
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 214607, 15 pages
doi:10.1155/2012/214607

Research Article
Modeling and Algorithms of the Crew
Rostering Problem with Given Cycle on
High-Speed Railway Lines

Zhiqiang Tian and Huimin Niu

School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Correspondence should be addressed to Huimin Niu, hmniu@mail.lzjtu.cn

Received 18 June 2012; Revised 6 September 2012; Accepted 7 September 2012

Academic Editor: Wuhong Wang

Copyright q 2012 Z. Tian and H. Niu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper studies the modeling and algorithms of crew roster problem with given cycle on high-
speed railway lines. Two feasible compilation strategies for work out the crew rostering plan
are discussed, and then an integrated compilation method is proposed in this paper to obtain
a plan with relatively higher regularity in execution and lower crew members arranged. The
process of plan making is divided into two subproblems which are decomposition of crew legs and
adjustment of nonmaximum crew roster scheme. The decomposition subproblem is transformed
to finding a Hamilton chain with the best objective function in network which was solved by an
improved ant colony algorithm, whereas the adjustment of nonmaximum crew rostering scheme is
finally presented as a set covering problem and solved by a two-stage algorithm. The effectiveness
of the proposed models and algorithms are testified by a numerical example.

1. Introduction

Crew planning problem is known as crew scheduling and rostering in the transportation
market-airlines, railways, mass transit, and buses. The common features for all these
applications are: (i) both temporal and spatial features are involved, that is, each task is
characterized by its starting time and location and its finishing time and location and (ii)
all tasks to be performed by employees are determined according to a given timetable. Tasks
are the smallest elements (or building blocks) and are obtained from the decomposition of
flight, train or bus journey, or a trip between two or more consecutive stops in a bus line.

In recent decades, the research and applications of airline crew scheduling and
rostering received extensive attention because of its enormous economic benefits and impact,
and more articles have been devoted to methodologies and applications in this area than
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to any other rostering application areas. The most popular approach for solving airline
crew scheduling and rostering is the well-known decomposition technique, in which the
overall problem is solved in three major stages: (i) crew pairing generation, (ii) crew pairing
optimization, and (iii) crew rostering. Crew pairing generation is a process of constructing all
or a large number of feasible pairings/duties from the given timetable. Some of the pairings
generated in the first stage will be selected so that all flight legs/trips are covered at a
minimum cost. In the last stage, the pairings selected in the second stage are sequenced into
rosters that will be assigned to individual crew. For these three stages, the first two are usually
called as crew scheduling problem, while the last one is called as crew rostering problem.

Crew rostering problem is combinatorial according to its features. The aim of crew
rostering problem is to assign individual crew members to the planned rotations once the set
of rotations has been determined (a rotation is understood to be a sequence of crew legs/trips
on consecutive days made by a crew that leaves from and returns to the same base). The crew
rostering problem is most often treated as a zero-one integer programming problem with a
defined objective function and specific set of constraints. Buhr [1] proposed minimizing the
discrepancy between the average monthly flight time per crew member and the monthly
flight time of individual crew members. When the scale of the problem is large, it is often
not possible to find an optimal solution, so the “day-by-day” heuristic algorithm [2, 3] and
the “crew-by-crew” heuristic algorithm [4–6] are widely used for generating an initial (or
satisfactory) solution. The main drawback of “day-by-day” algorithm is that it usually leads
to no available crew members on following days, while the drawback of “crew-by-crew”
method very often leads to uneven workloads for the crew members. Furthermore, other
techniques including branch-and-bound [7], genetic algorithm [8], and simulated annealing
[9] are all used to find the optimal solution.

Ryan [10], Gamache, and Soumis [11] modeled the crew rostering problem as a
generalized set partitioning problem. Ryan [10] used linear relaxation and the branch-and-
bound method. Gamache and Soumis [11] solved the generalized set partitioning problem
by column generation, and the numerical tests on problem from Air France show that the
algorithm was capable of solving very large-scale problems.

As discussed above, many articles deal with airline crew planning problem, but the
railways applications of crew scheduling and rostering have appeared only recently in the
public transport sector literature. Since the development of high-speed railway lines is so fast,
the need for efficient methods for generating computerized crew roster schemes is growing
because the complexity involved in this issue is too much to be managed manually.

The remainder of this paper is organized as follows: the overall statement of the
problem is first presented in Section 2 where the crew planning problem is divided into
two subproblems. The formulations of the two subproblems are given in Sections 3 and 4,
respectively, while a numerical example with generated data is represented in Section 5.

2. Problem Statement

Crew rostering plan with given cycle is a specific form in which the crew routes (or crew legs)
are formed into crew rosters under the premise that the plan cycle T, the work time Tw, and
the rest time Tr are all given (where T equals the sum of Tw and Tr). Then the crew routes are
assigned to crew members as a continuous work plan. The crew members arranged in crew
rostering plan is usually set as the primary objective since it matters greatly in the operation
costs.
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The determination of the given cycle of crew rostering plan is mainly dependent on the
operating characteristics and the working regulations of crewmembers of high speed railway
lines, which should also guarantee that the working time of crew members is in accordance
with the working standard. Because the crew routes (or crew legs) got by the phase of crew
scheduling plan generally have different working time, the crew roster schemes consisted
by crew routes (or crew legs) usually have variance in working time. In the long run, the
unbalance of working time between crew members can be relieved by letting crew members
work underdifferent crew roster schemes in several cycles. However, from the viewpoint of
plan-making, for all crew roster schemes, minimizing the variance of working time is helpful
for keeping the workload balance of all crew members.

In the process of working out the crew scheduling plan, crew legs are further combined
into crew routes. However, when it comes to the crew rostering plan, both crew routes and
crew legs can be used as the fundamental data. In contrast, using crew legs to make up the
crew rostering plan is more flexible, and actually includes the scenarios of making plan with
the input of crew routes. Therefore, this paper only focuses on the implementation method of
crew rostering plan with the input of crew legs. For the crew rostering plan with given cycles,
we have two specific forms.

(i) Dividing all crew legs into several subsets which could form a feasible crew roster
scheme subject to all constraints, and then the crew roster scheme is assigned to T
crew members (or T crew member groups) to accomplish sequentially.

Crew rostering plan with this pattern has strong regularity, which is easy to be worked
out and helpful for increasing the possibility to manage the crew members by groups.
However, when applying crew rostering plan with this pattern, the crew roster scheme
executed sequentially by T crew members may sometime use more crew members than the
lower bound we really need. In order to explain this scenario, a term named as maximum
crew roster scheme is defined at the first stage.

Maximum Crew Roster Scheme

For a feasible crew roster scheme, if the total working time exceeds the working time standard
Tw while connecting any other crew leg, this scheme will be regarded as a maximum crew
roster scheme, and then the crewmembers needed to accomplish this scheme are equal to the
cycle of the crew rostering plan (T).

In crew rostering plan worked out by the first mode, the number of crew members
used just equals kT (where k is the number of crew roster schemes) if all crew roster schemes
are maximum crew roster scheme. If there is a nonmaximum crew roster scheme, some crews
will be unnecessarily used if we still assign this scheme to T crew members.

(ii) Determining crew roster scheme for each crew member directly in crew rostering
plan. In this circumstance, the matching problem between crew members and crew
legs instead of crew routes is directly considered, which is beneficial to reduce the
crew member arranged in crew rostering plan.

A feasible crew rostering plan worked out by this method is shown in Table 1, where
the cycle of the plan is 9 days, of 7 days for work and 2 days for rest, 3 crew legs are
accomplished by 4 crew members.
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Table 1: A crew rostering plan with given cycle of 9 days.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9
Crew member 1 1 2 3 1 2 3 1 Rest Rest
Crew member 2 Rest Rest 1 2 3 1 2 3 1
Crew member 3 3 1 Rest Rest 1 2 3 1 2
Crew member 4 2 3 2 3 Rest Rest Rest 2 3

Table 1 shows that the crew roster schemes for each crew member are not exactly the
same. While the scale of the problem is large, the compilation and implementation of the plan
will be relatively complicated.

In order to work out the crew rostering plan more easily and more convenient,
an implementation strategy by integrating the advantages of the two methods discussed
above is put forward. In this strategy, the first method is adapted to work out a crew
rostering plan which has maximum crew roster schemes as much as possible. In summary,
the implementation method of crew rostering plan with given cycle studied in this paper
contains two steps: the first one realizes the decomposition of all crew legs, while the second
one gives further adjustment to the nonmaximum crew roster schemewhichmay be obtained
by the first step. For convenience, the two steps above are called as decomposition of crew
legs and adjustment of nonmaximum crew roster scheme, and then the optimization model
and algorithm for the two subproblems are studied.

3. Model and Algorithm of Decomposition of Crew Legs

3.1. Description

The decomposition problem divides all crew legs into several subsets, and each set could
form a feasible crew roster scheme. Because the number of crewmembers used affects directly
the total cost of daily operation, the first target of this problem is usually to minimize the
crew members arranged. Meanwhile, for the working time in each crew roster scheme could
be different, and consequently, the working load between all crew roster schemes should also
be considered when dividing the crew legs. As mentioned above, the crew members needed
to accomplish a maximum crew roster scheme is exactly equal to the cycle of crew rostering
plan. But for a nonmaximum crew roster scheme with m crew legs, if a crew member could
only undertake one crew leg in one day, then the lower bound of crew members needed to
accomplish the nonmaximum crew roster scheme is �(m × T)/Tw�.

The decomposition problem is essentially a set partitioning problem, which could be
described by the representation according to feasible schemes. While generate feasible crew
roster schemes, the following regulations and constraints should be considered.

(i) One crew member could undertake at most one crew leg in one day.

(ii) Within the given cycle, the accumulated working time of crewmembers should not
exceed the working time standard Tw.

(iii) The connection time between two adjacent crew legs should satisfy the correspond-
ing standard.

(iv) Within the given cycle, each crew member used should at least assign a continuous
rest Tr .
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Through the above analysis, the optimization objectives put forward in this paper for
crew legs partitioning problem are as follows.

(i) Minimizing the number of feasible crew roster schemes, which means maximize
the number of maximum crew roster schemes at the same time.

(ii) Minimizing the number of crew legs in the nonmaximum crew roster scheme if
there is one in the crew rostering plan.

(iii) Realizing the most equalized working time distribution of all maximum crew roster
schemes.

3.2. Crew Legs Partitioning Model

min
m∑

i=1

xi, (3.1)

min
m∑

i=1

xi(1 − σi)ki, (3.2)

min
m∑

i=1

xiσi

(
ti −

∑m
i=1 xiti∑m
i=1 xi

)α

, (3.3)

subject to
m∑

i=1

xiaij = 1, j = 1, 2, . . . , n, (3.4)

xi ∈ {0, 1}, i = 1, 2, . . . , m, (3.5)

where m is the total number of feasible crew roster schemes, xi is a 0-1 decision variable
equals 1 if feasible crew roster scheme i is chosen in the final solution, and 0 otherwise, σi is
a 0-1 variable equals 1 if feasible crew roster scheme i is a maximum crew roster scheme, and
0 otherwise, ti is the total working time of all crew legs in feasible crew roster scheme i, ki is
the number of crew legs contained in feasible crew roster scheme i, α is the control parameter
for calculate the proportionality of crew roster schemes, aij is a 0-1 variable that equals 1 if
feasible crew roster scheme i contains crew leg j, and 0 otherwise, n is the total number of
crew legs.

Objective functions (3.1)–(3.3) correspond to the optimization objectives in Section 3.1,
respectively. Constraint (3.4) represents that each crew leg belongs to one crew roster scheme;
constraint (3.5) is the 0-1 restriction of decision variable.

3.3. Ant Colony Algorithm with Bipheromone and Biheuristic Information

The model founded above is a set partitioning model with multiobjective, for which finding
a feasible solution is NP-hard. In order to solve the model easily, the problem is converted
into a network optimization problem by treating the crew legs as nodes, and treating the
connections between crew legs as arcs, then the new problem needed to be solved is to
find a Hamilton chain, which covered all crew legs. The Hamilton chain is composed by
some subchains, each of which represents a feasible crew roster scheme. The issue of finding
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Hamilton chain in a network could be executed by algorithms based on construction strategy.
Ant colony algorithm is a kind of bionic algorithm simulating the mode of finding route in
the real world by ants, which has already performed well when applied in problems that can
be solved by construction strategy [5, 12]. For this reason, the ant colony algorithm is chosen
to solve the converted problem. The critical operations of ant colony algorithm which are
different from the common use are as follows.

(i) The Construction of the Solution

Ant k starts from the crew leg with the earliest ending time and continueus the construction
process by adding new crew legs one by one. If the working time of the sequence of crew legs
does not exceed theworking standard, then the next crew legwill be chosen by the probability
Pk
ij , otherwise, it should make clear a new feasible crew route scheme has already been found,

after recording the scheme and indexes, setting the value of variable that record the working
time of crew leg sequence to 0, and now, the ant chooses a crew leg as the start node for a
new crew roster scheme by the probability Pk

i . While all crew legs have been selected, the key
issue is to determine whether the last crew roster scheme is a maximum crew roster scheme
or not, calculate all indexes, and finish the construction process of ant k.

(ii) Representation of Phenomena

The ant colony algorithm in this paper has bi-phenomena representation methods that both
record the phenomena of all arcs τij and all nodes τi in the solution construction graph. τij is
the degree of the expectation for crew leg i connecting crew leg j, while τi is the expectation
for selecting crew leg i as the start node for the next crew roster scheme.

(iii) Selection Strategy

During the selection process, the probability of choosing next crew leg for ant k located at
node i is related with its current state.

When the node i where ant k is located is not an “origin” node, the formula of
probability for selecting the next crew leg is as follows:

Pk
ij =

⎧
⎪⎪⎨

⎪⎪⎩

[
τij

]α[
ηij

]β
∑

l∈Nk
i

[
τij

]α[
ηij

]β , if j ∈ Nk
i ,

0, otherwise,

(3.6)

where ηij is the heuristic information calculated by the following formula:

ηij =
1
tij

× 1∣∣((Ti + tj
)
/m

) − t∗
∣∣ + 1

, (3.7)

where Ti is the accumulated working time of all crew legs in current sequence, tij is the
connection time between crew leg i and crew leg j, tj is the working time of crew leg j, m
is the number of all crew legs after connecting crew leg j, and t∗ is the average working time
of all crew legs.
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When the node iwhere ant k is located is an “origin” node, the formula of probability
for selecting the next crew leg as the start node of a new crew roster scheme is as follows:

Pk
i =

⎧
⎪⎪⎨

⎪⎪⎩

[τi]α
[
ηi
]β

∑
Selectedi /= 1 [τi]

α[ηi
]β , if Selectedi /= 1,

0, otherwise.

(3.8)

The heuristic information ηj is calculated by the following formula, in which tej is the end
time of crew leg j:

ηj =
1
tej
. (3.9)

(iv) Evaluation Function

It is inconvenient to evaluate the solutions constructed by the ants since the model contains
three optimization objectives. Thus, these objectives are considered in one formula by weight
when establishing the evaluation function

min

{
α

m∑

i=1

xi + β

∑m
i=1 xi(1 − σi)ki

Tw
+ γ

∑m
i=1 xiσi

(
ti −

(∑m
i=1 xiti/

∑m
i=1 xi

))2
(
tmax −

(∑m
i=1 xiti/

∑m
i=1 xi

))2 ∑m
i=1 xiσi

}
, (3.10)

where α, β, γ , are the weigh factors of each optimization objective, respectively, tmax is Tw
times of the working time of crew leg which has longest working time. It is obvious that the
first part of formula (3.10) is an integer and the values of other parts are within the interval
[0,1). Since the number of crew member arranged is the objective that most concerned by the
management organization, and the importance of other two objectives reduce, gradually, the
values of α, β, γ , are set to 1, 1, and 0.1, and the value of each part belongs to [0,m], [0,1), and
[0,0.1), respectively.

4. Model and Algorithm of Adjustment of Nonmaximum Crew
Roster Scheme

4.1. Description

The essence of the adjustment of nonmaximum crew roster scheme is to work out a new
crew rostering plan with the crew legs contained by the nonmaximum crew roster scheme.
At this time, the second strategy for the implementation of crew rostering plan is used and its
main objectives are still minimizing the crew members arranged and equalizing the working
time distribution of all crew roster schemes. While adjusting the nonmaximum crew roster
scheme, the constraints in Section 3.1 should be satisfied. Moreover, any crew leg must be
assigned to one and only one crew member.
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4.2. Multiobjective Model

The optimization model founded for the second subproblem in this paper is as follows

minM, (4.1)

min
M∑

i=1

⎛

⎝
T∑

k=1

N∑

j=1

xk
ij tj −

T
∑N

j=1 tj

M

⎞

⎠
2

, (4.2)

subject to
M∑

i=1

xk
ij = 1, j = 1, 2, . . . ,N; k = 1, 2, . . . , T, (4.3)

N∑

j=1

xk
ij ≤ 1, i = 1, 2, . . . ,M; k = 1, 2, . . . , T, (4.4)

T∑

k=1

N∑

j=1

xk
ij ≤ Tw, i = 1, 2, . . . ,M, (4.5)

N∑

j=1

x
f(k+1, T)
ij

(
tsj + 1440

)
−

N∑

j=1

xk
ij t

e
j − Tcon + θ

⎛

⎝2 −
N∑

j=1

x
f(k+1, T)
ij −

N∑

j=1

xk
ij

⎞

⎠ ≥ 0,

i = 1, 2, . . . ,M; k = 1, 2, . . . , T

(4.6)

T∑

k=1

Tr−1∏

r=0

⎛

⎝1 −
N∑

j=1

x
f(k+r,T)
ij

⎞

⎠ ≥ 1, i = 1, 2, . . . ,M, (4.7)

xk
ij ∈ {0, 1}, i = 1, 2, . . . ,M; j = 1, 2, . . . ,N; k = 1, 2, . . . , T, (4.8)

where M is the crew members needed to finish all the task; N is the total number of crew
legs in nonmaximum crew roster scheme; xk

ij is a 0-1 decision variable that equates 1 if crew
member i undertakes crew leg j on day k, and 0 otherwise; T is the given cycle of crew
rostering plan; Tw is the working time while Tr is the continuous rest time for crew members
in cycle T; Tcon is the standard for the connection of crew legs; tj is the work time of crew leg
j; tsj is the start time while tej is the end time of crew leg j; θ is an infinite positive number.

The feasible crew roster schemes in crew rostering plan are all loops consisting of crew
legs, so the connection time between each two adjacent crew legs should satisfy the standard.
Hence, the following function is designed to reflect this characteristic:

f(k, T) =

{
k%T, if k < T,

T, otherwise.
(4.9)

Objective function (4.1) is designed to minimize the crew members arranged in the
crew rostering plan, while objective function (4.2) means the most equalized working load
among all crew roster schemes. Constraints (4.3)–(4.7) correspond to the restrictions in
Section 3.1, respectively. The θ(2 −∑N

j=1 x
f(k+1,T)
ij −∑N

j=1 x
k
ij) in constraint (4.6) guarantees that
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the formula is tenable while one of the adjacent jobs is not the crew leg. Constraint (4.8) is the
restriction of 0-1 decision variable.

4.3. Two-Phase Algorithm

It is hard to solve the model founded above by traditional optimization algorithms because
it includes both linear constraints and constraints based on the description. Therefore, this
paper designs an algorithm with two phases. The first phase represents the converted
problem by set covering model, and then the initial feasible crew rostering plan with minimal
crew members arranged is obtained. On the basis of the result of the first phase, an algorithm
with the ideology of simulated annealing is used in the second phase to implement further
improvement until a better crew rostering plan is obtained.

Phase 1. Initial crew rostering plan with minimal crew members arranged. The adjustment
of nonmaximum crew roster scheme is converted into a standard set covering problem
by representing the feasible crew roster scheme with 0-1 string, and then all feasible crew
roster schemes are found. Finally, the initial crew rostering plan with minimal crew members
is obtained by solving the set covering model. The generation of crew roster scheme, the
conversion of feasible scheme, and other issues are as follows.

(i) The Generation and Conversion of Feasible Crew Roster Scheme

The crew roster schemes obtained by the decomposition of crew legs contains at least one
nonmaximum crew roster scheme, in which the crew legs contained must be less than Tw.
Therefore, all the feasible crew roster schemes can be easily found by a deep search method.
The generated crew route schemes are represented by the real index of crew legs, thus a 0-1
string with the length of M is used to represent the crew leg for one day in the scheme. The
crew leg i is undertaken by crew members when the ith element of the string equals 1, and
the crew member is assigned a rest while all elements in the string equal 0. Therefore, a 0-1
string with the length of MT can be used to represent the situation of all the schemes with
T days. Thanks to the conversion from feasible crew roster schemes, there does not exist the
situation that more than 2 elements in the substring equal 1 in one day.

(ii) The Generation of the Set of All Feasible Crew Roster Schemes

Because the execution process of crew roster scheme is a circulation, the feasible crew roster
scheme got by the deep search method can just represent a specific situation in the cycle. In
order to generate all feasible crew roster schemes, a duplication process is used to copy the
schemes found in step (i). Each crew roster scheme can be duplicated T schemes for the cycle
of the scheme equals to T . For a crew rostering plan with the cycle of 4 days, in which 3 days
are working and 1 day is resting. Since a feasible crew roster scheme is 2-1-3, the schemes
duplicated are shown in Table 2.

All feasible crew roster schemes could be obtained after the duplication to the searched
schemes, but some of them are exactly the same ones (e.g., a scheme 1010 will become two
1010 and two 0101 after the duplicate). In order to keep the uniqueness of all schemes, a
procedure that checks the repetition and deletes the repeated schemes is then applied. After
the above operation, the problem of adjusting nonmaximum crew roster scheme becomes
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Table 2: Duplication of feasible crew roster scheme.

Schemes Before conversion After conversion
Initial scheme 2-1-3-0 0100-1000-0010-0000
Duplicated scheme 1 1-3-0-2 1000-0010-0000-0100
Duplicated scheme 2 3-0-2-1 0010-0000-0100-1000
Duplicated scheme 3 0-2-1-3 0000-0100-1000-0010

a standard set covering problem with the objective of covering all crew legs in the plan cycle
with minimal number of crew roster schemes

min
U∑

u=1

yu

subject to
U∑

u=1

yuauv ≥ 1, v = 1, 2, . . . ,MT,

(4.10)

where yu is a 0-1 decision variable that equals 1 if crew roster scheme u is chosen in final
solution and 0 otherwise, auv is a 0-1 variable that represents whether crew roster scheme u
covers crew leg v.

(iii) The Generation of Initial Crew Tostering Plan

The set covering problem above can be solved by various mature algorithms, such as
genetic algorithm, ant colony algorithm, and algorithms based on the application of column
generation principle, and interested readers are referred to the related references [13–15].

By solving the set covering model, an initial crew rostering plan with minimal crew
members arranged can be obtained accompanied by the scenario where some of the crew legs
may be covered more than once. We assume that crew leg i is covered ki times in the solution
of set covering problem, then the initial feasible crew rostering plan of this problem will be
obtained by deleting ki-1 extra covers of crew leg i randomly. Using the opposite process of
the duplication while all crew legs appear only one time during the solution, then, the crew
rostering plan based on the original description is obtained with minimal crew members.

Phase 2. Adjustment for equalized workload based on the ideology of simulated annealing.
When designing the algorithm for most equalized workload of crew roster schemes,

two concepts are defined firstly.

Feasible Swap

In the kth day of crew rostering plan, while the crew roster schemes obtained by swapping
the jobs (work or rest) of crew member i and j still satisfy all the restrictions, the operation
adopted is called as a feasible swap.
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Positive Swap

A feasible swap is called a positive swap while the equilibrium of workload has improved
after the adoption of this swap (the variation of equilibrium Δi is a positive number). On the
contrary, a feasible swap, which reduces the equilibrium, is a negative swap.

According to the definitions, the essence of the adjustment of nonmaximum crew
roster scheme is to improve the equilibrium of workload by finding and adopting positive
swaps, until a crew rostering plan with high equilibrium is found. For providing a relative
lager searching space, ideology of simulated annealing is merged in the designed algorithm,
which means that the selection of negative swaps is allowed in the operation.

The details of the algorithm are as follows.

Step 1. Let the initial temperature t equal t0, the start day k for searching feasible swap equals
1, calculate the working time Ti of each crew roster scheme in initial crew rostering plan, the
average working time T ∗ of all crew roster schemes, and the equilibrium of initial plan.

Step 2. Search all feasible swaps from the first crew roster scheme at day k.

Step 3. Let k = k + 1, if k > T , which means that all feasible swaps has already been found
and turn to the next step, otherwise, turn to Step 2.

Step 4. Calculate the variation Δi of each feasible swap, and then calculate the probability Pi

for each swap to be selected.

Step 5. Select a feasible swap by probability Pi, the probability for accepting the swap selected
equals 1 when the variationΔi is a positive number, and equals Paccept when the variationΔi is
a negative number. Record the swap used and update the equilibrium of crew rostering plan,
and then turn to next step. This step is repeated once the selected swap is refused because the
probability Pi is lower than Paccept.

Step 6. Implement the update of temperature by the update function and determine whether
the updated temperature reaches the lowest point tmin. Turn to next step if the temperature
equals tmin, otherwise, let k equals 1 and return to Step 2.

Step 7. Once the adjusting process of the equilibrium of all crew schemes is finished, the best
crew rostering plan is outputted.

The parameters in the simulated annealing algorithm above are similar to the common
usage except the selection probability of feasible swaps which is described here only. Assume
that there are n feasible swaps at one status in Step 5 of the algorithm above, then the
probability Pi for choosing feasible swap i is represented as follows:

Pi =
Δi −Δmin + ε

∑n
i=1(Δi −Δmin + ε)

, (4.11)

where Δmin is the minimal variation of workload equilibrium of all feasible swaps, which is
usually a negative number.Δi is the variation of workload equilibrium of feasible swap i. ε is
a small positive number used to ensure that the probability of the feasible swap with minimal
variation does not equal zero.
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Table 3: Details of generated crew legs.

Crew legs Start time End time Working time
1 868 1240 372
2 708 1109 401
3 652 1116 464
4 829 1195 366
5 984 1360 376
6 775 1146 371
7 701 1179 478
8 999 1432 433
9 812 1239 427
10 450 826 376
11 665 1064 399
12 569 1020 451
13 414 817 403
14 931 1393 462
15 543 978 435
16 784 1153 369
17 604 1035 431
18 491 897 406
19 852 1275 423
20 392 859 467
21 730 1152 422
22 971 1354 383
23 512 949 437
24 574 996 422

In the algorithm designed above, the probability for the acceptance of negative swap
is relatively high when at a high temperature and reduced gradually with the decreasing of
temperature. When the temperature reaches the lowest level, this probability tends to zero
and the algorithm converges finally.

5. Numerical Example

According to the operational characteristics of China high-speed railway currently, this paper
generates several crew legs as the basic data to work out the crew rostering plan with given
cycle. Assume that the earliest starting time and the latest ending time of all crew legs are
6:00 and 24:00, respectively, which will be 360 and 1440 when represented by minute. The
working time of each crew leg equals the time span between start time and end time. The
connection time standard between two crew legs is 960min, and all crew legs start and end at
the same crew base. The details of the 24 generated crew legs are shown in Table 3, in which
the start time, end time, and working time of all crew legs are represented by minute.

First, with the data generated above, this paper works out a crew rostering plan with
the cycle of 8 days, in which 6 days are for working and 2 days for rest, the results are shown
in Table 4.
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Table 4: Crew rostering plan with the cycle of 8 days.

Roster
schemes

Days

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Crew
members
arranged

Total crew
member
arranged

Lower bound
of crew
members

Operation
time(s)

Crew roster
scheme 1 13 20 10 18 23 15 8

Crew roster
scheme 2 24 12 17 3 11 7 8

Crew roster
scheme 3 2 21 6 16 9 4 8

32 32 3.5172

Crew roster
scheme 4 1 19 14 22 5 8 8

Table 5: Crew rostering plan with the cycle of 7 days.

Roster
schemes

Days

Day 1 Day 2 Day 3 Day 4 Day 5

Crew
members
arranged

Total crew
member
arranged

Lower bound
of crew
members

Operation
time(s)

Crew roster
scheme 1 13 20 10 18 23 7

Crew roster
scheme 2 15 12 24 17 3 7

Crew roster
scheme 3 11 7 2 21 6 7 34 34 2.4618

Crew roster
scheme 4 16 9 4 19 1 7

Crew roster
scheme 5 22 14 5 8 6

It is easily obtained from Table 4 that the 4 crew roster schemes in the crew rostering
plan are all maximum crew roster schemes which means each scheme contains 6 crew legs
that equals the working time criterion. Under this circumstance, the adjustment procedure
is not needed and the number of crew members arranged in the crew rostering plan equals
the product of the plan cycle and the total number of crew schemes, which has already been
minimal and the plan can be executed with high regularity.

Moreover, the crew legs above are used to work out a crew rostering plan with the
cycle of 7 days in which 5 days for work and 2 days for rest, the outcome obtained by the
decomposition of crew legs is shown in Table 5.

It can be concluded from Table 5 that the previous 4 crew roster schemes are all
maximum schemes, and the crew members used in each scheme are equal exactly to the
cycle of the crew rostering plan. The 5th crew roster scheme (see the last row in Table 5) is a
nonmaximum crew roster scheme. If still using 7 crew members to undertake this scheme at
this time, one or more crew members will be not required actually. Actually, the lower bound
of crew members needed for the last crew roster scheme is �(4 × 7)/5� = 6. Therefore, the
second phase is needed to adjust the 5th crew roster scheme. The initial crew rostering plan
is worked out with the crew legs in the 5th crew roster scheme by the algorithm designed in
Section 4.3. The initial crew rostering plan of adjustment of nonmaximum crew roster scheme
is shown in Table 6, in which the number 0 represents no crew leg is assigned to this crew
member on this day.
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Table 6: Initial crew rostering plan of adjustment of non-maximum crew roster scheme.

Crew Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Accumulated working
time (min)

Proportionality
(min2)

1 22 14 8 22 8 0 0 2094

2 0 0 22 14 14 8 22 2123

3 5 22 0 0 22 14 8 2037

4 14 5 14 5 0 0 5 2052 529799.33

5 0 8 5 8 5 22 0 2001

6 8 0 0 0 0 5 14 1271

Table 7: Optimal crew rostering plan of adjustment of nonmaximum crew roster scheme.

Crew Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Accumulated working
time (min)

Proportionality
(min2)

1 14 14 14 14 0 0 0 1848

2 0 0 22 5 22 8 22 1958

3 5 5 0 0 8 5 8 1994

4 22 22 8 22 0 0 5 1958 29749.33

5 0 8 5 8 5 22 0 2001

6 8 0 0 0 14 14 14 1819

It is obvious that the crew member arranged to the 5th crew roster scheme is 6 which
is equal to the lower bound of the crew member needed. However, the accumulated working
time varies from 1271min to 2123min, and the proportionality is not optimal. In order to
improve the proportionality, the algorithm based on the ideology of simulated annealing is
used and the improved crew rostering plan is shown in Table 7.

After the adjustment of the initial crew rostering plan, the variations of accumulated
working time among all crew roster schemes are relatively small, and the proportionality of
the plan is much better than before.

6. Conclusion

This paper studies the compilation method of crew rostering plan with given cycle of high-
speed railway lines. By merging two different compilation principles, the problem is divided
into two subproblems which are the crew legs partitioning problem and the adjustment of
nonmaximum crew roster scheme. The division of the problem gives consideration to both
of the complexity for compilation and the convenience for execution, and the algorithm
designed is effective for finding an optimal solution. By studying this problem, we found that
under the assumption that each crew member undertakes at most one crew leg in a day, the
lower bounds of crew members needed are �m/Tw� ×T and �(m×T)/Tw�when work out the
crew rostering plan with the two forms discussed in the beginning separately, respectively.
While compiling the crew rostering plan by merging the two strategies, which is used in this
paper, the lower bound is �m/Tw	×T + �(m−�m/Tw	)×T/Tw�. Whenm/Tw is an integer, the
value of all lower bound are equal nomatter what compiling pattern we use, and the minimal
crew members arranged may be still equal. The compiling method of crew rostering plan put
forward in this paper has its own advantages, but unexpectedly, sacrifices both objectives to
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some extent. The algorithms applied in this paper can also be used separately when working
out the crew rostering plan with single requirement. When compile crew rostering plan by set
covering model, it should be aware that the scale of the problem will affect both the difficulty
of the algorithm design and the execution efficiency.
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