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This paper presents an efficient texture synthesis based on wavelet packet tree (TSWPT). It has
the advantage of using a multiresolution representation with a greater diversity of bases functions
for the nonlinear time series applications such as fractal images. The input image is decomposed
into wavelet packet coefficients, which are rearranged and organized to form hierarchical trees
called wavelet packet trees. A 2-step matching, that is, coarse matching based on low-frequency
wavelet packet coefficients followed by fine matching based on middle-high-frequency wavelet
packet coefficients, is proposed for texture synthesis. Experimental results show that the TSWPT
algorithm is preferable, especially in terms of computation time.

1. Introduction

Texture modeling can be effectively applied to a wide variety of natural surfaces such as
plants, furs, skins, minerals, terrains, and fractal materials [1, 2] and is an important issue in
cyber-physical systems [3–7]. Numerous techniques have been proposed for texture process-
ing; one may refer to [8] for a complete survey.

Given an example texture, the goal of texture synthesis is to produce a visually similar
image of any size. One may easily tile small textures to synthesize a larger image; however,
there are some blocking effects near the tile edges [9]. Although some smoothing methods
were proposed to reduce the blocking effects at the cost of computation time, it seems to be
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limited in improvements, especially for structured textures [10]. Efros and Leung proposed
a neighborhood matching method [11], in which each pixel of the synthesis image was
obtained by searching the most similar one in the source image based on the user-defined
neighboring pixels.Wei and Levoy took account of the order inwhich pixels were synthesized
and proposed an order-independent search-based texture synthesis algorithm [12]. Instead
of synthesizing one pixel at a time, a patch of pixels can be taken as a whole and synthesized
by matching the overlap regions between neighboring patches [13–15]. To improve the
synthesis speed, the multi-resolution approach has been widely used for texture analysis and
synthesis [16, 17]; Fang and Lien developed a rapid image synthesis system by adopting a
multi-resolution approach, which consisted of an analysis process and a synthesis process. It
consumed most of the computation time in the analysis process; yet the speed of synthesis
was very fast [16]. In [17], De Bonet proposed a scheme of generating the synthesis image by
sampling the filtered outputs of a texture in the framework of Laplacian pyramid [18]. Burt
adopted the Gaussian pyramid [19] to represent both the input texture and the synthesis
image at multiple resolutions and synthesized the texture images from lower to higher
resolutions [20].

Wavelet transform provides an efficient multi-resolution representation [21], in which
the higher frequency components of an image are projected onto the shorter basis functions
with higher spatial resolutions and the lower frequency components are projected onto
the larger basis functions with higher spectral resolutions. Such a compact representation
matches the characteristics of human visual system [22]. Wavelet theory has been successfully
applied to many applications such as parameter estimation in fractal signals and images
[23–29]. Yu et al. randomly sampled blocks of wavelet coefficients from the input texture
to substitute that of the synthesis image [30]. Cui et al. adopted a 2-level wavelet transform
and generated the synthesis image by minimizing the sum of squared distances between
neighboring blocks of wavelet coefficients [31].

For images with textures, lots of wavelet coefficients are likely to be significant in
the middle-high frequency subbands, which surely demand further decompositions for a
more compact representation [32]. Note that wavelet transform only decomposes the low-
frequency component of an image at each resolution. However, both the low-frequency
and high-frequency components can be decomposed using wavelet packet transform, which
provides more bases functions than wavelet transform [33]. In [34], we proposed an efficient
scheme to organize the wavelet packet coefficients of an image into hierarchical trees called
wavelet packet (WP) trees for image compression. In this paper, an efficient WP tree-based
algorithm is proposed for the texture synthesis applications.

The remainder of this paper proceeds as follows. In Section 2, wavelet transform and
wavelet packet transform are briefly reviewed. Section 3 describes the proposed scheme to
synthesize a texture image based on theWP trees of an example texture. Experimental results
are presented in Section 4. Conclusion can be found in Section 5.

2. Review of Wavelet Transform and Wavelet Packet Transform

Wavelet-transform- (WT-) based multiresolution analysis/synthesis has drawn a lot of
attention to the signal/image/video applications. The extension of WT known as wavelet
packet transform (WPT) provides a much larger family of bases functions with a more
compact representation. In this section, a brief review of WT and WPT is given. For a more
complete survey, we refer readers to [21].
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2.1. Wavelet Transform

WT has a variety of desirable properties, for example, joint space-spatial frequency localiza-
tion, self-similarity across subbands of the same orientation, and energy clustering within
each subband. For a discrete signal at resolution �, S�(n), the wavelet transform is defined as

S�+1(n) =
∑

k

h(2n − k) · S�(k),

D�+1(n) =
∑

k

g(2n − k) · S�(k),
(2.1)

where
h(n) =

〈
φ, φ−1,−n

〉
,

g(n) =
〈
ψ, φ−1,−n

〉
,

φ−1,−n(x) = 2−1/2φ
(
2−1x − n

)
.

(2.2)

ψ is a (mother)wavelet, φ is the corresponding scaling function, S�+1(n) is the approximation
signal at the next coarser resolution �+1,D�+1(n) is the detail information between resolutions
� and � + 1, h(n) and g(n) are low-pass filter and high-pass filter, respectively, and 〈·, ·〉 is
an inner product operator. S�(n) can be exactly reconstructed from S�+1(n) and D�+1(n) by
using the following inverse wavelet transform (IWT):

S�(n) =
∑

k

h̃(n − 2k) · S�+1(k) +
∑

k

g̃(n − 2k) ·D�+1(k), (2.3)

where h̃(n) = h(−n) and g̃(n) = g(−n).
For the image applications, 2D WT can be obtained by using a tensor product of two

1D WTs, horizontally followed by vertically or vice versa. Specifically, let LL0(m,n) be an
image at the finest resolution 0, where m and n are indices for the vertical and horizontal
orientations, respectively. The 2D WT of LL0(m,n) is as follows:

LL1(m,n) =
∑

i

∑

j

h(i) · h(j) · LL0
(
2m − i, 2n − j),

LH1(m,n) =
∑

i

∑

j

h(i) · g(j) · LL0
(
2m − i, 2n − j),

HL1(m,n) =
∑

i

∑

j

g(i) · h(j) · LL0
(
2m − i, 2n − j),

HH1(m,n) =
∑

i

∑

j

g(i) · g(j) · LL0
(
2m − i, 2n − j),

(2.4)

where LL1(m,n) is the approximation image at the next coarser resolution 1, LH1(m,n),
HL1(m,n), and HH1(m,n) are the detail images in the vertical, horizontal, and diagonal
orientations, respectively. Figure 1 shows a 2-level 2DWT, where subbands LH� ,HL� ,HH� ;
� = 1, 2, and LL2 are delimited by solid lines. Similarly, 2D IWT can be obtained by using the
tensor product of two 1D IWTs.
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Figure 1: 2-level wavelet transform (solid boundaries), wavelet packet transform (dashed boundaries),
and a wavelet packet tree with wavelet packet coefficients connected by arrows.

2.2. Wavelet Packet Transform

2D WT is only to decompose the lowest-frequency subband of an image in an iterative
manner. More specifically, only the scaling coefficients are decomposed from higher to lower
resolutions. However, for the texture applications, wavelet coefficients in the middle- and
high-frequency subbands are likely to be significant, which needs to be taken into account to
improve the multiresolution representation.

As one can see, both the low-frequency scaling coefficients and high-frequency
wavelet coefficients of a signal, at any resolution, can be decomposed, which leads to wavelet
packet transform (WPT), and a much larger family of bases functions can be produced [33].
Moreover, 2D WPT can be obtained by using a tensor product of two 1D WPTs. Figure 1
shows a 2-level 2D WPT, where all the wavelet subbands LH1,HL1, andHH1, at resolution
1, are further decomposed into wavelet packet subbands delimited by dashed lines.

3. Wavelet-Packet-Tree-Based Texture Synthesis

Wavelet packet transform provides more bases functions, which leads to a more compact
representation in comparison with wavelet transform. For the image-coding applications,
we had proposed an efficient scheme to organize the wavelet packet (WP) coefficients of an
image into hierarchical trees called WP trees [32]. In this section, we explore the key features
of WP trees and propose a WP-tree-based algorithm for texture synthesis.

3.1. Wavelet Packet Tree

TheWP coefficients of a sequence of wavelet coefficientsD�(n), at resolution �, are computed
by

D̃�,1(n) =
∑

k

h(2n − k) ·D�(k),

D̃�,2(n) =
∑

k

g(2n − k) ·D�(k),
(3.1)
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which can be efficiently rearranged and concatenated by

D̃�(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D̃�,1

(n
2

)
; even n,

D̃�,2

(
n − 1
2

)
; odd n.

(3.2)

After the rearrangement and concatenation above, the dyadic relationship of wavelet
coefficients across subbands is still valid and can be used to construct the dyadic WP trees
of a signal. Similarly, the (2D) WP trees of an image can be obtained by rearranging the WP
coefficients horizontally followed by vertically or vice versa. Figure 1 shows a 2-level WP
tree with arrows connecting the related WP coefficients.

The key idea behind the construction of WP trees is based on the spatial relationships
of WP coefficients. It has the same structure, that is, quad-tree structure, as the conventional
wavelet trees. Furthermore, the number of high-energy wavelet coefficients can be
significantly reduced through the use of wavelet packet transform. Take the rice image shown
in Figure 5 as an example. The cumulative energy distribution (CED) of wavelet coefficients
or WP coefficients is given by

CED(n) =
∑n

i=1|C(i)|∑N
i=1|C(i)|

× 100%, (3.3)

where |C(i)|, i = 1, 2, . . . ,N, is the sortedmagnitudes of wavelet coefficients orWP coefficients
in descending order, n in is the number of coefficients, and N is the total number of
coefficients. Figure 2 shows the CED curves of wavelet coefficients and WP coefficients,
where the horizontal and vertical axes are the number of coefficients and percentage of
energy, respectively. It is noted that the energy clustering of WP coefficients is more compact
than wavelet coefficients. As a result, the WP-based representation is preferable to the
wavelet-based representation for texture images.

3.2. Proposed Algorithm

As noted, the low-frequency WP coefficients retain the global information of an image,
and the high-frequency WP coefficients contain the local detail. It is desirable to coarsely
synthesize an image based on the low-frequency WP coefficients and then tune the
intermediate synthesis result based on the high-frequency WP coefficients. Motivated by the
fact above, we propose an efficient WP-tree-based texture synthesis algorithm using a two-
step process: a coarse searching followed by a fine tuning. Figure 2 depicts a flowchart of the
proposed algorithm. It is presented in steps as follows.

Step 1 (initialization). Decompose the source image by wavelet packet transform, rearrange
the high-frequency WP coefficients, and construct the WP trees. Randomly select a WP tree
from the source image, which is replicated in the upper left corner of the synthesis image.
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Step 2 (coarse matching). For every WP tree to be synthesized, starting from the upper left
corner to the lower right corner of the synthesis image, search the candidate WP trees from
the source image by using a coarse matching with a tolerance as follows:

CWPj =
{
WPsouce,i | errLFN

(
i, j

) ≤ tolj , ∀i
}
,

tolj = min
i

errLFN
(
i, j

) · (1 + Tr),

errLFN
(
i, j

)
=

∑

p∈Ni,q∈Nj

distLFN
(
p, q

)
,

distLFN
(
p, q

)
=

∑

m,n∈LFN

(
WPsource,p(m,n) −WPsynthesis,q(m,n)

)2
,

(3.4)

where CWPj is the set of candidate WP trees obtained from the source image for matching
the synthesis WP tree WPsynthesis,j , with the tolerance tolj , Tr is a given threshold, distLFN(p, q)
is the distance between WPsource,p and WPsynthesis,q based on the low-frequency nodes (LFNs)
of WP trees, and Ni and Nj are neighbors of WPsource,i and WPsynthesis,j , respectively. Causal
neighborhoods were used in our experiments.

Step 3 (fine matching). After the coarse matching in Step 2, the following fine matching is
used to find the best WP tree based on the high-frequency nodes (HFNs) of the candidate
WP trees.

WPsynthesis,j = WPsource,i; i = arg
(
min
i

err
HFN

(
i, j

))
,

errHFN
(
i, j

)
=

∑

p∈Ni,q∈Nj

distHFN
(
p, q

)
,

distHFN
(
p, q

)
=

∑

m,n∈HFN

(
WPsource,p(m,n) −WPsynthesis,q(m,n)

)2
,

(3.5)

where WPsource,i ∈ CWPj in (3.5).

Step 4. Repeat Step 2 followed by Step 3 until all the WP trees to be synthesized are obtained
from the WP trees of the source image.

Step 5. Finally, the synthesis image is obtained by taking the inverse wavelet packet transform
of the synthesis WP trees.

To reduce the synthesis time, one can easily modify Steps 2 and 3 by using patches
of WP trees instead of single WP trees. Moreover, it is noted that lots of high-frequency WP
coefficients are not significant, and only a small portion of middle-frequency WP coefficients
are sufficient for the fine matching in Step 3. Thus, the proposed texture synthesis based on
wavelet packet tree (TSWPT) algorithm is simple and computationally efficient. Flowchart of
the TSWPT algorithm is shown in Figure 3.
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Figure 2: Cumulative energy distributions (CEDs) of the wavelet coefficients (solid line) and wavelet
packet coefficients (dashed line) of the rice image shown in Figure 5.
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Figure 3: Flowchart of the TSWPT algorithm.
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Figure 4: Visual comparison. Source images (1st column), synthesis images using Efros’ algorithm [13]
(2nd column), Cui’s algorithm [31] (3rd column), and the TSWPT algorithm (4th column).

4. Experimental Results

In the first experiment, the size of source images is 128 × 128, which are shown in the 1st
column of Figure 4; the size of synthesis images is 256×256. The TSWPT algorithm is applied
to patches of WP trees in order to reduce computation time. The size of patches is 11 × 11,
and the width of overlapped regions between neighboring patches is 3. The root nodes of WP
trees, that is,WP coefficients in the lowest frequency subband, are used in the coarsematching
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Figure 5: Synthesis images at double the size of the source image (top) using Efros’ algorithm [13] (middle)
and the TSWPT algorithm (bottom).

step to retain the global appearance of the input source image. Since the essential components
of textures are mainly distributed in the middle-frequency subbands, the highest-frequency
WP coefficients, that is, the leaf nodes of WP trees, can be ignored in the fine matching step.
The biorthogonal 9/7 wavelet is used. The threshold value, Tr , is set to 0.1.

Two widely used algorithms, Efros’ algorithm [13] and Cui’s algorithm [31], were
used for comparisons with the TSWPT algorithm. The synthesis results are shown in the
2nd, 3rd, and 4th columns of Figure 4, respectively. Visual inspection shows that TSWPT
is comparable to Cui’s algorithm and is preferable to Efros’ algorithm. All the algorithms
were implemented by Matlab without optimization in source codes. Table 1 shows the
computation times running on PC with CPU of 1.7GHz. It is noted that TSWPT is superior
to both Efros’ and Cui’s algorithms.

In the second experiment, the sizes of source image and synthesis image are 192 × 128
and 384 × 256, respectively. All the settings are the same as the first experiment. The source
image and synthesis results using Efros’ algorithm and TSWPT are shown in Figure 5. It is
shown that there are some blocking effects in the synthesis image using Efros’ algorithm.
However, blocking effects are likely to be eliminated by using the TSWPT algorithm due
largely to the filtering operations of inverse wavelet packet transform in Step 5. Figure 6
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Table 1: Comparison of computation times.

Efros and freeman [13] Cui et al. [31] TSWPT

Image 1 3.784 s 0.703 s 0.416 s

Image 2 3.893 s 0.854 s 0.425 s

Image 3 3.939 s 0.810 s 0.404 s

Image 4 3.914 s 0.737 s 0.372 s

Image 5 3.891 s 0.731 s 0.392 s

1 2 3 4 5 6 7 8
0

50

100

150

(s
)

Enlargement rates of image size

Figure 6: Synthesis times of the texture image (Figure 5) using Efros’ algorithm [13] (solid line), Cui’s
algorithm [31] (dashed line), and the TSWPT algorithm (dotted line).

shows the computation times at various enlargement rates of image size. As one can see,
the TSWPT algorithm outperforms both Efros’ and Cui’s algorithms.

5. Conclusion

The multi-resolution approach is suitable for texture synthesis in terms of computation
time. Wavelet packet transform provides more bases functions than wavelet transform and
therefore produces a more compact representation. We adopt wavelet packet transform to
analyze the input texture and organize wavelet packet coefficients to form hierarchical trees
called wavelet packet trees. The low-frequency nodes of wavelet packet trees contain the
global characteristics of an image; the high-frequency nodes contain the local details. Thus,
we propose texture synthesis based on wavelet packet tree (TSWPT). It has the advantage of
saving computation time dramatically, and moreover, no training process is needed. Given a
128 × 128 texture, experimental results show that the computation time for synthesizing an
256 × 256 image is only a fraction of a second.
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