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Shunt active power filters are nowadays used for mitigation of harmonic currents from nonlinear
loads. Current and voltage harmonics have negative effects on the operation of the electric
power system. Thus, a great attention is focused on harmonic generation and control. Several
standards have introduced limits on current harmonics injected into the power system and on
voltage harmonics at the system busbars. The paper proposes a switching strategy for a four-
switch converter as used in conventional six-switch converters. The voltage source converter is
controlled by a unique space-vector modulation strategy proposed. Here is presented an analytical
solution for a proposed active power filter topology, simulation, and experiments results proving
the proposed strategy correctness and its characteristics.

1. Introduction

Nowadays, more andmore nonlinear loads generate current and voltage harmonics that have
negative effects on the operation of electric power systems.

A conventional measure for the compensation of nonsinusoidal currents and/or
lagging load power factor is represented by tuned parallel passive filters (PFs). However,
their frequency characteristics are unfavorably influenced by the variable grid impedance
and the variations of the filter parameters which occur due to aging, temperature, and other
operational conditions.
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Active power filters (APFs) made up of a power converter have been developed to
suppress the harmonic currents and improve power factor.

Hybrid power filters (HPFs) consisting of dedicated passive and active filters
connected in series or parallel have been developed. The tolerances and variations in the
hybrid filter are not as serious as those in a passive filter used alone. It is well known that
HPF helps to reduce the active filter rating [1].

The parallel APF provides very good filter characteristics, but the VA capacity of the
power converter is the product of the load current harmonic plus fundamental reactive
components and the power grid voltage. Thus, the capacity and manufacture cost of the
power converter are very high which limit the APF wide application.

The HPF consists of a PF and a power converter. In the HPF operation, the PF can
reduce the capacity of the power converter, whereas the power converter is used to improve
the PF filter characteristic. So the HPFs are suitable especially for high-power nonlinear loads.

Although many modern power semiconductor devices offer a high degree of
reliability, a three-phase converter can develop various faults because of unexpected load
conditions or erroneous operation.

These faults have been analyzed and remedial strategies suggested, for example, in
[2, 3]. The converter turning off is not possible in many applications from the point of view of
technology requirements. Some solutions have been suggested for this situation, commonly
leading to the controller reconfiguration.

The three-phase converter with only two converter-legs (B4) connection, where one leg
is connected directly with the dc bus voltage center, is an alternative solution [4]. Only four
power switches and four clamping diodes are used in the adopted converter instead of six
power switches and six clamping diodes used in a conventional converter (B6) connection.
But the main disadvantages of four-switch presented topology are as follows.

(i) The dc-bus voltage center must be accessible as one of the three converter phases is
directly connected with this center point.

(ii) The dc-link capacitor size must be high to prevent a pulsation of the dc-bus center
point as the current going through this point is not dc, but it has ac character.

In, [5] we investigated a four-switch APF space vector modulated with the fourfold
symmetry. In [6], we applied the same fourfold symmetry to the HPF. This switching
symmetry is different from a sixfold switching symmetry of a classical six-switch converter.

In this paper, we propose the same switching symmetry (sixfold) as in a normal (B6)
converter for a four-switch converter shown in Figure 1. The voltage source converter is
controlled by a unique space-vector modulation (SVM) strategy proposed for B4 connection.
It means that all switching times valid for one-sixth of the output period are the same also in
the remaining sixths of the output period. For the analytical investigation of such a system
we used the mixed p-z approach [7] to analyze the SVM-suggested modification for the
component-minimized voltage source converter (VSC). First, unsymmetrical voltage space-
vectors are decomposed into symmetrical components using discrete Fourier transform
(DFT). Then, for the voltage symmetrical components, the mathematical model makes use
of the Laplace and modified Z-transform to predict responses of the line currents.
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Figure 1: Configuration of the proposed topology.

2. System Configuration

In this paper, a new topology introduced in [1] is analytically investigated and simulated. The
system configuration is shown in Figure 1. The passive part consists of a series inductor and
capacitor set (resistor, inductance, and capacitor: RF , LF , and CF), and the VSC is a two-leg
bridge structure. As it can be seen in this configuration, one phase (in our example phase “a”)
of the passive filter is directly connectedwith one of the four-switch converter dc terminals (in
our example minus dc bus terminal). Consequently, the number of power-switching devices
is reduced, and disadvantages (i)-(ii) are avoided as the dc midbus point is not utilized. The
voltage-source power converter with only two arms is controlled by the space-vector sixfold
pulse width modulation strategy.

3. Space Vector Modulation for B4 Connection with Sixfold Symmetry

Voltage source vectors for B6 converter are depicted in Figure 2. Since the phase “a” is
connected with the negative dc bus terminal in our new topology, we can use only 4 vectors
shown in the shade area (V0, V3, V4, and V5). But each phase of the proposed HPF contains
a capacitor which can block the dc component of the power converter’s output. Thus, we can
see that this space-vector diagram contains a dc offset voltage in each of three phases.

Let the vectors (V0, V3, V4, and V5) in Figure 2 have the following denotation:

V(Z00), V(Z10), V(Z11), V(Z01), (3.1)

where (Z, Sb, Sc) in (3.1) denotes the inverter switching states where Si = 1 (i = b, c) if the
upper leg switch is on and Si = 0 (i = b, c) if the upper leg switch is off. Z means zero
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Figure 2: Voltage space vectors in proposed converter.

pole voltage VA = 0. It means that from the ac utility point of view, the voltage space vector
diagram in Figure 2 is shifted by a dc-offset voltage space vector with the magnitude

Voff =
−Vdc

3
. (3.2)

As it can be seen from Figure 2, the capacitors dc-phase components forming the voltage
space vector Voff can be derived as Vfa0 = −Vdc/3, Vfb0 = Vfc0 = Vdc/6.

Therefore, the offset 0.5Vdc in the phase voltages at converter terminals resulting from
the negative bus connection of the phase “a” is compensated by this voltage space vectorVoff.

Since the dc bus voltage of the HPF power converter is relatively small as compared
to that of a parallel APF, only a small additional voltage rating, resulting from the presence
of the voltage space vector Voff, is required for the capacitors of this passive part of the HPF.

Thus, we have four switching states in B4 configuration. Four possible voltage space
vectors V(Z00), V(Z10), V(Z11), and V(Z01) in the complex αβ plane can be found as
shown in Figure 3. These vectors are π/2 away from each other. But they do not have the
same amplitude as in the classical B6 connection. Vectors laying in the real axis have the
amplitude of Vdc/3 whereas the vectors lying in the imaginary axis have the amplitude of√
3Vdc/3.

As mentioned earlier for this connection with only four switches, we want to have the
same switching symmetry as in normal B6 converter. To form sixfold symmetry, we must
use some vectors twice for the whole output period. Instead of system (3.1), we can use the
system

V(Z00),V(Z00),V(Z10),V(Z11),V(Z11),V(Z01). (3.3)
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For the next calculations, we express the time in terms of the sector number n and per unit
time variable ε as

t =
(n + ε)T1

6
= (n + ε)T, n = 0, 1, 2, ..., 0 ≤ ε ≥ 1, (3.4)

T1 is the fundamental period, T is the periodicity time of a space vector modulation, and it is
called a sector period

T =
T1
6
. (3.5)

Using discrete Fourier Transform (DFT) [8], the unsymmetrical sequence (3.3) can be
decomposed into two symmetrical ones as follows:

V(n) =
Vdc

3
2√
3
e−jπ/6ejπ(n/3) +

Vdc

3
1√
3
ejπ/2ejπn = V(1)(n) +V(3)(n). (3.6)

As it can be seen from (3.6), the unsymmetrical vector sequence (3.3) can be decomposed
into two symmetrical ones. The first sequence has a symmetry π/3 as in the conventional
B6 inverter, but its amplitude is lowered 1/

√
3 times, and the phase is rotated by (−π/6) as

compared with the conventional B6 converter.
The second symmetrical sequence is laying in the imaginary axis, and it has the

amplitude lowered twice comparedwith the first sequence. This sequence will form the third-
order voltage harmonics in the output cycle period.

Now such a modulation strategy has to be proposed that has the same symmetry as
for the B6 converter and is simple without significant increase in switching frequency. The
proposed modulation strategy is realized by planning the switching patterns between the
four active voltage vectors within a sampling period.

(a) Utilizing the first voltage vector sequence term V(1)(n) in (3.6). As in a usual
space vector modulation (SVM), four consecutive voltage vectors in a sampling
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period are used to generate the average output voltage matching with the reference
voltage.

(b) Minimizing the second voltage vector sequence term V(3)(n) in (3.6). For mini-
mization, the average voltage from the V(3)(n) within a sampling period should be
zero. Thus, the resulting converter fundamental voltage is balanced under steady
states although the sequence (3.3) represents an unbalanced fundamental voltage.
Nevertheless, some small residual third-order voltage harmonics in the output
cycle period are generated. It will be seen in the simulation as well as experimental
results presented later.

The converter should generate an average voltage vector VAV within each of the sampling
periods. Unlike the conventional SVM techniques, here four adjacent voltage vectors will be
used in every sampling period to provide us with an approximation of the demanded vector
VAV in this period.

Let every sixth of the fundamental period of the length T1 be divided intoN1 segments
with a sampling period

ΔT =
T1
6N1

=
T

N1
. (3.7)

Thus, the following three equations should be satisfied in order that four applied voltage
vectors may generate an average converter voltage vector matching the vector VAV and the
conditions (a) and (b) as well:

VAVe
jρΔT =

2Vdc

3
√
3
ΔT1e

−jπ/6 +
2Vdc

3
√
3
ΔT2e

jπ/6 +
2Vdc

3
√
3
ΔT3e

jπ/2 +
2Vdc

3
√
3
ΔT4e

j5π/6,

ΔT1 + ΔT3 = ΔT2 + ΔT4,

ΔT = ΔT1 + ΔT2 + ΔT3 + ΔT4,

(3.8)

where ρ is the angle to the real axis, andΔT1,ΔT2,ΔT3, andΔT4 are the time portions allocated
to the vectors V(Z00), V(Z10), V(Z11), and V(Z01). Solving (3.8), we obtain the following
switching time intervals (in p.u. time related to the time intervalΔT of the sixth of the period):

Δε1 =
ΔT1
T

= − g

2N1
sin

(
ρ
)
+

1
2N1

,

Δε2 =
ΔT2
T

=
g

2N1
sin

(
ρ +

π

3

)
,

Δε3 =
ΔT3
T

=
g

2N1
sin

(
ρ
)
,

Δε4 =
ΔT4
T

=
1
N1

−Δε1 −Δε2 −Δε3,

(3.9)



Mathematical Problems in Engineering 7

where

g =
2
√
3VAV

Vdc
(3.10)

is the modulation index.
Since the four-switch converter is operated with the SVM strategy described here,

expression (3.6)must be modified to respect the switching intervals (3.9) as follows:

V(n, ε) = V(1)(n, ε) +V(3)(n, ε)

=
4N1∑

k=1

Vdc
2

3
√
3
ej(n−1/2)π/3f(ε, k)ej(π/3)α(k) +

4N1∑

k=1

Vdc
1

3
√
3
ej(n+1/2)πf(ε, k)ejπα(k).

(3.11)

Four adjacent vectors used in the SVM strategy are characterized by

α(k) = (k modulo 4) − 1, (3.12)

while the switching functions f(ε, k) describing the switching patterns are defined as follows:

f(ε, k) = 1 if εAk ≤ ε ≤ εBk,

f(ε, k) = 0 . . . else,
(3.13)

where εAk, εBk are the start point setting time and the end point setting time, respectively, of
the kth voltage vector. The switching time intervals εBk−εAk = Δεk (p.u.) are defined by (3.9).

4. Analytical Solution in the Closed Form

We can write the voltage equations for the circuit in Figure 1 in the space vector notation (in
the Laplace transform)

vS(s) = (RS + sLS)iS(s) +
(
RF + sLF +

1
sCF

)
iF(s) + v∗(s),

iS(s) = iL(s) + iF(s),

(4.1)

where v∗(s) is the Laplace transform of the VSC output voltage [6].
To find the Laplace transform of the converter ac terminal voltage vector v∗(s), we can

use the Laplace transform of the periodic voltage vector as follows:

v∗(s) =
∞∑

n=0

∫1

0
V(n, ε)e−s(n+ε)TTdε = T

∫1

0
V(z, ε) · z−εdε, (4.2)
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where z = esT ,and V(z, ε) is the modified Z-transform of V(n, ε) [4], defined as follows:

V(z, ε) =
∞∑

n=0

V(n, ε)z−n, (4.3)

By the modified Z-transform, we can cover discrete system not only in the sampling times t
= nT as for normal Z-transform but also at all instants of time using t = nT + εT.

Thus, the voltage vector v∗(s) is as follows:

v∗ = V(1)(s) +V(3)(s) =
1
s

2Vdc

3
√
3

[
esTe−jπ/6

esT − ejπ/3

M∑

k=1

ejπα(k)/3
(
e−sTεAk − e−sTεBk

)]

+
1
s

Vdc

3
√
3

[
esTejπ/2

esT − ejπ

M∑

k=1

ejπα(k)
(
e−sTεAk − e−sTεBk

)]

,

(4.4)

whereM= 4N1 is the number of vectors that are used within the sector period T; εAk, εBk are,
respectively, the beginning and the end of kth voltage space vector application inside a sector
period. These times are given by switching SVM strategy described above.

As we assume that a grid voltage vector contains the positive and negative parts, its
Laplace transform is given as follows:

vS(s) =
VSPe

jϕP

s − jω1
− VSNe

jϕN

s + jω1
, (4.5)

where VSP, e
jϕP and VSN, e

jϕN are, respectively, the amplitude and phase angle of the positive
and negative components of the grid voltage vector.

As a nonlinear load, we assume a full bridge rectifier. This load current space vector
can be expressed as

iL(n, ε) =
2√
3
Ide

jπ/2ejπ(n−1)/3, (4.6)

with the phase load current given by a real part of (4.6) and shown in Figure 4 (Id is a dc
current of the full bridge rectifier).

The Laplace transform of (4.6) may be found again by using (4.2)-(4.3)

iL(s) =
2√
3
Id

1
s

esTejπ/6

esT − ejπ/3

(
1 − e−sT

)
. (4.7)

For calculation of the switching times by means of (3.9), we need to know the modulation
index g and the polar angle ρ of the reference voltage VAV to the real axis. These parameters
are not constants as in the classical SVM because of using here the two converter-legs (B4)
connection that generates compensating harmonics. The parameters may be calculated as
follows.



Mathematical Problems in Engineering 9

10 20 30
Time (ms)

2

1

0

−1

−2

L
oa

d
 c

ur
re

nt
(A

)

Figure 4: Nonlinear load current.

For the steady state, we can write for the VSC terminal voltage, grid, and VSC currents

VS = VSPe
jω1t + VSNe

−jω1tejγ ,

IS = ISPe
jω1tejϕ,

IF = IF1e
jω1tejγF1 +

∑

h=3,−5,7,...
αhILhe

jωht,

VAV = VAVe
jρ,

(4.8)

where γ is the angle between the positive and negative sequences of the grid voltage, ϕ is the
angle between VSP and IS (for ϕ= 0, the power factor equals 1), ω1 is an angular frequency
of the grid voltage, and ωh = hω1. The magnitude IF1 and angle γF1 of the fundamental
converter current depend on whether the reactive load power should be compensated by
the HPF or not. αh (≤1) is a factor determining the expected effectiveness of harmonic current
suppression by using this converter-based HPF.VAV is an average voltage vector that is equal
to the actual value of the vector v∗ (Figure 3) in the middle of the sampling period (VAV=v∗).

Thus, for given VS, IS, IL, ω1, ZS, and ZF , we can calculate the modulation index and
phase of the reference voltage vector VAV,

VAV = VS − IS(ZS + ZF) − ZFIF =
Vdc

2
√
3
g(ε)ejp(ε), (4.9)

Now we are prepared to calculate the time response of the grid current iS(n, ε). This current
can be determined by using the mixed p-z approach in the analytical closed form.

The expression for this current in the Laplace domain is given on the basis of (4.1), as
follows:

iS(s) =
1

ZS(s) + ZF(s)
· (vS(s) + ZF(s)iL(s) − v∗(s)), (4.10)

where vs(s), iL(s), and v∗(s) are determined by (4.5), (4.7), and (4.4).
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However, the last two terms in (4.10) cannot be made in a direct way as (4.10) contains
infinite number of poles given by (see (4.4), (4.7))

esT − ejπ/3 = 0,

esT − ejπ = 0.
(4.11)

To find the closed-form solution of (4.10) in the time domain, we should transfer the Laplace
transform of the grid currents into the modified Z-transform [7].

Thus, the current iS(s) (4.10) can be written in the form

iS(s) =
1

ZS(s) + ZF(s)
· vS(s) + esT

esT − ejπ/3
QL(s) − esT

esT − ejπ/3
Q(1)(s) − esT

esT − ejπ
Q(3)(s),

(4.12)

where

QL(s) =
2√
3
Id

1
s
ejπ/6

(
1 − e−sT

) ZF(s)
ZS(s) + ZF(s)

,

Q(1)(s) =
1
s

2Vdc

3
√
3
e−jπ/6

M∑

k=1

ejπα(k)/3
(
e−sTεAk − e−sTεBk

) 1
ZS(s) + ZF(s)

,

Q(3)(s) =
1
s

Vdc

3
√
3
ejπ/2

M∑

k=1

ejπα(k)
(
e−sTεAk − e−sTεBk

) 1
ZS(s) + ZF(s)

,

(4.13)

and the modified Z-transform of (4.12) can be expressed as

i(z, ε) = Zm

{
1

ZS(s) + ZF(s)
· vS(s)

}
+ RL(z)Zm{QL(s)}

− R(1)(z)Zm

{
Q(1)(s)

}
− R(3)(z)Zm

{
Q(3)(s)

}
,

(4.14)

where

RL(z) = R(1)(z) =
z

z − ejπ/3
,

R(3)(z) =
z

z − ejπ
.

(4.15)

To find the modified Z-transform of QL(s), Q(1)(s), and Q(3)(s) in (4.13), we can use the
translation theorem that reads

Zm

{
e−saF(s)

}
= z−yF

(
z, ε − a + y

)
. (4.16)
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The parameter y is given by

y = 1 for 0 ≤ ε < a,

y = 0 for a ≤ ε < 1.
(4.17)

To express the translation for the kth pulse with the beginning εAk and the end εBk (the pulse
width is Δεk = εBk − εAk), we use parametersmk and nk to determine per unit time for a pre-
pulse, inside-pulse, and postpulse. The parameter mk defines the beginning of the kth pulse
εAk, while the parameter nk defines the end of the kth pulse εBk. According to (4.17), we can
write

mk = 1 for 0 ≤ ε < εAk,

mk = 0 for εAk ≤ ε < 1,

nk = 1 for 0 ≤ ε < εBk,

nk = 0 for εBk ≤ ε < 1.

(4.18)

In terms of these two parameters, we can express the per unit time for three intervals:

(a) 0 ≤ ε < εAk prepulse per unit time: mk = nk = 1,

(b) εAk ≤ ε < εBk inside-pulse per unit time: mk = 0, nk = 1,

(c) εBk ≤ ε < 1 postpulse per unit time: mk = nk = 0.

After doing that, we can use the residua theorem in the modified Z-transform to find an
analytical closed-form solution

iS(n, ε) =
1

2πj

∮
iS(z, ε)zn−1dz. (4.19)

The solution contains three terms

iS(n, ε) = L−1{iS(s)} = iSS(n, ε) + iSL(n, ε) + iSV(n, ε), (4.20)

where L−1 means the inverse Laplace transform. But this step must be done by means of the
mixed p-z approach as mentioned here and demonstrated in [7].

These three fictitious currents are (see (4.10)) as follows:

(i) iSS(n, ε) is a fictitious current from the grid voltage vS,

(ii) iSL(n, ε) is the second fictitious current given by the voltage drop ZFiL,

(iii) iSV(n, ε) is the third fictitious current given by a voltage of the four-switch converter
v∗.

The solution contains both the steady state and transient components. As our attention here
is on the steady states we can obtain a steady state, solution in the closed form for n → ∞.
The current time responses in the steady state for some HPF parameters are presented in the
next paragraph.
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Figure 5: Time responses of variables |VAV|, ρ and modulation index g within one period of the
fundamental frequency.

5. Simulation

The presented simulation results were obtained for the following parameters:

VS = 120V, Vdc = 300V, IS = 1.5A, RS = 1.4Ω,

LS = 0.01H, RF = 1.0Ω, LF = 0.005H, CF = 0.000041 F, αh = 1,

fSW = 3 kHz.

(5.1)

The parameters RS, LS involve also the parameters of an autotransformer and an additional
resistor used in a laboratory setup for the verification of simulation results.

Figure 5 presents the time responses of the variables |VAV|, ρ and themodulation index
g given by (4.9) and (3.10) within one fundamental frequency period.

Figure 6 shows the respective values of the time interval lengths Δε1, Δε2, Δε3, Δε4,
and 1/N1 = Δε1+Δε2+Δε3+Δε4 calculated in each of 60 sampling intervals from (3.9)within
the basic period T1 = 1/50 = 0.02 s.

We can see that the magnitude VAV and therefore the modulation index g too, as well
as the angle ρ, are time dependent within the fundamental period T1 even in steady states due
to the fact that VSC is only two converter-legs (B4) connection and generates a nonsinusoidal
voltage v∗ for load current harmonics compensation.

Trajectories of three fictitious currents forming overall grid current in complex αβ
plane are shown in Figure 7.
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Figure 7: Trajectories of three fictitious currents forming overall grid current: iSS (a), iSL (b), and iSV (c).

In Figure 8, we can see the trajectories of the grid overall current and also the phase
current waveforms.

In Figure 9, we can see the compensating HPF current. All these results in steady
states were calculated by using the closed-form equations and visualized by the program
MATHCAD.
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Better results than those presented here can be expected for switching frequencies
higher than 3 kHz. The switching frequency 3 kHz was selected because of the complexity
of the code running in dSPACE 1103 control system used in a laboratory setup for the
verification of the simulation results.

6. Experimental Results

We verified the proposed method through experiments. The experimental system consists
of a three-phase converter, RF , LF , and CF passive filter (tuned to the 7th harmonic), and a
nonlinear load (a three-phase uncontrolled rectifier). The setup contains also digital control
unit based on the dSPACE control system DS 1103. The converter is an integrated power
module MITSUBISHI PS12038 (1200V, 25A, 15 kHz at maximum). The parameters of the
experimental setup are given in Table 1.

The grid currents are detected as well as the voltage at the point of common coupling
(PCC) and the dc voltage Vdc. The input signal is the reference voltage for this dc voltage.

The harmonic current detective control is applied where grid phase currents are
transformed into two orthogonal components in the reference frame rotating with the
synchronous angular speedω1. Fluctuating dq components of the source current are obtained
by using a high pass filter (HP) of the first order with the cut-off frequency fc= 16Hz. These
components are to be compensated by the HPF.

In order to control the magnitude of the dc voltage Vdc, an additional control loop
is inserted into the q axis path in the feedback control loop. The reference-compensating
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Table 1: Experiment parameters.

Grid and autotransformer RS = 1.4Ω LS = 11.1mH
Passive filter RF = 1Ω LF = 5mH CF = 41μF
Active power filter C = 832μF fSW=3 kHz

Vdc=286V
tdead = 1μS

HP signal filter fc = 16Hz 1st order For detection of harmonic currents

Stop M pos: 0 s Trigger

Type

Source

Mode

Coupling

30-May-08 11:17 50.0256 Hz

CH1 20 V CH2 20 V

Slope

11.2 VCH1M 2.5 ms

Tek

Edge

CH1

Rising

Auto

DC

2

Figure 10: Load and grid phase currents behavior (1A/div).

current components i∗Sd, i
∗
Sq are then transformed back into the phase reference quantities

and multiplied by a feedback control gain. Thus, three reference phase voltages for the HPF
are produced which are generated by the feedback control loop.

Figure 10 shows the trajectories of the load and grid phase currents. The control loop
of the nonactive power has not been activated here so that a phase shift between the load and
source currents is evident due to the capacitor of the HPF passive part.

Figure 11 presents the trajectories of the load and grid phase currents (a), harmonic
spectra of the load current (b), and the grid current (c). It is evident that the 5th, 11th, and 13th
current harmonics are suppressed approximately three times, but the 7th harmonic is lowered
roughly six times because the HPF passive part is tuned to the 7th harmonic (350Hz).

The residual harmonics in the grid current result from a small residual third-order
voltage harmonic due to the PWM strategy used and mainly from the fact that the feedback
control gain of the feedback control strategy must be limited to guarantee the stability of the
control loop. Some specific effects, like the function of a PLL (phase-locked loop) used to
synchronize the control algorithm, dead times of switching elements, and so forth, decrease
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Figure 11: Trajectories of the load and grid phase currents ((a) 2A/50div), harmonic spectrum of the load
current (b), and the grid current (c).

the efficiency to cancel out the load current harmonics completely. It should be noted as well
that the ac voltage at the PCC is far from being very sinusoidal due to the relatively high
source impedance RS, LS.

It is clear that the analyzed topology can supply a constant reactive power
proportional to the value of the condenser CF of the passive part to the grid. The condensers
voltage rating is higher than that for a normal (B6) converter because of their additional dc
voltage. But this reduced topology saves power electronics-based switching elements and
their control and protection circuits. The advantage of the topology and the proposed space
vector modulation strategy is that the center of the dc-bus voltage need not be accessible, and
the control preserves the same switching symmetry (sixfold) as in the normal (B6) converter.
Thus, the power circuitry and controller reconfiguration in case of the transition from B6 to
B4 topology due to a fault is easy.

7. Conclusion

In this paper, we proposed the analytical model and the original space vector modulation
strategy for a new circuit configuration of a hybrid power filter with only four switches and
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not utilizing the center point of the dc-bus voltage. This configuration removes the problems
with pulsation of the dc-bus voltage known from the bus-clamped converters. Based on
the control algorithm, nearly sinusoidal grid currents with the nonlinear load currents are
achieved by the adopted converter. Finally, an original closed formsolution of steady state
grid currents, based on the mixed p-z approach, is introduced. The analytical results and
experimental tests on the component-minimized three-phase HPF are shown as well.
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