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The network and plant can be regarded as a controlled time-varying system because of the random
induced delay in the networked control systems. The cerebellar model articulation controller
(CMAC) neural network and a PD controller are combined to achieve the forward feedback
control. The PD controller parameters are adjusted adaptively by fuzzy reasoning mechanism,
which can optimize the control effect by reducing the uncertainty caused by the network-
induced delay. Finally, the simulations show that the control method proposed can improve the
performance effectively.

1. Introduction

Networked control system (NCS) is a distributed and networked real-time feedback
control system which combine communication network and control system [1]. Due to the
irregularly multiple nodes shared network and data flowing change, information exchange
time delay occurred inevitably, which is the network-induced delay [2]. The network-
induced delay will cause system poor control quality and bad performance, even unstable
[3–5]. Therefore, the induced delay is one of the most issues in the network control system
[6–9].

Based on the influence of the induced delay in the network control system, a cycle
time delay network using augmented deterministic discrete time model method is proposed
by [10] to control the linear continuous controlled object. In [11] based on the queue
management network, the queuing methodology is put forward to turn random time delay
into fixed-length time delay. The buffer queue method is designed based on probability
predictor delay compensation, according to the problem of random delay in the network
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control system [12]. Zhang et al. [13] studied the stability of network control system with
constant delay. Wu et al. [14] propose a delay-dependent sufficient condition by applying
the delay partitioning approach for the asymptotic stability with an H∞ error performance
for the error system. Wu and Zheng [15] addressed the L 2-L ∞ dynamic output feedback
(DOF) control problem for a class of nonlinear fuzzy ItO stochastic systemswith time-varying
delay. Yue et al. [16] established the new network control systemmodel considering network-
varying delay, packet loss, and wrong sequence. Peng et al. [17] researched on network
control system with interval variable delay and reduced complexity by introducing Jessen
inequality. Wu et al. [18] investigated the problems of stability analysis and stabilization for
a class of discrete-time Takagi-Sugeno fuzzy systems with time-varying state delay. Wu et al.
[19] proposed sufficient conditions to guarantee the exponential stability for the switched
neural networks with constant and time-varying delays by using the average dwell time
approach together with the piecewise Lyapunov function technique and by combining a
novel Lyapunov-Krasovskii functional, which benefits from the delay partitioning method,
with the free-weighting matrix technique. In [20] the impact of the network-induced
delay is described as a system of continuous-time nonlinear perturbation using nonlinear
perturbation theory by assuming no observation noise. Yang et al. introduced a new class of
discrete-time networked nonlinear systems with mixed random delays and packet dropouts
[21] and discussed the problem of feedback control for networked systems with discrete and
distributed delays subject to quantization and packet dropout [22]. Xie et al. [23] discussed
the problem of robustH∞ fault-tolerant control for uncertain networked control system with
random delays and actuator faults.

In this paper, the PD control with CMAC (cerebellar model articulation controller,
CMAC) is proposed. The transmission network and the controlled object are regarded as the
time-varying controlled system, in which CMAC neural network implements the forward
feedback, while the fuzzy PD composite switching model is applied and adaptive on-line
parameters by using fuzzy inference engine are set. The method proposed can reduce the
impact of network-induced delay and the uncertainties, so it optimize the control effect and
improve the control performance of the system.

The rest of the paper is organized as follows. In Section 2, the problem of time delay
in NCS is described. The CMAC neural network-based fuzzy PD controller is put forward
in Section 3. Simulation results are shown in Section 4. Finally, a conclusion is provided in
Section 5.

2. The Description of Network Control System with Time Delay

In network control system, there are three kinds of delay, namely, sensor-controller delay τsc,
controller computation delay τc, and controller-actuator delay τca, where the τsc and τca are
caused by the transmission delay generated by the forward channel and feedback channel,
and the τc is caused by the hardware structure and software code. The controller computation
delay τc used is to be neglected because it is smaller than τsc and τca. So the total delay of the
kth sampling period can be represented as τk = τksc + τkca [24]. The network control system
block diagram is shown in Figure 1.

3. The Design of CMAC Neural Network-Based Fuzzy PD Controller

Network control system is time varying because of the network random delay, and the
general PID controller will make the control performance worse. But intelligent control has
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Figure 2: Structure of CMAC network.

a better adaptive ability and is an effective method to improve the system performance [25–
28], therefore intelligent control is applied to improve the robustness of the system [29–33].
In this paper, CMAC neural network-based fuzzy PD is applied to control the system. We
use the PD algorithm instead of the PID, so that the learning of CMAC neural network only
depends on the measured and varying values of errors.

3.1. CMAC Neural Network

CMAC is a neural network model which can simulate the function of the cerebellar and
has the ability to express and inquire complex nonlinear forms adaptively. The network can
change the form’s information through the learning algorithm and can also store information
by category [34]. CMAC consists of input layer, middle layer, and output layer, and its
structure is shown in Figure 2.

up = [u1p,u2p, . . . ,unp]
T and [up] are respectively input space vector and quantization

coding, and the input space is mapped to the c memory cells, and c is generalization
parameters. The mapping vector is as follows:

Rp = S
([
up

])
=
[
s1
(
up

)
, s2

(
up

)
, . . . , sc

(
up

)]T
, (3.1)
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where sj([up]) = 1, j = 1, 2, . . . , c. The network’s output is the sum of the weights of the c
units.

Now only thinking of the single input, the output is

y =
c∑

j=1

wjsj
([
up

])
, (3.2)

so

y =
c∑

j=1

wj. (3.3)

The learning algorithm is as follows.
The δ learning rule is adapted to adjust the weights, and the norm of weight adjustment is

E =
1
2c

e(t)2, (3.4)

where e(t) = r(t) − y(t).
According to the gradient descent, the weights are adjusted as follows:

Δwj(k) = −η ∂E

∂w
= η

r(t) − y(t)
c

· ∂y
∂w

= η
e(t)
c

,

wj(t) = wj(t − 1) + Δwj(t) + β
(
wj(t − 1) −wj(t − 2)

)
,

(3.5)

where w = [w1, w2, . . . , wc]
T , and β is inertial coefficient.

3.2. Fuzzy PD Controller

Fuzzy PD controller takes fuzzy reasoning to adjust the real-time PD parameters. The
design of the fuzzy controller includes the fuzzy rules, fuzzy domain, and defuzzification.
In this paper, fuzzy algorithm applies the dual-input-output, where signal difference e and
difference rate ec are the input, meanwhile, the PD controller proportion coefficient kp and
differential coefficient kd are the output, respectively. The structure is shown in Figure 3.
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The fuzzy PD control in a wide range can improve the dynamic response speed,
while PD control in a small scale can improve the static control accuracy. So in this paper
switching control system between fuzzy PD and PD control is proposed, PD control in the
small deviation is applied to obtain higher static control accuracy, and fuzzy PD control
in large deviations is applied to obtain faster dynamic response and smaller overshoot. Its
structure is shown in Figure 4. The PD control is applied when |e| ≤ e0 and the fuzzy PD
control is applied when |e| > e0, where e0 is threshold value.

3.3. Fuzzy PD Composite Controller Based on CMAC Neural Network

In general, CMAC network is a nonlinear mapping, which is very suitable for online
applications because it takes a simple δ algorithm as learning algorithm. This algorithm has
a fast convergence speed and avoids local minimum value problem. The fuzzy PD switching
controller is a nonlinear control, which has faster dynamic response, smaller overshoot, and
strong robustness. So the CAMC-fuzzy PD controller is designed, which has the advantages
of CMAC neural network and fuzzy PD controller. Also it is applied in the network control
system with delay. The structure is shown in Figure 5.

The input of CMAC neural network is command signal rin(k). Using the study
algorithm with tutor, calculate the relative neural network output un(k) of CMAC, compare
with the total control input u(k) at the end of each control cycle, then correct weights, and go
to the process of learning.

At the beginning of the operating system, fuzzy PD controller plays a major role, while
the neural network of CMAC does not work. After a while, the output of CMAC neural
network gradually plays a key role by continuous learning the actual output and the expected
output values to modify weights.
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(b) Step response controlled by CMAC-PD
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(c) Step response controlled by CMAC-fuzzy PD

Figure 6: Step responses when the mean of time delay is 5ms.

The control algorithm is

un(k) =
c∑
i=1

wiai, (3.6)

where ai is binary choice vector, and c is a generalization parameter.
Consider the following:

up(k) =

{
kP ∗ e(k) + kd ∗ ec(k), |e| ≤ e0,

k′
p ∗ e(k) + k′

d ∗ ec(k), |e| > e0,
(3.7)

where kP and kd are parameters preset by PD controller, meanwhile k′
p and k′

d
are parameters

adjusted online by fuzzy PD controller.
The output of system is

u(k) = un(k) + up(k), (3.8)
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(c) Step response controlled by CMAC-fuzzy PD

Figure 7: Step responses when the mean of time delay is 50ms.

where un(k) is the output of CMAC neural network, and up(k) is the output of the fuzzy PD
composites switching controller.

The mapping of CMAC neural network is that the input space is S and the range of
[Smin, Smax] is divided into N + 2c quantization intervals, that is,

v1 · · ·vc = Smin,

vj = vj−1 + Δvj

(
j = c + 1, . . . , c +N

)
,

vN+c+1 · · ·vN+2c = Smax.

(3.9)

The mapping of CMAC is

aj =

{
1, if Sj ∈

[
vjvj+c

]
, j = c + 1, . . . , c +N,

0, other.
(3.10)
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Adjusted index in the learning process is

E =
1
2c

(un(k) − u(k))2,

Δw(k) = −η ∂E

∂w
= η

u(k) − un(k)
c

· ai = η
up(k)
c

ai,

w(k) = w(k − 1) + Δw(k) + β(w(k − 1) −w(k − 2)),

(3.11)

where η is the rate of network learning, η ∈ (0, 1), and β is inertial, β ∈ (0, 1).

4. Simulation

In simulation, the input is the unit step, and the transfer function of controlled object is
(0.0008674z + 0.0008503)/(z2 − 1.94z + 0.9418). Parameters N = 100, c = 5, η = 0.1, β = 0.04,
and kp = 0.02, kd = 0.06, and switching threshold e is 0.2.

The domain of fuzzy algorithm input e and ec is, respectively, [−6, 6] and [−30, 30].
If the actual value of e exceeds the set domain, the value will be limited. The membership
function is Gaussian bell-shaped function, which is N, Z, P (negative, zero, positive),
respectively; the domain of k′

p and k′
d

is, respectively, [0, 0.001] and [0, 0.1], and
membership function is also Gaussian bell-shaped function, which is Z, S, M, P (zero, small,
medium, large) respectively; Mamdani-type reasoning is adopted and gravity method is
defuzzification. Fuzzy lut of k′

p and k′
d is, respectively, shown as Tables 1 and 2.

Due to the network delay varies randomly during continuous-time. In simulation,
system network delay is generated by Gaussian random signal source, and step responses
means for 5ms and 50ms under Gaussian distribution random delay network. Compared
with the traditional CMAC-PD composite control and fuzzy PD control, step response charts
are shown in Figures 6 and 7, where sampling time is 1ms.

From Figure 6(a), we can see that the result is not very good because of the time delay.
Under traditional fuzzy PD controller, the step responses of the system show great overshot,
long rising time, and large steady state error. In Figure 7(a) especially, when the time delay
increases, the fuzzy PD control overshoot of the system is also increased. Otherwise, the result
is not ideal under traditional CMAC-PD controller from Figures 6–7(b). Compared with the
first two kinds of methods, the CMAC-fuzzy PD controller proposed in this paper is more
ideal, especially in the long-delay network. Figures 6–7(c) show that the system has the virtue
of stability, precision, fastness, and strong robustness.

5. Conclusions

Network control system is the time varying because of the random-induced delay, which
results in worse control effects. But the intelligent control has better adaptation and can be
used to improve the control performance. This paper regards transmission network and the
controlled objects as a time-varying system, combines CMAC neural network algorithmwith
PD controller to achieve forward feedback control, and adopts the intelligent control strategy.
The PD controller introduces fuzzy PD complex switching model. According to the size of
the error signal, switching-controller switches between directly PD controller and fuzzy PD
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Table 1: Fuzzy lut of k
′
p.

e/ec N Z P
N S M Z
Z P P P
P P P P

Table 2: Fuzzy lut of k
′
d
.

e/ec N Z P
N Z M M
Z P Z P
P M Z S

controller, in order to improve the speed of dynamic response of the system and accuracy
of steady-state control. Simulation results show that the system has the virtue of stability,
precision, fastness, and strong robustness. So that this method can achieve a better effect and
can also improve the system’s performance effectively.
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[17] C. Peng, Y. C. Tian, and M. O. Tadé, “State feedback controller design of networked control systems
with interval time-varying delay and nonlinearity,” International Journal of Robust and Nonlinear
Control, vol. 18, no. 12, pp. 1285–1301, 2008.

[18] L.Wu, X. Su, P. Shi, and J. Qiu, “A new approach to stability analysis and stabilization of discrete-time
T-S fuzzy time-varying delay systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41,
no. 1, pp. 273–286, 2011.

[19] L. Wu, Z. Feng, and W. X. Zheng, “Exponential stability analysis for delayed neural networks with
switching parameters: average dwell time approach,” IEEE Transactions on Neural Networks, vol. 21,
no. 9, pp. 1396–1407, 2010.

[20] G. C. Walsh, O. Beldiman, and L. G. Bushnell, “Asymptotic behavior of nonlinear networked control
systems,” IEEE Transactions on Automatic Control, vol. 46, no. 7, pp. 1093–1097, 2001.

[21] R. N. Yang, P. Shi, and G. P. Liu, “Filtering for discrete-time networked nonlinear systems with mixed
random delays and packet dropouts,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2655–
2660, 2011.

[22] R. N. Yang, P. Shi, and G. P. Liu, “Network-based feedback control for systems with mixed delays
based on quantization and dropout compensation,” Automatic, vol. 47, no. 12, pp. 2805–2809, 2011.

[23] D. Xie, D. Zhang, and Z. Wang, “Robust H∞ faulttolerant control for uncertain networked control
system with two additive random delays,” International Journal of Innovative Computing, Information
and Control, vol. 7, no. 1, pp. 315–326, 2011.

[24] L. Fu and G. Z. Dai, “A survey of networked control systems,” Computer Engineering and Applications,
vol. 41, no. 25, pp. 221–225, 2005.

[25] L. Wu and D. W. C. Ho, “Fuzzy filter design for Itô stochastic systems with application to sensor fault
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