWMA charts
outperform the RT2

i based on the MVE or the MCD estimators except for ε = 5%. At 5%
outliers, the RT2

i have higher probability of signals than MCUSUM and MEWMA charts for
all ncp. However, as the value of ε increases, the probability of detecting shift for the Robust
MCUSUM and MEWMA increases. It is interesting to note that by increasing the number of
subgroup size both MCUSUM and MEWMA charts based on MCD is slightly better than that
when based on MVE. The values for T2

sd are even worse than those for RT2
i based on the MVE

or the MCD in all cases (the results are not shown here).
The results for other levels of m and p are consistent but are not reported here due to

space limitations. However, when the dimension increases, the subgroup size should also be
increased to keep the consistency due to the fact that as p rises for a fixed value of m, the
breakdown point of the MVE and MCD decreases. For example, Figures 1 and 2 illustrate the
probability of signals in the case of scatter outliers for MCUSUM and MEWMA procedures,
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Table 4: The probability of signals for scatter outliers, where p = 2 and m = 100.

ε ncp MCUSUM charts MEWMA charts T2 charts

C2 C2
sd C2

MVE C2
MCD E2 E2

sd E2
MVE E2

MCD T2
MVE T2

MVE

5%

1 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06

3 0.06 0.05 0.07 0.06 0.04 0.03 0.06 0.06 0.10 0.10

5 0.06 0.06 0.11 0.08 0.04 0.04 0.08 0.07 0.18 0.17

10 0.07 0.06 0.31 0.17 0.05 0.04 0.24 0.18 0.51 0.46

10%

1 0.04 0.05 0.05 0.06 0.04 0.04 0.05 0.05 0.06 0.06

3 0.05 0.05 0.15 0.16 0.04 0.04 0.14 0.14 0.08 0.08

5 0.06 0.05 0.24 0.21 0.05 0.05 0.22 0.21 0.15 0.17

10 0.05 0.06 0.64 0.51 0.06 0.05 0.60 0.50 0.54 0.54

15%

1 0.04 0.05 0.04 0.06 0.05 0.05 0.05 0.06 0.05 0.05

3 0.05 0.05 0.17 0.16 0.04 0.05 0.16 0.17 0.07 0.07

5 0.06 0.06 0.27 0.27 0.05 0.05 0.25 0.28 0.09 0.10

10 0.05 0.05 0.68 0.70 0.05 0.05 0.66 0.68 0.39 0.43

20%

1 0.05 0.04 0.05 0.07 0.04 0.04 0.04 0.06 0.06 0.06

3 0.06 0.06 0.17 0.19 0.04 0.04 0.17 0.18 0.06 0.06

5 0.05 0.05 0.31 0.33 0.04 0.04 0.29 0.33 0.09 0.10

10 0.06 0.05 0.69 0.76 0.04 0.04 0.66 0.74 0.30 0.34
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Figure 1: MCUSUM chart for different percentage of scatter outliers, where p = 5 and m = 100.

for p = 5 and m = 100. It is apparent from these figures that although m is large, for fixed
values of ncp and ε, the performance of the respective control charts for p = 2 is better than
when p = 5.

The situation in which the mean vector after k observations changes from in-control
value to out-control value is called sustained shifts and is modeled as

μi =

⎧
⎨
⎩
μ0, for i = 1, 2, . . . , k,

μ1, for i = 1, 2, . . . , m,
(5.2)
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Figure 2: MEWMA chart for different percentage of scatter outliers, where p = 5 and m = 100.

where μ0 and μ1 are in-control and out-control mean vector, respectively. In this paper, to
assess the performance of our proposed control charts in comparison with other existing
control charts, two situations are considered for the sustained shift case: first, when a small
or moderate change occurs midway in the HDS and, secondly, when a small or moderate
change happens near the end or at the beginning of data. It is important to note that for
phase I of monitoring scheme of a process, the probability of detection shift, which appears
either at the beginning or at the end of the HDS, should be the same due to the fact that
the μ0 is unknown in this phase. That is, in both cases some observations may come from
one statistical distribution and some other observations may come from another distribution
[13].

For the shift in the middle of the HDS, the required datasets are obtained by
generating 50% of m observations from in-control process and the other 50%, from the shifted
observations for different values of the ncp. The shifted generated observations are compared
with the corresponding empirical UCL from Tables 1 or 2 and the signal is recorded for the
first shifted observation that exceeds the respective UCL. This process is repeated 5000 times
for each combination of m and p, and eventually the proportion of signals is declared as the
signal probability.

For the case of existing shift at the end or at the beginning of a data, for simplicity, we
assume shift occurs at the end of the HDS. Then, the data sets are simulated consequently in
the form of generating 80% of m observations from the in-control process and 20% from the
shifted process. Subsequently, the signal probability is calculated for each control chart. Due
to space limitation, only the results of m = 30, 50 and 100 for p = 2 are presented in Tables 5, 6,
and 7.

When the MEWMA control chart is applied, the time order of observations in the
HDS should be taken into consideration. This is because of the weight effect of the previous
observations. This effect causes two sustained shift situations with the similar magnitude
in which one located near the first observation in the HDS and the other is at the same
distance from the last observation, which have different probability of signal. Nonetheless,
it is desirable to have the same probability of signal for the same shift magnitude, in which
the number of observations should be the same, starting from either end of the data.
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Table 5: The probability of signals for sustained shift, where p = 2 and m = 30.

Shift ncp MCUSUM charts MEWMA charts T2 charts
C2 C2

sd C2
MVE C2

MCD E2 E2
sd E2

MVE E2
MCD T2

MVE T2
MVE T2

sd

20%

1 0.03 0.20 0.06 0.05 0.05 0.26 0.09 0.06 0.04 0.04 0.10
2 0.08 0.40 0.09 0.07 0.13 0.47 0.14 0.11 0.06 0.06 0.15
3 0.14 0.54 0.06 0.06 0.23 0.62 0.15 0.10 0.05 0.06 0.22
4 0.22 0.72 0.08 0.05 0.40 0.81 0.21 0.12 0.06 0.05 0.26
5 0.33 0.83 0.10 0.08 0.57 0.90 0.29 0.16 0.07 0.08 0.35
10 0.81 0.99 0.22 0.16 0.96 1.00 0.59 0.42 0.14 0.13 0.67

50%

1 0.24 0.50 0.10 0.06 0.22 0.51 0.14 0.11 0.06 0.06 0.12
2 0.60 0.83 0.11 0.07 0.54 0.81 0.18 0.12 0.04 0.04 0.16
3 0.84 0.95 0.10 0.05 0.78 0.93 0.20 0.10 0.04 0.04 0.25
4 0.93 0.98 0.16 0.07 0.88 0.98 0.26 0.13 0.04 0.04 0.31
5 0.98 1.00 0.20 0.09 0.97 1.00 0.30 0.14 0.04 0.05 0.36
10 1.00 1.00 0.38 0.09 1.00 1.00 0.50 0.16 0.03 0.04 0.57

In order to achieve this property, the MEWMA procedure is used with the respective
simulated UCL for both original time order and reverse time order of the generated
observations in the HDS.

It is worth mentioning that this idea is not helpful for the scatter outlier situation
since the distribution for an outlier is different immediately before and in the succeeding
observations. Thus, including successive observations contribute no useful information,
whereas with the sustained shifts, there are several observations in a sequence from the same
distribution.

The results obtained from Tables 5–7 reveal that the performance of the proposed
MCUSUM and MEWMA charts, based on the MVE and MCD, are not effective in both
sustained shift situations in comparison with the MCUSUM and MEWMA procedures based
on the successive covariance matrix. Under such situation, it appears that the MCUSUM
and MEWMA procedures, based on the classical covariance matrix, are even better than the
proposed charts in detecting small and moderate shifts. It may happen due to the fact that the
design of both MCUSUM and MEWMA charts are tuned to be the best for a specific sustained
shift.

It can also be seen from the Tables 5–7 that for both shifts, that is, in the midway and at
the last 20% observations of data, the MCUSUM and MEWMA charts based on the successive
covariance matrix (C2

sd andE2
sd) outperform the classical covariance matrix (C2andE2).

For the midway shift, the MCUSUM charts are slightly better than the MEWMA and
the MWEMA is somewhat better in the case of a shift at the last 20% observations of the data.
Both the MCUSUM and MEWMA charts have less sensitivity when a shift occurs at the last
20% observations of the generated data compared with the same value of ncp at the midpoint
of the data except for the maximum severity of shift (ncp = 10). However, by increasing m,
their performances are fairly closed for smaller severity of shift. Although the performance
of the T2

sd is better than the T2 statistic based on the MVE or MCD, it is completely apparent
from these tables that the performances of all RT2

i s are significantly less efficient than the
MCUSUM and MEWMA charts. Moreover, it is interesting to note that by increasing m, the
performance of the T2

sd is also increased. These results are consistent for other levels of p and
m which are not presented here due to space limitations.
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Table 6: The probability of signals for sustained shift, where p = 2 and m = 50.

Shift ncp MCUSUM charts MEWMA charts T2 charts
C2 C2

sd C2
MVE C2

MCD E2 E2
sd E2

MVE E2
MCD T2

MVE T2
MVE T2

sd

20%

1 0.18 0.36 0.07 0.06 0.24 0.45 0.16 0.12 0.05 0.06 0.08
2 0.43 0.67 0.09 0.07 0.55 0.77 0.32 0.18 0.06 0.04 0.16
3 0.75 0.91 0.12 0.06 0.86 0.94 0.55 0.28 0.06 0.05 0.26
4 0.89 0.98 0.16 0.10 0.95 0.99 0.74 0.40 0.08 0.07 0.30
5 0.96 1.00 0.16 0.10 0.99 1.00 0.86 0.46 0.09 0.08 0.41
10 1.00 1.00 0.42 0.38 1.00 1.00 1.00 0.86 0.20 0.22 0.79

50%

1 0.65 0.76 0.17 0.07 0.55 0.73 0.32 0.18 0.04 0.04 0.09
2 0.96 0.98 0.46 0.11 0.91 0.96 0.60 0.28 0.04 0.04 0.18
3 1.00 1.00 0.71 0.12 0.99 1.00 0.82 0.30 0.04 0.03 0.26
4 1.00 1.00 0.88 0.13 1.00 1.00 0.92 0.35 0.04 0.03 0.32
5 1.00 1.00 0.95 0.15 1.00 1.00 0.97 0.38 0.03 0.04 0.42
10 1.00 1.00 1.00 0.20 1.00 1.00 1.00 0.48 0.03 0.05 0.67

Table 7: The probability of signals for sustained shift, where p = 2 and m = 100.

Shift ncp MCUSUM charts MEWMA charts T2 charts
C2 C2

sd C2
MVE C2

MCD E2 E2
sd E2

MVE E2
MCD T2

MVE T2
MVE T2

sd

20%

1 0.66 0.76 0.31 0.13 0.69 0.80 0.60 0.42 0.05 0.06 0.09
2 0.98 0.99 0.57 0.16 0.98 0.99 0.94 0.82 0.05 0.06 0.18
3 1.00 1.00 0.74 0.20 1.00 1.00 1.00 0.95 0.05 0.06 0.28
4 1.00 1.00 0.87 0.24 1.00 1.00 1.00 1.00 0.06 0.06 0.41
5 1.00 1.00 0.92 0.31 1.00 1.00 1.00 1.00 0.06 0.09 0.50
10 1.00 1.00 1.00 0.73 1.00 1.00 1.00 1.00 0.30 0.37 0.91

50%

1 0.98 0.99 0.84 0.34 0.88 0.94 0.79 0.60 0.05 0.05 0.12
2 1.00 1.00 0.99 0.76 1.00 1.00 0.99 0.89 0.03 0.04 0.19
3 1.00 1.00 1.00 0.94 1.00 1.00 1.00 0.98 0.04 0.04 0.30
4 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.02 0.04 0.36
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.05 0.45
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.05 0.81

6. Numerical Example

In this section, a real dataset taken from Quesenberry [36] is used to evaluate the performance
of the proposed charts. The original data set consists of measurements of eleven quality
characteristics of 30 products, but here we only consider the first two characteristics. The
data is presented in Table 8.

The MCUSUM, MEWMA procedures, and RT2 control charts are shown in Figures 3,
4, and 5, respectively. It is worth mentioning that from the plot of Figure 5, there is a sustained
shift in the data set. By referring to the control limits of Table 1, it can be seen from Figure 3
that the MCUSUM chart based on successive covariance matrix, identified observations 21 to
26 as outliers. However, the MCUSUM chart based on the MVE or the MCD, failed to detect
any outlier.

The MEWMA procedures shown in Figure 4 identify observations 22–27 as outliers,
based on the respective UCLs in Table 2, for the E2

sd, E
2
MVE, E

2
MCD . The results based on time
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Table 8: The Quesenberry data set.

Product no. X1 X2

1 0.567 60.558
2 0.538 56.303
3 0.53 59.524
4 0.562 61.102
5 0.483 59.834
6 0.525 60.228
7 0.556 60.756
8 0.586 59.823
9 0.547 60.153
10 0.531 60.64
11 0.581 59.785
12 0.585 59.675
13 0.54 60.489
14 0.458 61.067
15 0.554 59.788
16 0.469 58.64
17 0.471 59.574
18 0.457 59.718
19 0.565 60.901
20 0.664 60.18
21 0.6 60.493
22 0.586 58.37
23 0.567 60.216
24 0.496 60.214
25 0.485 59.5
26 0.573 60.052
27 0.52 59.501
28 0.556 58.467
29 0.539 58.666
30 0.554 60.239

reverse order of data, also exhibited on the right-hand side of Figure 4. In this case, for
example, observations number 1 and 2 describe observations number 30 and 29 in the original
time order of the dataset. It is clear from this figure that nothing is gained by the MVE or the
MCD estimators. According to the UCLs for T2

sd, T
2
MVE, T

2
MCD of Table 1, Figure 5 shows that

only one observation (observation number 2) is detected as outlier by T2 statistics based on
the MVE and the successive covariance estimators while the T2 based on the MCD estimator
unable to detect any point as outlier.

7. Conclusion

In the retrospective analysis of a process, detecting small or moderate shifts in the mean
vector is important in order to correctly estimate the parameters of a process. Since the
CUSUM or the EWMA procedures are more sensitive to small and moderate changes in the
dataset than T2 charts, this study is designed to investigate the application of these control
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Figure 3: MCUSUM control charts.
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Figure 4: MWMA control charts; (b) is plotted in the original time order and (a) is plotted in the reverse
time order.

procedures in multivariate data for the retrospective analysis of a process monitoring scheme,
in two situations, namely, in the presence of scatter outliers and the sustained shift in the
historical dataset.

We proposed robust MCUSUM and robust MEWMA procedures to remedy the
problems of outliers by incorporating the MVE and the MCD in the development of such
robust charts.
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Figure 5: RT2 control charts.

The results of this study indicate that the robust MCUSUM and MEWMA procedures,
based on the MVE or the MCD estimators, improve the detection probability of scatter
outliers with a small shift in the mean vector as compared to the robust T2 charts except
at 5% percentage of contaminated data. Moreover, the results indicate that the MCD-based
estimators are more superior than the MVE-based estimators when the subgroup size of
observation is increased.

Nonetheless, the proposed MCUSUM and MEWMA charts which are based on the
MVE or the MCD are not effective in detecting sustained shift in the dataset.

When the shift occurs midway in the dataset, the performance of the MCUSUM are
somewhat superior to the MEWMA. On the other hand, the MEWMA is slightly better than
the MCUSUM, in the situation when the shifts happen either near the beginning or near the
end of the dataset. However, by increasing the subgroup size, the performance of both charts
is fairly closed.

Both the MCUSUM and MEWMA control charts are more sensitive to a small or
moderate shift in the sustained shift situation, when it occurs in the middle of the dataset
compared with the case that a shift occurs near the beginning or the end of data.
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