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We use tail dependence functions to study tail dependence for regularly varying (RV) time
series. First, tail dependence functions about RV time series are deduced through the intensity
measure. Then, the relation between the tail dependence function and the intensity measure
is established: they are biuniquely determined. Finally, we obtain the expressions of the tail
dependence parameters based on the expectation of the RV components of the time series. These
expressions are coincided with those obtained by the conditional probability. Some simulation
examples are demonstrated to verify the results we established in this paper.

1. Introduction

Copula is a useful tool for handling multivariate distributions with given univariate margins.
A copula C is a distribution function, defined on the unit cube [0, 1]d, with uniform one-
dimensional margins Ui. For any (u1, . . . , ud) ∈ [0, 1]d, C(u1, . . . , ud) = P{U1 ≤ u1, . . . , Ud ≤
ud}; the survival copula is ̂C(u1, . . . , ud) = P{U1 ≥ 1 − u1, . . . , Ud ≥ 1 − ud}, the joint survival
function of copula C is C(u1, . . . , ud) = ̂C(1 − u1, . . . , 1 − ud). Given a copula C, let

F(t1, . . . , td) = C(F1(t1), . . . , Fd(td)), where (t1, . . . , td) ∈ R
d, (1.1)

then F is a multivariate distribution with univariate margins F1, . . . , Fd. On the other hand,
given a distribution F with margins F1, . . . , Fd, there exists a copula C such that (1.1) holds.
And copula C is unique if F1, . . . , Fd are all continuous (Sklar [1], Nelsen [2]).

In generally, copula forms a natural way to describe the dependence between series
when making abstraction of their marginal distributions. Overviews of the probabilistic and
statistical properties of copula are to be found in [1–6].
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Tail dependence plays an important role among dependence measures due to its
ability to describe dependence among extreme values (Frahm et al. [7], Resnick [8, 9], and
Nikoloulopoulos et al. [10]) which is introduced by Joe [4]. The issue of tail dependence
is mainly for heavy tailed phenomena, heavy tailed phenomenon in fractal time series. It
is extensively studied and applied in insurance, risk management, traffic management and
engineering management, and so forth. [11–27].

Researchers find various multivariate distributions with heavy tails to describe the
extremal or tail dependence, see, Pisarenko and Rodkin [13], Hult and Lindskog [28], and
Fang et al. [29]. Many interesting tail quantities have been derived via standard methods:
coefficients of tail dependence [30–37] and tail dependence copulas (Charpentier and Segers
[38]).

In this paper, we are interested in the tail behavior of the time series X1, . . . , Xt which
have the form:

X = (X1, . . . , Xt) = (RZ1, . . . , RZt), (1.2)

where the scale variableR is independent of random vector (Z1, . . . , Zt). AndX is multivariate
regularly varying with distribution function F having copula C.

This distribution is a generalized class, including, for example, multivariate Pareto and
multivariate elliptical distribution as special ones. Especially, the multivariate t distribution
is included in it. As an example, we will justify the results through multivariate t copula.

In order to analyze the tail dependence behavior of (1.2), we first study the tail
dependence functions via intensitymeasure. Then using the relation between tail dependence
parameter and the tail dependence functions, we explore the explicit representations of the
tail dependence parameters.

The outline of this paper is as follows. After some preliminaries about multivariate
regularly varying series and dependence functions in Section 2, detailed results for the
tail dependence functions are discussed in Section 3, the expressions of tail dependence
parameters for RV time series are demonstrated in Section 4, and multivariate t distribution
is demonstrated as an example in Section 5.

Throughout, (X1, . . . , Xt) is a random vector with joint distribution function F and
copula C. Minima and maxima will be denoted by ∧ and ∨, respectively. The Cartesian

product
∏t

i=1[ai, bi] is denoted by [a,b] for any a,b ∈ R
t
.

2. Preliminaries

Definition 2.1. The t-dimensional random vector X is said to be regularly varying with index
α ≥ 0 if there exists a random vector Θ with values in S

t−1 a.s., where S
t−1 denotes the unit

sphere in Rd with respect to the norm | · |, such that, for all u > 0,

P{|X| > ux,X/|X| ∈ ·}
P{|X| > x}

v→ u−αP{Θ ∈ ·}, (2.1)

as x → ∞. The symbol v→ stands for vague convergence on S
t−1; vague convergence of

measures is treated in detail in Kallenberg [39]. The distribution of Θ is referred to as the
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spectral measure of X. For further information on multivariate regular variation we refer to
Resnick [8, 9].

In fact, (2.1) is equivalent to the following expression

nP
{

a−1
n X ∈ ·

}

v→ μ(·), (2.2)

where μ is an intensity measure or Radon measure on R/{0} and an is a sequence an of
nonnegative numbers.

From the Definition 2.1, we can see that the regularly varying distribution is connected with
intensity measure μ. The following lemma yields the explicit relation between them which
can be found in [8].

Lemma 2.2. Let random vector X be regularly varying with index α ≥ 0 and distribution function F,
then it is equivalent to the following.

(1) There exists an intensity measure μ on Rt/{0}, such that for every Borel set B ⊂ Rt/{0}
bounded away from the origin that satisfies μ(∂B) = 0,

lim
u→∞

P{X ∈ uB}
P{|X| > u} = μ(B), (2.3)

with the homogeneous condition μ(uB) = u−αμ(B).

(2) There exists an intensity measure μ on Rt/{0}, such that

lim
u→∞

1 − F(ux1, ux2, . . . , uxt)
1 − F(u, u, . . . , u)

=
P
{

X/u ∈ [0, x]c
}

P
{

X/u ∈ [0, 1]c
} = μ

(

[0, x]c
)

, (2.4)

for all continuous points x of μ. According to Lemma 2.2, one notices that for any
nonnegative multivariate regularly varying random vector X, its nondegenerate univariate
margins Xi have regularly varying right tails and with the same index of X also, that is,

Fi(x) = P{Xi > x} = x−αLi(x), x > 0, (2.5)

where Li(x) is a slowly varying function.

Lemma 2.3 (Breiman [40]). Let ξ and η be two independent nonnegative random variables, η be
regularly varying with index α. If there exists a γ > α, such that Eξγ < ∞, then

P
{

ξη > x
} ∼ E(ξα)P

{

η > x
}

. (2.6)
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The multivariate version of the Lemma belongs to Basrak et al. [41]. It is said that, if X is regularly
varying in the sense of (2.2), A is a random t × t matrix, independent of X, with 0 < E‖A‖γ < ∞ for
some γ > α, then

nP
{

a−1
n AX ∈ ·

}

v→ μ̃(·) := E
(

μ ◦A−1(·)
)

, (2.7)

where v→ denotes vague convergence on R
t/{0}.

Definition 2.4 (Kluppelberg et al. [42]). Let F be the distribution function of random vector X
with continuous margins Fi, 1 ≤ i ≤ t and copula C. For any w = (w1, w2, . . . , wt) ∈ Rt

+, the
lower dependence function is defined as

l(w;C) = lim
x→ 0+

C(xw1, xw2, . . . , xwt)
x

, (2.8)

and the upper dependence function is defined as

u(w;C) = lim
x→ 0+

C(1 − xw1, 1 − xw2, . . . , 1 − xwt)
x

. (2.9)

The upper exponent function is defined as

u∗(w;C) =
∑

∅/=S⊂I
(−1)|S|−1uS(wS;CS), (2.10)

where uS(wS;CS) = limx→ 0+C(1 − xwj, ∀j ∈ S)/x.
From the definition, we can verify the elementary properties listed in Proposition 2.5 of

the tail dependence function. We denote τJ = limx→ 1−P{Fj(Xj) > x, ∀j /∈ J | Fi(Xi) > x, ∀i ∈ J}
and ξJ = limx→ 0+P{Fj(Xj) < x, ∀j /∈ J | Fi(Xi) < x, ∀i ∈ J} are the upper tail and lower
dependence parameters of X, respectively, where J is a nonempty subset of I = {1, . . . , t}. CJ

is the margin of C with component indexes in J .

Proposition 2.5. (1) For any 1 ≤ i, j ≤ t,

τij = u
(

1, 1;Cij

)

; ξij = l
(

1, 1;Cij

)

, (2.11)

where Cij is the margin copula of Xi,Xj .

(2) For any nonempty J ⊂ I,

τJ =
u(1, 1, . . . , 1;C)
u
(

1, 1, . . . , 1;CJ

) ; ξJ =
l(1, 1, . . . , 1;C)
l
(

1, 1, . . . , 1;CJ

) , (2.12)
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(3)

u(w;C) = lim
x→ 0+

̂C(xw1, xw2, . . . , xwt)
x

= l
(

w; ̂C
)

. (2.13)

Proof. (1) According to the definition of τij , we get

τij = lim
x→ 1−

P
{

Fj

(

Xj

)

> x | Fi(Xi) > x
}

= lim
x→ 0+

P
{

Fj

(

Xj

)

> 1 − x, Fi(Xi) > 1 − x
}

P{Fi(Xi) > 1 − x}

= lim
x→ 0+

Cij(1 − x, 1 − x)
x

= u
(

1, 1;Cij

)

;

(2.14)

similarly,

ξij = lim
x→ 0+

P
{

Fj

(

Xj

)

< x | Fi(Xi) < x
}

= lim
x→ 0+

P
{

Fj

(

Xj

)

< x, Fi(Xi) < x
}

P{Fi(Xi) < x}

= lim
x→ 0+

Cij(x, x)
x

= l
(

1, 1;Cij

)

.

(2.15)

(2) Note that

τJ = lim
x→ 1−

P
{

Fj

(

Xj

)

> x, ∀j ∈ I
}

P{Fi(Xi) > x, ∀i ∈ J} = lim
x→ 0+

C(1 − x, . . . , 1 − x)/x

CJ(1 − x, . . . , 1 − x)/x
(2.16)

combined with (2.9), the first part is determined. The second part can be verified similarly.

(3) We can obtained the proof only paying attention to C(u1, . . . , ut) = ̂C(1 − u1, . . . , 1 −
ut).

From the proposition, the upper tail dependence function of copula C is the lower one
of its survival copula ̂C. And in most fractal time series, from the point of view of either
theory or applications, people only need to understand the right tail of the data, so we focus
on the upper tail function u(w;C) and coefficient τJ in the following.

We first study the upper tail dependence function of multivariate regularly varying
time series in (1.2) using the intensity measure.

3. The Upper Tail Dependence Function for RV Time Series

Theorem 3.1. Let X1, . . . , Xt be RV time series with regularly varying index α, distribution function
F, copula C, and the stochastic representation as (1.2). If the margins are tail equivalent as x → ∞,
then the upper tail dependence function can be written as

u(w;C) =
μ
(

∏t
i=1

[

w−1/α
i ,∞

])

μ
(

[1,∞] × R
t−1) , (3.1)
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and the upper exponent function can be written as

u∗(w;C) =
μ
((

∏t
i=1

[

0, w−1/α
i

])c)

μ

(

(

[0, 1] × R
t−1)c) . (3.2)

Proof. For any w = (w1, . . . , wt) ∈ Rt
+,

u(w;C) = lim
x→ 0+

P
{

Fi(Xi) ≤ xwi, ∀i ∈ I
}

P
{

F1(X1) ≤ x
} = lim

x→ 0+

P
{

Xi > F
−1
i (xwi), ∀i ∈ I

}

P
{

X1 > F
−1
1 (x)

} . (3.3)

Since every margin Fi is regularly varying with the same index α, we obtain that

Fi

(

y
)

=
Li

(

y
)

yα
, y > 0, (3.4)

where Li(y) is slowing varying function. So for any wi > 0, as x → 0+,

Fi

(

w1/α
i y

)

=
Li

(

w1/α
i y

)

wiyα
=

1
wi

·
Li

(

w1/α
i y

)

Li

(

y
) · Li

(

y
)

yα
=

1
wi

· hi

(

wi, y
) · Fi

(

y
)

, (3.5)

where hi(wi, y) = Li(w
1/α
i y)/Li(y) → 1 as y → ∞. So the equation becomes

Fi

(

w1/α
i y

)

=
1
wi

· hi

(

wi, y
) · Fi

(

y
)

, (3.6)

in other words,

w1/α
i y = F

−1
i

(

1
wi

Fi

(

y
)

hi

(

wi, y
)

)

. (3.7)

Now we let Fi(y) = xwi, then

w1/α
i F

−1
i (xwi) = F

−1
i

(

xhi

(

wi,F
−1
i (xwi)

))

, (3.8)

so, F
−1
i (xwi) = w−1/α

i F
−1
i (xhi(wi,F

−1
i (xwi))).

As x → 0+, hi(wi,F
−1
i (xwi)) → 1, so we get that

F
−1
i (xwi) ≈ w−1/α

i F
−1
i (x). (3.9)
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And since the margins are equivalent, that is, Fi(y)/F1(y) → 1 as y → ∞. We have

F
−1
i (x)/F

−1
1 (x) → 1 as x → 0+ (Resnick [8]). So for sufficient small x, F

−1
i (x) ≈ F

−1
1 (x), and

z = F
−1
1 (x), combining (3.3) and (2.3), we obtain that

u(w;C) = lim
x→ 0+

P
{

Xi > w−1/α
i F

−1
i (x), ∀i ∈ I

}

P
{

X1 > F
−1
1 (x)

} = lim
z→∞

P
{

Xi > w−1/α
i z, ∀i ∈ I

}

P{X1 > z}

=
μ
(

∏t
i=1

[

w−1/α
i ,∞

])

μ
(

[1,∞] × R
t−1) .

(3.10)

In order to calculate u∗(w;C), we recall the inclusion-exclusion formula, it says that

P{∩i∈IAi} =
∑

∅/=S⊂I
(−1)|S|−1P{∪j∈SAj

}

(3.11)

is valid for any finite set I and arbitrary events Ai, where i ∈ I.
Using this formula, (2.10) becomes

u∗(w;C) = lim
x→ 0+

P
{

Fj

(

Xj

)

> 1 − xwj, ∃j ∈ I
}

x
= lim

x→ 0+

P
{

Fj

(

Xj

) ≤ xwj, ∃j ∈ I
}

P
{

F1(X1) ≤ x
}

= lim
x→ 0+

P
{

Xj > F
−1
j

(

xwj

)

, ∃j ∈ I
}

P
{

X1 > F
−1
1 (x)

} .

(3.12)

By using the same method of (3.3), the following equation holds:

u∗(w;C) = lim
z→∞

P
{

Xi > w−1/α
i z, ∃i ∈ I

}

P{X1 > z} =
μ
((

∏t
i=1

[

0, w−1/α
i

])c)

μ
(

[1,∞] × R
t−1) . (3.13)

Corollary 3.2. Under the same conditions as Theorem 3.1, the following result holds

μ
(

[1,∞] × R
t−1)

=
1

u∗(1, . . . , 1;C)
. (3.14)

Proof. By (2.4), one can see that μ([0, 1]c) = 1. So we can get the result immediately by letting
all wi = 1, 1 ≤ i ≤ t in (3.2).

According to Theorem 3.1 and Corollary 3.2, we can represent the intensity measure
through the tail dependence function as the following Corollary.
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Corollary 3.3. Under the same conditions as Theorem 3.1, one has

μ([w,∞]) =
u
(

w−α
1 , . . . , w−α

t ;C
)

u∗(1, . . . , 1;C)
,

μ
(

[0,w]c
)

=
u∗(w−α

1 , . . . , w−α
t ;C

)

u∗(1, . . . , 1;C)
.

(3.15)

4. The Upper Tail Dependence Parameters for Regularly
Varying Time Series

According to Proposition 2.5 and Theorem 3.1, we can express the tail dependence
parameters by their tail dependence functions. In this section, we will deduce the upper tail
dependence parameters of time series with multivariate varying distribution in (1.2) by this
method. Hereafter, we let μ be the intensity measure of R = (R,R, . . . , R) with copula CR.
Where R is regularly varying at∞with index α, with survival function FR(r) = L(r)/rα, and
L(·) is a slowly varying function. So for any nonnegative vector w = (w1, . . . , wt), we have

μ
(

[0,w]c;CR
)

= lim
r→∞

P
{

R > r∧t
i=1wi

}

P{R > r} = lim
r→∞

FR

(

r
∧t

i=1wi

)

FR(r)
, (4.1)

by inserting FR(r∧t
i=1wi) = L(r

∧t
i=1wi)/(r

∧t
i=1wi)

α
and FR(r) = L(r)/rα into the representa-

tion, then,

μ
(

[0,w]c;CR
)

=
1

(

∧t
i=1wi

)α =

(

t
∨

i=1

wi

)−α
. (4.2)

Similarly, we have,

μ
(

[w,∞];CR
)

=
t
∧

i=1

w−α
i . (4.3)

Consequently, we get the main result as follows.

Theorem 4.1. Let X1, . . . , Xt be regularly varying time series with the same regularly varying index
α and the stochastic representation given in (1.2), the margins are tail equivalent as x → ∞. If there
exists a γ > α holds for 0 < E(Zγ

i+) < ∞, then the upper tail dependence parameter of X1, . . . , Xt is

τJ =
E
(

∧t
i=1

(

Zα
i+/E

(

Zα
i+

))

)

E
(

∧

i∈J
(

Zα
i+/E

(

Zα
i+

))

) . (4.4)
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Proof. We first calculate the tail dependence function of X = (RZ1, . . . , RZt). In the following,
let CX and CY be the copula of X and Y, respectively. Denote

(Y1, . . . , Yt)T = A(R, . . . , R)T , (4.5)

where

A = diag

⎛

⎝

Z1+
(

E
(

Zα
1+

))1/α
, . . . ,

Zt+
(

E
(

Zα
1+

))1/α

⎞

⎠. (4.6)

Note that Yi = (Zi+/(E(Zα
i+))

1/α)R is strictly increasing transformation of Xi > 0,
for all i ∈ I, and the tail dependence function and the parameter are all copula properties.
Hence Y and X have the same tail dependence functions. By Lemma 2.3, one can see that
the marginal variables Yi of vector Y are tail equivalent and regularly varying with the same
index as X as x → ∞. Denote the intensity measures of Y and R by μ̃(·) and μ(·), respectively.
According to (2.7),

μ̃(·) = E
(

μ
(

A−1·
))

. (4.7)

Now by (4.6), we see that,

A−1 = diag

⎛

⎝

(

E
(

Zα
1+

))1/α

Z1+
, . . . ,

(

E
(

Zα
t+
))1/α

Zt+

⎞

⎠, (4.8)

combining this with (4.3), for any nonnegative w, we obtain the intensity measure given by

μ̃([w,∞]) = E
(

μ
(

A−1[w,∞]
))

= E

⎛

⎝μ

⎛

⎝

t
∏

i=1

⎡

⎣

(

E
(

Zα
i+

))1/α

Zi+
wi,∞

⎤

⎦;CR

⎞

⎠

⎞

⎠

= E

(

t
∧

i=1

Zα
i+

E
(

Zα
i+

)w−α
i

)

.

(4.9)

Hence, we have

μ̃

(

t
∏

i=1

[

w−α
i ,∞]

)

= E

(

t
∧

i=1

Zα
i+

E
(

Zα
i+

)wi

)

. (4.10)

Substituting this measure into (3.1), we get the upper tail dependence function of vector Y as
follows:

u
(

w;CY
)

= E

(

t
∧

i=1

Zα
i+

E
(

Zα
i+

)wi

)

. (4.11)
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Since Y and X have the same tail dependence functions, we have

u
(

w;CX
)

= E

(

t
∧

i=1

Zα
i+

E
(

Zα
i+

)wi

)

. (4.12)

By (2) in Proposition 2.5, we obtain the upper tail dependence parameters of vector X.

5. Examples

Let Z in (1.2) be Z = A(U1, . . . , Un), where A is a t × n matrix with AAT = Σ, and Σ is a
t × t semidefinite matrix, U = (U1, . . . , Un) is uniformly distributed on the unit sphere (with
respect to Euclidean distance) in Rn. We know that X conforms to an elliptical contoured
distribution (Fang et al. [43]). The tail dependence of the elliptical contoured distribution has
been discussed in Schmidt [33]. Here we select the t distribution to display our results in
Theorem 4.1 as a special case.

If X ∼ tn(μ,Σ, ν), then X has the stochastic representation ([43]):

X = μ +
√
ν√
S
Z, (5.1)

where S ∼ χ2
ν and Z ∼ Nn(0,Σ) are independent, μ ∈ Rn.

Let R =
√

ν/S. Then R2 ∼ IG(ν/2, ν/2) and R is regularly varying with index ν at ∞.
So the vector (X1, . . . , Xn) is regularly varying according to Schmidt [33].

For the upper tail dependence that only relies on the tail behavior of the random vector,
we can focus, without loss of generality, on the random vector X with zero mean vector.
Furthermore, since the strictly increasing transformation of (X1, . . . , Xn) does not change the
copula, Δ−1/2X has the same copula as X, where Σ = (σij) and Δ = diag(σ11, σ22, . . . , σnn).
Thus Δ−1/2X ∼ tn(0,Δ−1/2ΣΔ−1/2, ν). It is evident that Δ−1/2ΣΔ−1/2 becomes the correlation
matrix of the random vector. Consequently, we may assume that the covariance matrix Σ is
the correlation matrix. In this situation, all Z′

is have the same margins as N(0, 1). So E(Zν
i+)

are all equal for any 1 ≤ i ≤ n. Under these assumptions, using (4.4), we get the upper tail
dependence parameter of tn(0,Σ, ν) as

τJ =
E
(∧n

i=1Z
ν
i+

)

E
(

∧

i∈JZ
ν
i+

) . (5.2)

This is coincided to the one obtained in Shi and Lin [34].

6. Simulations

In Section 4, we obtain the expressions of the tail dependence indexes about RV time series in
(1.2). In Section 5, we display our result in the multivariate t distribution as example. In this
Section, we will illustrate these results by some Monte Carlo simulated numerical examples.
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Figure 1: The estimation of τ2, τ12 under AR(1) (the left one) and EX (the right one) correlation structure.

Given that y(1), y(2), . . . , y(m) be generated from the multivariate normal distributionNn(0,ρ),
then the upper tail dependence indices of tn(μ,Σ, ν) can be estimated by

τ̂J =

∑m
k=1

(

∧n
j=1

∣

∣

∣y
(k)
j

∣

∣

∣

)ν
I
{

y(k) > 0 or y(k) < 0
}

∑m
k=1

(

∧

i∈J
∣

∣

∣y
(k)
i

∣

∣

∣

)ν
I
{

y(k) > 0 or y(k) < 0
}

. (6.1)

We estimate the upper tail dependence parameter of 3-dimensional t distribution
under autoregressive of order 1 (AR(1)), exchangeable(EX), Toeplitz(TOEP), and unstruc-
tured(UN) correlation structure, respectively. For each correlation matrix, we first generate
80,000 pseudorandom vectors, then use (5.2) to estimate tail dependence parameter for
different ν. Specifically, we do the following simulations.

∑

1

=

⎛

⎝

1 −0.3 0.09
−0.3 1 −0.3
0.09 −0.3 1

⎞

⎠,
∑

2

=

⎛

⎝

1 −0.3 −0.3
−0.3 1 −0.3
−0.3 −0.3 1

⎞

⎠. (6.2)

Let J = {2} and {1, 2}, respectively. The corresponding upper tail dependence param-
eters are denoted by τ2 and τ12. Σ1 and Σ2 are under AR(1) and EX correlation structure,
respectively, the simulated values of τ2, τ12 about different ν are computed and plotted in
Figure 1. Σ3 and Σ4 are under TOEP and UN correlation structure, the corresponding results
are demonstrated in Figure 2.

From the two figures, in spite of the correlation structure, τJ decreased and approached
0 quickly as ν increased to ∞, which is the tail dependence index for multivariate normal
copula.

Many researchers try to discuss the monotonicity of the tail dependence parameter
about the regular varying index. Embrechts et al. [11] proved that the tail dependence of the
bivariate t distribution is decreasing about the regular varying index ν, and demonstrated
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Figure 2: The estimation of τ2, τ12 under TOEP (the left one) and UN (the right one) correlation structure.

that the tail dependence parameter τ1 is decreasing in ν by numerical results. But From the
right graph in Figure 2., these conclusions are not always correct when t ≥ 3.

∑

3

=

⎛

⎝

1 −0.3 0.5
−0.3 1 −0.3
0.5 −0.3 1

⎞

⎠,
∑

4

=

⎛

⎝

1 0.3 0.5
0.3 1 0.7
0.5 0.7 1

⎞

⎠. (6.3)

7. Conclusion

In the paper, we mainly study tail dependence of RV time series in (1.2). We use tail
dependence function and intensity measure to express tail dependence parameters. Using tail
dependence function, we do not need to consider the explicit representation of the copula. We
first discuss the tail dependence function of the RV time series due to the propositions of the
regularly varying function, connecting the biuniquely determined property between the tail
dependence function and the intensity measure. Then we calculate the explicit formula of the
upper tail dependence parameter about the RV time series under some conditions. In fact,
we can obtain the extreme upper tail dependence index (Shi and Lin [34]) very similarly to
Theorem 4.1, for concise, we omit it here.

Copula of continuous variables is invariant under strictly increasing transformation
(Nelsen [2]). In order to obtain the tail dependence function of random vector X, we shift to
solve that of Y in (4.5), which is just a strictly increasing transformation of X.

At last, we select the t distribution as a special case to display our result, they are
coincided to the one given in [34]. The monotonicity of the tail dependence parameters
about the regular varying index is still an open problem. Under what constraints the tail
dependence parameters will be deceasing in the variation index? We are still interested in the
problem. We will discuss it in the following work in details. In engineering application, when
we confront fractal time series and seasonal data, we can model the tail dependence property
via the tail dependence function if the data is consistent with the constraint conditions in our
work.
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