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The problems of almost sure (a.s.) stability and a.s. stabilization are investigated for hybrid
stochastic systems (HSSs)with time-varying delays. The different time-varying delays in the drift
part and in the diffusion part are considered. Based on nonnegative semimartingale convergence
theorem, Hölder’s inequality, Doob’s martingale inequality, and Chebyshev’s inequality, some
sufficient conditions are proposed to guarantee that the underlying nonlinear hybrid stochastic
delay systems (HSDSs) are almost surely (a.s.) stable. With these conditions, a.s. stabilization
problem for a class of nonlinear HSDSs is addressed through designing linear state feedback
controllers, which are obtained in terms of the solutions to a set of linearmatrix inequalities (LMIs).
Two numerical simulation examples are given to show the usefulness of the results derived.

1. Introduction

In the past decades, the problems of stability analysis and stabilization synthesis of stochastic
systems have received significant attentions, and many results have been reported; see, for
example [1–7] and the references therein. Commonly, the above problems can be solved not
only in moment sense [8–10] but also in a.s. sense [11, 12]. However, in recent years, much
interest has been focused on a.s. stability problems for stochastic systems; see, for example
[8, 13] and the references therein.

It is well known that a lot of dynamical systems have variable structures subject
to abrupt changes in their parameters, which are usually caused by abrupt phenomena
such as component failures or repairs, changing subsystem interconnections, and abrupt
environmental disturbances. The HSSs, which are regarded as the stochastic systems with
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Markovian switching in this paper, have been used to model the previous phenomena; see,
for example [14–18] and the references therein. The HSSs combine a part of the state x(t) that
takes values in R

n continuously and another part of the state r(t) that is a Markov chain
taking discrete values in a finite space S = {1, 2, . . . ,N}. One of the important issues in
the study of HSSs is the analysis of stability. In particular, it is not necessary for the stable
HSSs to require every subsystem to be stable; in other words, even all the subsystems are
unstable; as the result of Markovian switching, the HSSs may be stable. These reveal that the
Markovian jumps play an important role in the stability analysis of HSSs. Therefore, in the
past few decades, a great deal of literature has appeared on the topic of stability analysis and
stabilization synthesis of HSSs; see, for example [2, 13, 14, 19, 20].

On the other hand, time delays are frequently encountered in a variety of dynamic
systems, such as nuclear reactors, chemical engineering systems, biological systems, and
population dynamics models. They are often a source of instability and poor performance of
systems. So the problems of stability analysis and stabilization synthesis of HSDSs have been
of great importance and interest. The classical efforts can be classified into two categories,
namely, moment sense criteria, see, for example [21–23], and a.s. sense criteria, see, for
example [24, 25]. Among the existing results, in [25], based on the techniques proposed in
[26] which were developed via the results of [11], a.s. stability and stabilization of HSDSs
were studied. In [24], the a.s. stability analysis problem for a general class of HSDSs was
derived from extending the results in [25] to HSSs with mode-dependent interval delays.
However, to the author’s best knowledge, when the different time-varying delays in the
drift part and in the diffusion part are considered, the a.s. stability analysis and stabilization
synthesis problems for nonlinear HSDSs have not been adequately addressed and remain an
interesting and challenging research topic. This situation motivates the present study.

In this paper, we are concerned with a.s. stability analysis and stabilization synthesis
problems for HSDSs. The purpose of stability is to develop conditions such that the
underlying systems are a.s. stable. Following the same idea as in dealing with the stability
problem, linear state feedback controllers are designed such that the special nonlinear or
linear closed-loop systems are a.s. stable. The explicit expressions for the desired state
feedback controllers are given by means of the solutions to a set of LMIs. Two numerical
simulation examples are exploited to verify the effectiveness of the theoretical results. The
main contribution of this paper is mainly twofold: (1) the different time-varying delays in the
drift part and in the diffusion part are considered for nonlinear HSDSs; (2) for a class of nonlinear
HSDSs, the stabilization synthesis problem is investigated in the a.s. sense.

This paper is organized as follows. In Section 2, we formulate some preliminaries.
In Section 3, we investigate the a.s. stability for the hybrid stochastic systems with time-
varying delays. In Section 4, the results of Section 3 are then applied to establish a sufficient
criterion for the stabilization. In Section 5, two examples are discussed for illustration. Finally,
conclusions are drawn in Section 6.

Notation 1. The notation used here is fairly standard unless otherwise specified. Rn and R
n×m

denote, respectively, the n dimensional Euclidean space and the set of all n ×m real matrices,
and letR+ = [0,+∞). (Ω,F, {Ft}t≥0,P) be a complete probability space with a natural filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous, and F0 contains all P-null
sets). If x, y are real numbers, then x ∨ y stands for the maximum of x and y, and x ∧ y the
minimum of x and y. MT represents the transpose of the matrix M. λmax(M) and λmin(M)
denote the largest and smallest eigenvalue ofM, respectively. | · | denotes the Euclidean norm
in R

n. E{·} stands for the mathematical expectation. P{·}means the probability. C([−τ, 0];Rn)
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denotes the family of all continuous R
n-valued function ϕ on [−τ, 0] with the norm |ϕ| =

sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}. Cb
F0
([−τ, 0);Rn) being the family of all F0-measurable bounded

C([−τ, 0);Rn)-value random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. L1(R+;R+) denotes the family
of functions λ : R+ → R+ such that

∫∞
0 λ(t)dt < ∞.

2. Problem Formulation

In this paper, let r(t), t ≥ 0 be a right-continuousMarkov chain on the probability space taking
values in a finite state space S = {1, 2, . . . ,N}with generator Γ = (γij)N×N given by

P
{
r(t + Δ) = j | r(t) = i

}
=

{
γijΔ + o(Δ) if i /= j,

1 + γiiΔ + o(Δ) if i = j,
(2.1)

whereΔ > 0 and γij ≥ 0 is the transition rate frommode i tomode j if i /= j while γii = −∑j /= i γij .
Assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is known
that almost all sample paths of r(·) are right-continuous step functions with a finite number
of simple jumps in any finite subinterval of R+ := [0,∞).

Let us consider a class of stochastic systems with time-varying delays:

dx(t) = f(x(t), x(t − τ1(t)), t, r(t))dt + g(x(t), x(t − τ2(t)), t, r(t))dB(t) (2.2)

with initial data x0 = {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0
([−τ, 0);Rn) and r(0) = r0 ∈ S, where

τ � max{τ1, τ2}, τ1 and τ2 are positive constant and τ1(t) and τ2(t) are nonnegative differential
functions which denote the time-varying delays and satisfy

0 ≤ τ1(t) ≤ τ1, τ̇1(t) ≤ dτ1 < 1,

0 ≤ τ2(t) ≤ τ2, τ̇2(t) ≤ dτ2 < 1.
(2.3)

The nonlinear functions f : R
n × R

n × R+ × S → R
n and g : R

n × R
n × R+ × S → R

n×m satisfy
the local Lipschitz condition in (x, y, z); that is, for any K > 0, there is LK > 0 such that

∣∣f
(
x, y, t, i

) − f
(
x, y, t, i

)∣∣ ∨ ∣∣g(x, z, t, i) − g(x, z, t, i)
∣∣

≤ LK

(|x − x| + ∣∣y − y
∣∣ + |z − z|),

(2.4)

for all |x| ∨ |y| ∨ |z| ∨ |x| ∨ |y| ∨ |z| ≤ K, t ≥ 0 and i ∈ S, and moreover, supt≥0,i∈S{|f(0, 0, t, i)| ∨
|g(0, 0, t, i)| : t ≥ 0, i ∈ S} ≤ K0 with some nonnegative number K0.

Remark 2.1. It should be pointed out that the systems (2.2) can be seen as the specialization
of multiple time-varying delays systems which are of the form

dx(t) = f(x(t), x(t − τ1(t)), x(t − τ2(t)), t, r(t))dt

+ g(x(t), x(t − τ1(t)), x(t − τ2(t)), t, r(t))dB(t).
(2.5)
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But it is easy to see that the results in this paper can be applied to the systems (2.5) by the
similar assumption in (2.4).

Let C2,1(Rn × R+ × S;R+) denote the family of all nonnegative functions V (x, t, i) on
R

n ×R+ × S that are twice continuously differentiable in x and once in t. If V ∈ C2,1(Rn ×R+ ×
S;R+), define an operator L associated with (2.2) from R

n × R
n × R

n × R+ × S to R by

LV
(
x, y, z, t, i

)
= Vt(x, t, i) + Vx(x, t, i)f

(
x, y, t, i

)

+
1
2
trace

[
gT (x, z, t, )Vxx(x, t, i)g(x, z, t, i)

]
+

N∑

j=1

γijV
(
x, t, j

)
.

(2.6)

Remark 2.2. LV is thought as a single notation and is defined on R
n × R

n × R
n × R+ × Swhile

V is defined on R
n × [−τ,∞) × S.

Definition 2.3. The system (2.2) is said to be a.s. stable if for all ξ ∈ Cb
F0
([−τ, 0);Rn) and r0 ∈ S

P

(
lim
t→∞

x(t; ξ, r0) = 0
)

= 1. (2.7)

3. Main Results

Theorem 3.1. Assume that there exist nonnegative functions V ∈ C2,1(Rn × R+ × S;R+), λ ∈
L1(R+;R+), ω1, ω2, ω3 ∈ C(Rn;R+) such that

LV
(
x, y, z, t, i

) ≤ λ(t) − k1ω1(x) + k2ω2
(
y
)
+ k3ω3(z),

∀(x, y, z, t, i) ∈ R
n × R

n × R
n × R+ × S,

(3.1)

ω1(x) > ω2(x) +ω3(x), ∀x /= 0, (3.2)

lim
|x|→∞

inf
t≥0,i∈S

V (x, t, i) = ∞, (3.3)

where k1, k2 and k3 are positive numbers satisfying k1 ≥ max{k2/(1 − dτ1), k3/(1 − dτ2)}. Then
system (2.2) is almost surely stable.

To prove this theorem, let us present the following lemmas.

Lemma 3.2 (see [24, 25]). If V ∈ C2,1(Rn × R+ × S;R+), then for any t ≥ 0, the generalized Itô’s
formula is given as

dV (x(t), t, r(t)) = LV (x(t), x(t − τ1(t)), x(t − τ2(t)), t, r(t))dt

+ Vx(x(t), t, r(t))g(x(t), x(t − τ2(t)), t, r(t))dB(t)

+
∫

R

[V (x(t), t, r(t) + l(r(t), α)) − V (x(t), t, r(t))] × μ(dt, dα),

(3.4)

where function l(·, ·) and martingale measure μ(·, ·) are defined as, for example, (2.6) and (2.7) in [25].
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Lemma 3.3 (see [27]). Let A1(t) and A2(t) be two continuous adapted increasing processes on
t ≥ 0 with A1(0) = A2(0) = 0 a.s., let M(t) be a real-valued continuous local martingale with
M(0) = a.s., and let ζ be a nonnegative F0-measurable random variable such that Eζ < ∞. Denote
X(t) = ζ +A1(t) −A2(t) +M(t) for all t ≥ 0. If X(t) is nonnegative, then

{
lim
t→∞

A1(t) < ∞
}

⊂
{
lim
t→∞

X(t) < ∞
}
∩
{
lim
t→∞

A2(t) < ∞
}

a.s., (3.5)

where C ⊂ D a.s. means P(C ∩Dc = 0) = 0. In particular, if limt→∞A1(t) < ∞ a.s., then,

lim
t→∞

X(t) < ∞, lim
t→∞

A2(t) < ∞, −∞ < lim
t→∞

M(t) < ∞ a.s.. (3.6)

That is, all of the three processes X(t), A2(t), and M(t) converge to finite random variables
with probability one.

Lemma 3.4 (see [25]). Under the conditions of Theorem 3.1, for any initial data {x(θ) : −τ ≤ θ ≤
0} = ξ ∈ Cb

F0
([−τ, 0);Rn) and r(0) = i0 ∈ S, (2.2) has a unique global solution.

Proof. Fix any initial data ξ, r0, and let β be the bound for ξ. For each integer k ≥ β, define

f (k)(x, y, t, i
)
= f

(
|x| ∧ k

|x| x,

∣∣y
∣∣ ∧ k
∣∣y
∣∣ y, t, i

)

, (3.7)

where we set (|x| ∧ k/|x|)x = 0 when x = 0. Define g(k)(x, z, t, i) similarly. By (2.4), we
can observe that f (k) and g(k) satisfy the global Lipschitz condition and the linear growth
condition. By the known existence-and-uniqueness theorem, there exists a unique global
solution xk(t) on t ∈ [−τ,∞) to the equation

dxk(t) = f (k)(xk(t), xk(t − τ1(t)), t, r(t))dt

+ g(k)(xk(t), xk(t − τ2(t)), t, r(t))dB(t)
(3.8)

with initial data {xk(θ) : −τ ≤ θ ≤ 0} = ξ and r(0) = r0.
Define the stopping time

σk = inf{t ≥ 0 : |xk(t)| ≥ k}, (3.9)

where we set inf ∅ = ∞ as usual. It is easy to show that xk(t) = xk+1(t) if 0 ≤ t ≤ σk, which
implies that σk is increasing in k. Letting σ = limk→∞σk, the property above also enables us
to define x(t) for t ∈ [−τ, σ) as x(t) = xk(t) if −τ ≤ t ≤ σk.
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It is clear that x(t) is a unique solution of (2.2) for t ∈ [−τ, σ). To complete the proof,
we only need to show P{σ = ∞} = 1. By Lemma 3.2, we have that for any t > 0,

EV (xk(t ∧ σk), t ∧ σk, r(t ∧ σk)) = EV (xk(0), 0, r(0))

+ E

∫ t∧σk

0
L(k)V (xk(s), xk(s − τ1(s)), xk(s − τ2(s)), s, r(s))ds,

(3.10)

where operator L(k)V is defined similarly as LV was defined by (2.6). By the definitions of
f (k) and g(k), if 0 ≤ s ≤ t ∧ σk, we hence observe that

L(k)V (xk(s), xk(s − τ1(s)), xk(s − τ2(s)), s, r(s))

= LV (xk(s), xk(s − τ1(s)), xk(s − τ2(s)), s, r(s)).
(3.11)

By the conditions of (3.1) and (3.2), we derive that

EV (xk(t ∧ σk), t ∧ σk, r(t ∧ σk))

≤ V (ξ(0), 0, r0) + E

∫ t

0
[−k1ω1(x(s)) + k2ω2(x(s − τ1(s))) + k3ω3(x(s − τ2(s)))]ds

+
∫ t

0
λ(s)ds

≤ V (ξ(0), 0, r0) + E

∫ t

0
−k1ω1(x(s))ds + E

∫ t−τ1(t)

−τ1

(
k2

1 − dτ1

)
ω2(s)ds

+ E

∫ t−τ2(t)

−τ2

(
k3

1 − dτ2

)
ω3(s)ds +

∫ t

0
λ(s)ds

≤ V (ξ(0), 0, r0) + E

∫0

−τ
k1[ω2(ξ(θ)) +ω3(ξ(θ))]dθ

− E

∫ t

0
k1(ω1(s) −ω2(s) −ω3(s))ds +

∫ t

0
λ(s)ds

≤ V (ξ(0), 0, r0) + E

∫0

−τ
k1[ω2(ξ(θ)) +ω3(ξ(θ))]dθ +

∫ t

0
λ(s)ds.

(3.12)

On the other hand,

EV (xk(t ∧ σk), t ∧ σk, r(t ∧ σk)) ≥
∫

{σk≤t}
V (xk(t ∧ σk), t ∧ σk, r(t ∧ σk))dP

≥ P{σk ≤ t} inf
|x|≥k,t≥0,i∈S

V (x, t, i).
(3.13)
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This yields

P{σk ≤ t} ≤ V (ξ(0), 0, r0) + E
∫0
−τ k1[ω2(ξ(θ)) +ω3(ξ(θ))]dθ +

∫ t
0 λ(s)ds

inf|x|≥k,t≥0,i∈SV (x, t, i)
. (3.14)

Letting k → ∞ and using (3.3), we obtain P(σ ≤ t) = 0. Since t is arbitrary, we must
have P(σ = ∞) = 1. The proof is therefore complete.

Let us now begin to prove our main result.

Proof. Let ω(x) = ω1(x) − ω2(x) − ω3(x) for all x ∈ R
n. Inequality (3.2) implies ω(x) > 0

whenever x /= 0. Fix any initial value ξ and any initial state r0, and for simplicity write
x(t; ξ, r0) = x(t).

By Lemma 3.2 and condition (3.1), we have

V (x(t), t, r(t)) = V (ξ(0), 0, r0) +
∫ t

0
LV (x(s), x(s − τ1(s)), x(s − τ2(s)), s, r(s))ds

+
∫ t

0
Vx(x(s), s, r(s))g(x(s), x(s − τ2(s)), s, r(s))dB(s)

+
∫ t

0

∫

R

[V (x(s), s, r0 + l(r(s), α)) − V (x(s), s, r(s))]μ(ds, dα)

≤ V (ξ(0), 0, r0) +
∫ t

0
λ(s)ds −

∫ t

0
k1ω1(x(s))

+
∫ t

0
[k2ω2(x(s − τ1(s))) + k3ω3(x(s − τ2(s)))]ds

+
∫ t

0
Vx(x(s), s, r(s))g(x(s), x(s − τ2(s)), s, r(s))dB(s)

+
∫ t

0

∫

R

[V (x(s), s, r0 + l(r(s), α)) − V (x(s), s, r(s))]μ(ds, dα)

≤ V (ξ(0), 0, r0) +
∫ t

0
λ(s)ds + k1

∫0

−τ
[ω2(x(s)) +ω3(x(s))]ds

− k1

∫ t

0
ω(x(s))ds +

∫ t

0
Vx(x(s), s, r(s))g(x(s), x(s − τ2(s)), s, r(s))dB(s)

+
∫ t

0

∫

R

[V (x(s), s, r0 + l(r(s), α)) − V (x(s), s, r(s))]μ(ds, dα).

(3.15)
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Since
∫∞
0 λ(s)ds < ∞, applying Lemma 3.3 we obtain that

lim
t→∞

∫ t

0
ω(x(s))ds =

∫∞

0
ω(x(s))ds < ∞ a.s., (3.16)

lim
t→∞

supV (x(t), t, r(t)) < ∞ a.s.. (3.17)

Define β : R+ → R+ as β(r) = inf|x|≥r,0≤t<∞,i∈SV (x, t, i). Then, it is obvious to see from (3.17)
that

sup
0≤t<∞

β(|x(t)|) ≤ sup
0≤t<∞

V (x(t), t, r(t)) < ∞ a.s.. (3.18)

On the other hand, by (3.3)we have sup0≤t<∞|x(t)| < ∞ a.s.. It is easy to find an integer
k0 such that |ξ| < k0 a.s. because of ξ ∈ Cb

F0
([−τ, 0);Rn). Furthermore, for any integer k > k0,

we can define the stopping time

ρk = inf{t ≥ 0 : |x(t)| ≥ k}, (3.19)

where inf ∅ = ∞ as usual. Clearly, ρk → ∞ a.s. as k → ∞. Moreover, for any given ε > 0,
there is kε ≥ k0 such that P{ρk < ∞} ≤ ε for any k ≥ kε.

It is straightforward to see from (3.16) that limt→∞ infω(x(t)) = 0 a.s.; then we claim
that

lim
t→∞

ω(x(t)) = 0 a.s.. (3.20)

The rest of the proof is carried out by contradiction. That is, assuming that (3.20) is
false, we have

P

{
lim
t→∞

supω(x(t)) > 0
}

> 0. (3.21)

Furthermore, there exist ε0 > 0 and ε > ε1 > 0 such that

P
(
σ2j < ∞ : j ∈ Z

) ≥ ε0, (3.22)

where Z is a set of natural numbers and {σj}j≥1 are a sequence of stopping times defined by

σ1 = inf{t ≥ 0 : ω(x(t)) ≥ 2ε1},
σ2j = inf

{
t ≥ σ2j−1 : ω(x(t)) ≤ ε1

}
, j = 1, 2, . . . ,

σ2j+1 = inf
{
t ≥ σ2j : ω(x(t)) ≤ 2ε1

}
, j = 1, 2, . . . .

(3.23)
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By the local Lipschitz condition (2.4), for any given k > 0, there exists Lk > 0 such that

∣
∣f
(
x, y, t, i

)∣∣ ∨ ∣∣g(x, z, t, i)∣∣ ≤ Lk, (3.24)

for all |x| ∨ |y| ∨ |z| ≤ k, t ≥ 0 and i ∈ S.
For any j ∈ Z, let T < σ2j − σ2j−1; by Hölder’s inequality and Doob’s martingale

inequality, we compute

E

{

I{σ2j<ρk} sup
0≤t≤T

∣
∣x
(
σ2j−1 + t

) − x
(
σ2j−1

)∣∣2
}

= E

⎧
⎨

⎩
I{σ2j<ρk} sup

0≤t≤T

∣
∣
∣
∣
∣

∫σ2j−1+t

σ2j−1
f(x(s), x(s − τ1(s)), s, r(s))ds

+
∫σ2j−1+t

σ2j−1
g(x(s), x(s − τ2(s)), s, r(s))dB(s)

∣∣∣∣∣

2
⎫
⎬

⎭

≤ 2E

⎧
⎨

⎩
I{σ2j<ρk} sup

0≤t≤T

∣∣∣∣∣

∫σ2j−1+t

σ2j−1
f(x(s), x(s − τ1(s)), s, r(s))ds

∣∣∣∣∣

2
⎫
⎬

⎭

+ 8E

{

I{σ2j<ρk} sup
0≤t≤T

∫σ2j−1+t

σ2j−1

∣∣g(x(s), x(s − τ2(s)), s, r(s))
∣∣2ds

}

≤ 2L2
kT(T + 4),

(3.25)

where IA is the indicator of set A.
Since ω(x) is continuous in R

n, it must be uniformly continuous in the closed ball
Sk = {x ∈ R

n : |x| ≤ k}. For any given b > 0, we can choose cb > 0 such that |ω(x) −ω(y)| < b

whenever x, y ∈ Sk and |x − y| < cb. Furthermore, let us choose

ε =
ε0
3
, k ≥ kε, b = ε1. (3.26)

By inequality (3.25) and Chebyshev’s inequality, we have

P
({

ρk ≤ σ2j
})

+ P

(
{
σ2j < ρk

} ∩
{

sup
0≤t≤T

∣∣ω
(
x
(
σ2j−1 + t

)) −ω
(
x
(
σ2j−1

))∣∣ ≥ ε1

})

≤ P
({

ρk ≤ σ2j
} ∩ {σ2j = ∞})

+ P
({

ρk ≤ σ2j
} ∩ {σ2j < ∞})

+ P

(
{
σ2j < ρk

} ∩
{

sup
0≤t≤T

∣∣x
(
σ2j−1 + t

) − x
(
σ2j−1

)∣∣ ≥ cε1

})

≤ 2L2
kT(T + 4)

c2ε1
+ 1 − 2ε.

(3.27)
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Meanwhile, we can also choose T = T(ε, ε1, k) sufficiently small for

2L2
k
T(T + 4)

c2ε1
≤ ε. (3.28)

And then, (3.27) and (3.28) yield

P
({

σ2j < ρk
} ∩Ωj

) ≥ ε, (3.29)

where Ωj = {sup0≤t≤T |ω(x(σ2j−1 + t)) −ω(x(σ2j−1))| < ε1}.
In the following, we can obtain from (3.16) and (3.29) that

∞ > E

∫∞

0
ω(x(t))dt

≥
∞∑

j=1

E

[

I{σ2j<ρk}

∫σ2j

σ2j−1
ω(x(t))dt

]

≥
∞∑

j=1

ε1E
[
I{σ2j<ρk}

(
σ2j − σ2j−1

)]

≥
∞∑

j=1

Tε1P
({

σ2j < ρk
} ∩Ωj

)

≥
∞∑

j=1

Tε1ε =
1
3

∞∑

j=1

Tε0ε1 = ∞.

(3.30)

This is a contradiction. So there is an Ω ∈ Ωwith P(Ω) = 1 such that

lim
t→∞

ω(x(t, ω)) = 0, sup
0≤t<∞

|x(t, ω)| < ∞, ∀ω ∈ Ω. (3.31)

Finally, any fixed ω ∈ Ω, {x(t, ω)}t≥0 is bounded in R
n. By Bolzano-Weierstrass

theorem, there is an increasing sequence{ti}i≥1 such that {x(t, ω)}i≥1 converges to some z ∈ R
n

with |z| < ∞. Since ω(x) > 0 whenever x /= 0, we must have ω(x) = 0 if and only if x = 0. This
implies that the solution of (2.2) is a.s. stable, and the proof is therefore completed.

Remark 3.5. The techniques proposed in Theorem 3.1 can be used to deal with the a.s. stability
problem for other HSDSs, such as the ones in [25]. In a very special case when τ1(t) = τ2(t) = τ
for all t ≥ 0 and i ∈ S, it is easy to see that τ̇1(t) = τ̇2(t) = 0, and Theorem 3.1 is exactly
Theorem 2.1 in [25]. Similarly, Theorem 2.2 in [25] can be generalized to system (2.2) as a
LaSalle-type theorem (see [24, 26]) for HSSs with multiple time-varying delays.
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4. Almost Sure Stabilization of Nonlinear HSDSs

Consider the following nonlinear HSDSs:

dx(t) =
[
A(r(t))x(t) +Ad(r(t))x(t − τ1(t)) + f(x(t), x(t − τ1(t)), t, r(t)) + Bu(r(t))u(t)

]
dt

+ g(x(t), x(t − τ2(t)), t, r(t))dB(t),
(4.1)

where Bu(r(t)) are known constant matrices with appropriate dimensions and B(t) represents
a scalar Brownian motion (Wiener process) on (Ω,F, {Ft}t≥0,P) that is independent of
Markov chain r(t) and satisfies:

E{dB(t)} = 0, E
{
dB(t)2

}
= dt, (4.2)

f and g are both functions from R
n ×R

n ×R+ ×S to R
n which satisfy local Lipschitz condition

and the following assumptions:

∣∣f(x(t), x(t − τ1(t)), t, r(t))
∣∣2

≤ xT (t)F1(r(t))x(t) + xT (t − τ1(t))F2(r(t))x(t − τ1(t)),
∣∣g(x(t), x(t − τ2(t)), t, r(t))

∣∣2

≤ xT (t)G1(r(t))x(t) + xT (t − τ2(t))G2(r(t))x(t − τ2(t)),

(4.3)

where, for each r(t) = j ∈ S, A(r(t)), Ad(r(t)) are known constant matrices with appropriate
dimensions, and Fi(r(t)) ∈ R

n×n, Gi(r(t)) ∈ R
n×n(i = 1, 2) are positive definite matrices.

In the sequel, we denote the matrix associated with the ith mode by

Γi � Γ(r(t) = i), (4.4)

where the matrix Γ could be A, Ad, Bu, F1, F2, G1, G2, G, or Gd.
As the given HSDSs (4.1) is nonlinear, we here consider the resulting systems can be

stabilized only by linear state feedback controller which is of the form

u(t) = K(r(t))x(t), (4.5)

where K(r(t)) are controller parameters to be designed.
Under control law (4.5), the closed-loop system can be given as follow:

dx(t) =
[
A(r(t))x(t) +Ad(r(t))x(t − τ1(t)) + f(x(t), x(t − τ1(t)), t, r(t))

+ Bu(r(t))K(r(t))x(t)
]
dt

+ g(x(t), x(t − τ2(t)), t, r(t))dB(t).

(4.6)
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The stabilization problem is therefore to design matrices K(r(t)) for the closed-loop system
(4.6) to be a.s. stable. In order to guarantee the solvability of K(r(t)), the following theorem
is given.

Theorem 4.1. If there exist sequences of scalars ε1i > 0, ε2i > 0, δi > 0, positive definite matrices
Xi > 0 and matrices Yi such that the following LMIs

⎡

⎣
Mi1 Mi2 Mi4

∗ −Mi3 0
∗ ∗ −Mi5

⎤

⎦ < 0 ∀i, j ∈ S, (4.7)

Xi ≥ δiI (4.8)

hold, where

Mi1 = AiXi +XiA
T
i + BuiYi + YT

i B
T
ui + ε1iAdiA

T
di + ε2iI + γiiXi,

Mi2 = [Xi,Xi, Xi, Xi, Xi],

Mi3 = diag
(
ε2iF

−1
1i , c1ε2jF

−1
2j , δiG

−1
1i , c2δiG

−1
2j , c1ε1j I

)
,

Mi4 =
[√

γi1Xi, . . . ,
√
γi(i−1)Xi,

√
γi(i+1)Xi, . . . ,

√
γiNXi

]
,

Mi5 = diag(X1, . . . , Xi−1, Xi+1, . . . , XN),

c1 = 1 − dτ1 , c2 = 1 − dτ2 ,

(4.9)

then the controlled system (4.6) is a.s. stable and the state feedback controller determined by

u(t) = Kix(t), Ki = YiX
−1
i , i ∈ S. (4.10)

Proof. Let Pi = X−1
i and V (x, i) = xTPix +

∫ t
t−τ1(t) x

T (s)Q1x(s)ds +
∫ t
t−τ2(t) x

T (s)Q2x(s)ds.
The operator LV : R

n × R
n × R

n × S → R has the form

LV
(
x, y, z, i

)
= xTQ1x − (1 − τ̇1(t))yTQ1y + xTQ2x − (1 − τ̇2(t))zTQ2z

+ 2xTPi

(
Aix +Adiy + f

(
x, y, i

)
+ BuiKix

)

+ gT (x, z, i)Pig(x, z, i) +
N∑

j=1

γijx
TPjx
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≤ xT

⎡

⎣Q1 +Q2 + PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi + ε1iPiAdiA

T
diPi

+ ε2iP
2
i +

N∑

j=1

γijPj + ε−12i F1i + δ−1
i G1i

⎤

⎦x

+ yT
[
ε−11i I + ε−12i F2i − (1 − dτ1)Q1

]
y + zT

[
δ−1
i G2i − (1 − dτ2)Q2

]
z.

(4.11)

So

LV
(
x, y, z, i

) ≤ −ω1i(x) + (1 − dτ1)ω2i
(
y
)
+ (1 − dτ2)ω3i(z), (4.12)

where

ω1i(x) = xT

[

−Q1 −Q2 − PiAi −AT
i Pi − PiBuiKi − (BuiKi)TPi − ε1iPiAdiA

T
diPi

− ε2iP
2
i − ε−12i F1i − δ−1

i G1i −
N∑

k=1

γikPk

]

x,

ω2i(x) = xT
[
c−11 ε−11i I + c−11 ε−12i F2i −Q1

]
x,

ω3i(x) = xT
[
c−12 δ−1

i G2i −Q2

]
x.

(4.13)

By assumption 1, it is easy to see that we can choose Q1 and Q2 such that ω2i(x) ≥
0, ω3i(x) ≥ 0 for all x ∈ R

n, i ∈ S.
Noting that Pi = X−1

i and Yi = KiXi, we can pre- and postmultiply (4.7) by
diag(Pi, . . . , Pi), and using Schur complements, we can obtain

Φij < 0, (4.14)

where

Φij = PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi + ε1iPiAdiA

T
diPi + ε2iP

2
i + δ−1

i G1i

+ ε−12i F1i +
N∑

k=1

γikPk + c−11 ε−11j I + c−11 ε−12j F2j + c−12 δjG2j .
(4.15)

This implies

ω1i(x) > ω2j(x) +ω3j(x) ≥ 0, ∀x /= 0. (4.16)

Let ω1(x) = mini∈Sω1i(x), ω2(x) = maxi∈Sω2i(x), and ω3(x) = maxi∈Sω3i(x).
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Clearly

ω1(x) > ω2(x) +ω3(x) ≥ 0, ∀x /= 0. (4.17)

Moreover, by (4.24) we further obtain

LV
(
x, y, z, i

) ≤ −ω1(x) + (1 − dτ1)ω2
(
y
)
+ (1 − dτ2)ω3(z). (4.18)

The required assertion now follows from Theorem 3.1.

If the systems (4.6) reduces to linear HSDSs of the form

dx(t) = [A(r(t))x(t) +Ad(r(t))x(t − τ1(t))

+ Bu(r(t))K(r(t))x(t)]dt + [G(r(t))x(t) +Gd(r(t))x(t − τ2(t))]dB(t),
(4.19)

where A(r(t)), Ad(r(t)), Bu(r(t)), G(r(t)), and Gd(r(t)) are known constant matrices with
appropriate dimensions.

Then, the following corollary follows directly from Theorem 4.1.

Corollary 4.2. If there exist sequences of scalars ε1i > 0, ε2i > 0, positive definite matrices Xi > 0
and matrices Yi such that the following LMIs

⎡

⎣
Mi1 Mi2 Mi4

∗ −Mi3 0
∗ ∗ −Mi5

⎤

⎦ < 0 ∀i, j ∈ S (4.20)

hold, where

Mi1 = AiXi +XiA
T
i + BuiYi + YT

i B
T
ui + ε1iAdiA

T
di + γiiXi,

Mi2 =
[√

2XiG
T
i , Xj , Xj ,

√
2XT

j Gdj

]
,

Mi3 = diag
(
Xi, c1ε1j I, ε2j I, Xj

)
,

Mi4 =
[√

γi1Xi, . . . ,
√
γi(i−1)Xi,

√
γi(i+1)Xi, . . . ,

√
γiNXi

]
,

Mi5 = diag(X1, . . . , Xi−1, Xi+1, . . . , XN),

c1 = 1 − dτ1 , c2 = 1 − dτ2 ,

(4.21)

then the controlled system (4.19) is a.s. stable and the state feedback controller determined by

u(t) = Kix(t), Ki = YiX
−1
i , i ∈ S. (4.22)
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Proof. Let Pi = X−1
i and V (x, i) = xTPix +

∫ t
t−τ1(t) x

T (s)Q1x(s)ds +
∫ t
t−τ2(t) x

T (s)Q2x(s)ds.
The operator LV : R

n × R
n × R

n × S → R has the form

LV
(
x, y, z, i

)
= xTQ1x − (1 − τ̇1(t))yTQ1y + xTQ2x − (1 − τ̇2(t))zTQ2z

+ 2xTPi

[
Aix +Adiy + BuiKix

]
+ [Gix +Gdiz]TPi[Gix +Gdiz]

+
N∑

k=1

γikx
TPkx

≤ xT

[

Q1 +Q2 + PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi

+ ε1iPiAdiA
T
diPi +

N∑

k=1

γikPk + 2GT
i PiGi

]

x

+ yT
[
ε−11i I − (1 − dτ1)Q1

]
y + zT

[
ε−12i I + 2GT

diPiGdi − (1 − dτ2)Q2

]
z.

(4.23)

So

LV
(
x, y, z, i

) ≤ −ω1i(x) + (1 − dτ1)ω2i
(
y
)
+ (1 − dτ2)ω3i(z), (4.24)

where

ω1i(x) = xT

[

−Q1 −Q2 − PiAi −AT
i Pi − PiBuiKi − (BuiKi)TPi

− ε1iPiAdiA
T
diPi −

N∑

k=1

γikPk − 2GT
i PiGi

]

x,

ω2i(x) = xT
[
c−11 ε−11i I −Q1

]
x,

ω3i(x) = xT
[
ε−12i I + 2c−12 GT

diPiGdi −Q2

]
x.

(4.25)

It is easy to see that we can choose Q1 and Q2 such that ω2i(x) ≥ 0, ω3i(x) ≥ 0 for all
x ∈ R

n, i ∈ S.
Noting that Pi = X−1

i and Yi = KiXi, we can pre- and postmultiply (4.7) by
diag(Pi, . . . , Pi), and using Schur complements, we can obtain

Φij < 0, (4.26)
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where

Φij = PiAi +AT
i Pi + PiBuiKi + (BuiKi)TPi + ε1iPiAdiA

T
diPi

+
N∑

k=1

γikPk + 2GT
i PiGi + c−11 ε−11j I + ε−12j I + 2c−12 GT

djPjGdj .
(4.27)

This implies

ω1i(x) > ω2j(x) +ω3j(x) ≥ 0, ∀x /= 0. (4.28)

Let ω1(x) = mini∈Sω1i(x), ω2(x) = maxi∈Sω2i(x), and ω3(x) = maxi∈Sω3i(x).
Clearly

ω1(x) > ω2(x) +ω3(x) ≥ 0, ∀x /= 0. (4.29)

Moreover, by (4.24) we further obtain

LV
(
x, y, z, i

) ≤ −ω1(x) + (1 − dτ1)ω2
(
y
)
+ (1 − dτ2)ω3(z). (4.30)

The required assertion now follows from Theorem 3.1.

5. Examples

In this section we will provide two examples to illustrate our results. In the following
examples we assume that B(t) is a scalar Brownian motion, γ(t) is a right-continuous Markov
chain independent of B(t) and taking values in S = {1, 2}, and the step size Δ = 0.0001. By
using the YALMIP toolbox, simulations results are shown in Figures 1–3. Figure 1 gives a
portion of state γ(t) of Example 5.1 for clear display. Figure 2 simulates the numerical results
for Example 5.1. The simulation results have illustrated our theoretical analysis. Following
from Theorem 4.1, the simulation results for Example 5.2 can be founded in Figure 3, which
verify our desired results.

Example 5.1. Let

Γ =
(
γij
)
2 × 2 =

(−0.8 0.8
0.3 −0.3

)
. (5.1)

Consider scalar nonlinear HSDSs:

dx(t) = f(x(t), t, r(t))dt + g(x(t), x(t − τ2(t)), t, r(t))dB(t), (5.2)
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2

1

0 0.01 0.02 0.03

t

Figure 1: The state γ(t) of Example 5.1.

t

7

6

5

4

3

2

1

0

−1
0 0.2 0.4 0.6 0.8

X
(t
)

Figure 2: The state evolution of Example 5.1.

where

f(x, t, 1) = −6 5
√
x,

g(x, z, t, 1) = − 5
√
x3 + 2 5

√
z3,

f(x, t, 2) =
3

2 3
√
1 + t

− 4 5
√
x,

g(x, z, t, 2) =
5
√
x3 cos(t) +

5
4

5
√
z3 sin(t),

(5.3)

τ2(t) = 0.3 + 0.3 sin(t).
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The controlled states
The uncontrolled states

t

X
(t
)

1.2

1

0.8

0.6

0.4

0.2

0

−0.2
0 0.2 0.4 0.6 0.8 1

Figure 3: The state evolution of Example 5.2.

To examine the stability of system (5.2), we consider a Lyapunov function candidate
V : R × S → R+ as V (x, i) = x2 for i = 1, 2. Then we have

LV (x, z, t, 1) ≤ −10x6/5 + 4z6/5,

LV (x, z, t, 2) ≤ 3x
3
√
1 + t

− 6x6/5 +
25
8
z6/5.

(5.4)

By the elementary inequality αcβ1−c ≤ cα + (1 − c)β for all α ≥ 0, β ≥ 0, and 0 ≤ c ≤ 1,
we see that inequality

3x
3
√
1 + t

=
(
6
5
κx6/5

)6/5
(

6
(
κ

5

)−5
(1 + t)−2

)1/6

≤ κx6/5 +
κ1

(1 + t)2
(5.5)

holds for any κ > 0, where κ1 = (κ/5)−5.
From inequalities (5.4)–(5.5), we have

LV (x, z, t, i) ≤ κ1

(1 + t)2
− (6 − κ)x6/5 + 4z6/5, (5.6)

for all t ≥ 0 and i ∈ S. By τ2(t) = 0.3 + 0.3 sin(t), it is easy to see that dτ2(t) < 1/3; then, we
choose constant κ such that 0 < κ < (2 − 6dτ2)/(1 − dτ2), and hence conditions of Theorem 3.1
are satisfied.
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Example 5.2. Let

Γ =
(
γij
)
2 × 2 =

(−0.6 0.6
0.5 −0.5

)
. (5.7)

Consider scalar nonlinear closed-loop HSDSs:

dx(t) =
[
f(x(t), x(t − τ1(t)), t, r(t)) + B(r(t))K(r(t))x(t)

]
dt

+ g(x(t), x(t − τ2(t)), t, r(t))dB(t)
(5.8)

with

f
(
x, y, t, 1

)
= x +

1
2
y +

2x3

(|x| + 1)2
+ y sin(t),

g(x, z, t, 1) = x cos(t) +
z3

(|z| + 1)2
,

(5.9)

f
(
x, y, t, 2

)
= −2x + y +

x3

(|x| + 2)2
+

y3

(|y| + 1
)2 ,

g(x, z, t, 2) = 2x sin(t) +
x3

2(|x| + 1)2
+

z3

(|z| + 2)2
,

(5.10)

τ1(t) = 0.1 + 0.1 sin(t), τ2(t) = 0.2 + 0.2 sin(2t), B1 = 2, B2 = −3,A1 = 1,A2 = 2, Ad1 = 1/2,
Ad2 = 1, F11 = 8, F12 = G11 = 2, G12 = F21 = F22 = 2, G21 = 1/2, G22 = 2.

By Theorem 4.1 we can find the feasible solution K1 = −3, K2 = 2 for the a.s. stability.

6. Conclusions

In this paper, we have investigated the a.s. stability analysis and stabilization synthesis
problems for nonlinear HSDSs. Some sufficient conditions are given to guarantee the
resulting systems to be a.s. stable. Under these conditions, a.s. stabilization problem for a
class of nonlinear HSDSs is solved in terms of the solutions to a set of LMIs. Finally, the
results of this paper have been demonstrated by two numerical simulation examples.
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