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In order to overcome the inaccuracy of the forecast of a single model, a new optimal weight com-
bination model is established to increase accuracies in precipitation forecasting, in which three
forecast submodels based on rank set pair analysis (R-SPA) model, radical basis function (RBF)
model and autoregressive model (AR) and one weight optimization model based on improved
real-code genetic algorithm (IRGA) are introduced. The new model for forecasting precipitation
time series is tested using the annual precipitation data of Beijing, China, from 1978 to 2008. Results
indicate the optimal weights were obtained by using genetic algorithm in the new optimal weight
combination model. Compared with the results of R-SPA, RBF, and ARmodels, the newmodel can
improve the forecast accuracy of precipitation in terms of the error sum of squares. The amount of
improved precision is 22.6%, 47.4%, 40.6%, respectively. This new forecast method is an extension
to the combination prediction method.

1. Introduction

Precipitation time series forecast has received tremendous attention in the world because of
the uncertainty of climate change which increases the difficulty of accurately forecasting such
time series. The forecast of the nonlinear and uncertain time series is very difficult with the
traditional deterministic mathematic models, which cause new challenges to increase forecast
accuracies [1, 2]. There are many methods for predicting complex time series [3–13].

Rank set pair analysis (R-SPA)model is based on the principle of set pair analysis, and,
in this model, we take rank as the particular characteristic of the time series which could
be regarded as the standard of the similarity analysis. Radical basis function (RBF) neural
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networkwas firstly introduced by Broomhead and Lowe [7]. The RBF networkmodel is moti-
vated by the locally tuned response observed in biological neurons. Neurons with a locally
tuned response characteristic can be found in several parts of the nervous system. The theo-
retical basis of the RBF approach lies in the field of interpolation of multivariate functions [8].
Chau applied particle swarm optimization training algorithm for artificial neural network
system (ANN) in prediction [3, 4]. The content of autoregressive (AR) model is a random
process, which is often used to model and forecast various types of natural phenomena.

The combination model techniques provide consensus forecast by linear combination
of individual model predictions according to different weighting strategies. The weights can
be equal for all models in the simplest case or be determined through certain regression based
methods [9]. The concept of combining the forecast model obtained from different models
has been discussed and used previously [10–19]. The sensible combination of the outputs of
different models has the additional merit that it may assist in the understanding of the
underlying physical processes. Genetic algorithms (GAs) encode a potential solution to a spe-
cific problem on a simple chromosome-like data structure and apply recombination operators
to these structures so as to preserve critical information. GAs are chosen to calculate the
weights of three submodels because of its outstanding performance in optimization analysis,
especially regarding the process of finding optimal parameters.

This study first combines the three submodels which are introduced as previous, and
the improved real-code genetic algorithm (IRGA) [19] is used to calculate the weights of the
combination model. The three submodels and the new optimal weight combination model
are used to forecast the annual precipitation for Beijing from 2004 to 2008. In the next section,
optimal weight combination model is presented. In Section 3, we discuss the application of
the optimal weight combination model. In Section 4, we give the conclusions.

2. The Optimal Weight Combination Model

In this paper, the procedure of establishing the new optimal weight combinationmodel can be
divided into three steps as follows.

(1) Construct the weight combination model.

(2) Establish three submodels.

(3) Calculate the weights of the three submodels by using IRGA.

The flow chart of this procedure is shown in Figure 1.

2.1. Construction of the Weight Combination Model

In the case of N forecast models, the weight combination forecast model [20] may be ex-
pressed as

xi =
N∑

j=1

wjxji + ei, (2.1)

where xi is the observed discharge of the ith time period, wj is the weight assigned to the jth
model, and estimated discharge xji and ei are the combination error term.
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Figure 1: The flow chart of the procedure of establishing the new optimal weight combination model.

Equation (2.1) can be represented in matrix notation as

X = YW + E, (2.2)

where Y is the input matrix defined by

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x21 . . . xN1

x12 x22 . . . xN2

...
...

. . .
...

x1n x2n . . . xNn

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.3)

X = (x1, x2, . . . , xn)
T is the output vector, W = (w1, w2, . . . , wN)T is the weight vector, E =

(e1, e2, . . . , en)
T is the combination error vector, T denotes the transpose of the vector, and n is

the total number of observations.



4 Mathematical Problems in Engineering

Table 1: History set At and current set B.

History set Elements Subsequent value
A1 x1, x2, . . . , xT xT+1

A2 x2, x3, . . . , xT+1 xT+2
... · · · · · ·
Ai xi+1, xi+2, . . . , xi+T xi+T+1
... · · · · · ·
An−T xn−T , xn−T+1, . . . , xn−1 xn

Current set Elements Subsequent value
B xn−T+1, xn−T+2, . . . , xn xn+1

In the weight combination forecasting model, the sum of the weights w is normally
constrained to be equal to unity, that is

N∑

j=1

wj = 1. (2.4)

The value of the weight w cannot be less than zero, that is

wj ≥ 0
(
j = 1, 2, . . . ,N

)
. (2.5)

2.2. Establishment of the Three Submodels

2.2.1. Rank Set Pair Analysis (R-SPA) Model

The procedure of the establishment of this model is shown as follows.

(1) Consider an annual precipitation series x1, x2, . . . , xn, we constructed the history
sets A1, A2, . . . An−T , current set B and the subsequent value of these sets are rep-
resented in Table 1.

Because of the weak dependence in the annual precipitation series, we assume that the
number of history set and current set T to be an integer from 4 to 6.

(2) Rank transformation. We mark the elements in A1, A2, . . . , An−T , B from 1 to T ac-
cording to the rank of elements in the sets they belong to. If some elements have the
same rank, we mark them according to their average rank and round off the value.
Then, we could obtain the rank set A′

1, A
′
2, . . . , A

′
n−T , B

′.

(3) Construct n−T rank set pairs (A′
i, B

′) (i = 1, 2, . . . , n−T) and calculate the difference
d between the corresponding elements of A′

i and B′. If the absolute value of d is
equal to zero, we mark them “identical”; if the absolute value of d is greater than
T −2, we mark them “contrary”; if the absolute value of d is between zero and T −2,
we mark them “discrepant.” Respectively, count the total number of “identical,”
“contrary,” and “discrepant” of each rank set pair. According to the value of the
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coefficient of the discrepancy degree i and the coefficient of the contrary degree j,
the connection degree formula as follows:

μA−B =
S

N
+

F

N
i +

P

N
j, (2.6)

where μ is the connection degree of the set pair, N denotes the total number of
characteristics of the set pair, S represents the number of identity characteristics, P
is the number of contrary characteristics, F is the number of the characteristics if the
set pair is neither identity nor contrary. According to (2.6), we calculate the value
of the connection degree of each rank set pair.

(4) In accordance with the maximum principle, we can find a similar set A′
i of B, and

also we can find several similar sets of B under certain circumstances. A′
i is the

counterpart of Ai, and the subsequent value of Ai is xT+1. We can obtain the value
of xn+1 through the formula as follows:

xn+1 =
1
m

m∑

k=1

wkxT+k, (2.7)

where wk is the ratio of the average of the elements in B and the average of the
elements in Ak, m is the number of the similar sets of B.

2.2.2. Radical Basis Function (RBF) Model

The interpretation of the RBF method as an artificial neural network consists of three layers:
one layer is the input layer neurons feeding the feature vectors into the network; another layer
is a hidden layer of RBF neurons calculating the outcome of the bas functions; the last layer
is the output layer neurons calculating a linear combination of the basis functions [21, 22].
The different numbers of hidden layer neurons and spread constant are tried in the study. Its
topological structure is shown in Figure 2.

The procedure of the establishment of this model is shown as follows.

(1) Normalization of the time series. Consider an annual precipitation series {x1,

x2, . . . , xn}, we can transform the series to {x′
1, x

′
2, . . . , x

′
n} by the normalization

formula as follows.

x′
t =

xt − xmin

xmax − xmin
(t = 1, 2, . . . , n), (2.8)

where xmin and xmax denote the minimum and the maximum of the time
series {x1, x2, . . . , xn}.

(2) Forecast of the data. The application of the RBF neural networks to time series
data consists of two steps. The first step is the training of the neural networks.
Choose the first N value of the new series {x′

1, x
′
2, . . . , x

′
n} as the training sample,

and set up the RBF neural networks. Once the training stage is completed, the
RBF neural networks will be applied to the forecasting data. Based upon the RBF
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Figure 2: The topological structure of RBF.

neural networks established by the training sample, we forecast the value of the
last n − N elements of the series {x′

1, x
′
2, . . . , x

′
n} and the forecasting series can be

represented as {y′
N+1, y

′
N+2, . . . , y

′
n}. In this study, we take that the value of the

mean-square error is 0.0001 and the width of the radical primary function is 1.

(3) Denormalization of the forecasting series. Since the value of the elements in fore-
casting series is between zero and one, that is y′

j ∈ [0, 1], we should denormalize
the forecasting series {y′

N+1, y
′
N+2, . . . , y

′
n} to final forecasting {yN+1, yN+2, . . . , yn}

through the denormalization formula as follows:

yj = y′
j × (xmax − xmin) + xmin

(
j = N + 1,N + 2, . . . , n

)
. (2.9)

2.2.3. Autoregressive (AR) Model

In this paper, we regard the data of the annual precipitation as a time series and the trend
term, seasonal term, and random term can be extracted from the time series in sequence.
Then, we superpose the trend term, seasonal term and random term, and obtain the equation
as follows [23–25]:

xt = At + Bt + Ct, (2.10)

where xt is the precipitation time series, At is the trend term, Bt is the seasonal term, and
Ct is the random term.
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The procedure of establishing the autoregressive model is shown as follows.

(1) The extraction of the trend term. In this paper, the data performs a clear quadratic
algorithms component, so a polynomial function is used to fit the precipitation data.
The trend term At can be described as follows:

At = P2t
2 + P1t + P0, (2.11)

where Pi (i = 0, 1, 2) is the coefficient of the quadratic polynomial (2.11).

(2) The extraction of the seasonal term. The analysis of precipitation seasonality can be
accomplished with the aid of modeling via spectral analysis. The precipitation sea-
sonality can be indicated with L waves. BBt is the output of Pt subtract At, and the
estimated value of BBt can be defined as BB′

t:

BB′
t =

a0

2
+

L∑

k=1

[
ak cos

2pkt
n

+ bk sin
2pkt
n

]
, (2.12)

where L = [n/2] is the number of harmonicwave, ak and bk are the coefficient of the
Fourier series (2.12):

a0 =
1
n

n∑

t=1

BBt,

ak =
2
n

n∑

i=1

BBt cos
2πki
n

(k = 1, 2, . . . , L),

bk =
2
n

n∑

i=1

BBt sin
2πki
n

.

(2.13)

Taking the working capacity into consideration, we choose the significant wave to
forecast. And we define the kth wave as the significant wave when the following inequality
is satisfied:

sk
2 = ak

2 + bk
2 >

0.5s2 ln(k/a)
n

, (2.14)

where a is the level of significance (a = 5%); s2 is the variance of the series:

s2 =
1

n − 1

n∑

t=1

(
Pt − Pt

)2
. (2.15)

(3) The extraction of the random term. The random term Ct is defined as a linear
combination of Ct−1, Ct−2, . . . , Ct−p:

Ct = α0 + α1Ct−1 + α2Ct−2 + · · · + αpCt−p, (2.16)
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where p is the order number of the model; α i (i = 0, 1, . . . , p) denotes the coefficient
of the regression model, which can be confirmed by AIC (Akaike’s Information
Criterion) formula:

AIC
(
p
)
= n lnσp

2 + 2p, (2.17)

where n is the number of series, σp
2 represents the variance of AR(p) and the appro-

priative of p can be chosen among 1, 2, 3, and 4.

2.3. Calculation of the Weights of the Submodels

The key of setting up the optimal weight combination model is to ascertain the weight of each
forecasting model. In this study, we choose the weight which satisfies that the error sum of
squares of the combination model is the minimum among all weight combination forecasting
models, that is

min f = min
n∑

i=1

e2i = min
n∑

i=1

⎛

⎝xi −
N∑

j=1

wjxji

⎞

⎠
2

, (2.18)

where f is the error sum of squares of the combination model.
Two matrices S and E′ are defined as

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

e11 e12 . . . e1n

e21 e22 . . . e2n

...
...

. . .
...

eN1 eN2 . . . eNn

⎤
⎥⎥⎥⎥⎥⎥⎦
, eij

(
i = 1, 2, . . . ,N, j = 1, 2, . . . , n

)
, (2.19)

eij is the error of the jth forecasting value of the ith model,

E′ = SST =

⎡
⎢⎢⎢⎢⎢⎢⎣

e′11 e′12 . . . e′1N
e′21 e′22 . . . e′2N
...

...
. . .

...

e′N1 e′N2 . . . e′NN

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.20)

And, the formula (2.13) can be represented as follows:

min f = min
n∑

i=1

e2i = min
n∑

i=1

⎛

⎝xi −
N∑

j=1

wjxji

⎞

⎠
2

=
N∑

i=1

N∑

j=1

wiwje
′
ij . (2.21)

If we obtain the value of wj (j = 1, 2, . . . ,N) with the aid of formula (2.4), (2.5), and
(2.21), then we can ascertain optimal weight combination model.
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Figure 3: The flow chart of genetic algorithm.

Genetic algorithm is an adaptive heuristic search algorithm premised on the evolu-
tionary ideas of natural selection and genetic mutation, and it has always been regarded as a
function optimizer [26–28]. The flow chart of genetic algorithm is shown in Figure 3.

In this paper, we use the improved real-code genetic algorithm (IRGA) to solve this
optimization problem. The population size is 20; the crossover fraction is 0.8, and the gene-
ration is 100.

3. Application of the Optimal Weight Combination Model

In this study, the data of the annual precipitation from 1978 to 2008 for Beijing are collected
and shown in Figure 4.
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Figure 4: An annual precipitation from 1978 to 2008 for Beijing.

Table 2: The forecasted data of three submodels.

Year
Measured
value
(mm)

Model
R-SPA RBF The autoregressive model

Forecasted
value (mm) Error (%) Forecasted

value (mm) Error (%) Forecasted
value (mm) Error (%)

2004 483.5 379.0 104.5 178.8 304.7 520.2 −36.7
2005 410.7 358.8 51.9 317.8 92.9 429.1 −18.4
2006 318.0 369.1 −51.1 407.5 −89.5 541.9 −223.9
2007 483.9 382.5 101.4 531.0 −47.1 445.1 38.8
2008 626.3 400.1 226.2 576.0 50.3 407.8 218.5

Table 3: The weights of the three submodels.

Model Weight
R-SPA model 22.9%
RBF neural networks model 37.2%
Autoregressive model 39.9%

Firstly, we use R-SPA, RBF, and AR models to forecast the annual precipitation from
2004 to 2008 of Beijing, respectively. And the outputs of the three models are shown in Table 2.

Based on the forecasted data of the three submodels, the weights of the three sub-
models in the combination model are obtained by using IRGA [19] and the weights of the
three models are 22.9%, 37.2%, and 39.9%, respectively, and are given in Table 3.

Based on the obtained weights, we calculate the forecasted data of optimal weight
combination model, and the output is represented in Table 4.

By comparing the output of the combination model with the output of the three sub-
models, we find that the error sum of squares of the combination model is apparently lower
than that obtained for any other submodel. In this study, the value of the error sum of squares
is regarded as the standard for judging the precision of the forecast of the annual precipitation
of Beijing, and the improvement of the precision of the new weight combination model com-
pared with three submodels is shown in Table 5.
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Table 4: The forecasted data of the combination model.

Year Measured value (mm) Forecasted value (mm)
2004 483.5 360.6
2005 410.7 371.3
2006 318.0 451.9
2007 483.9 462.2
2008 626.3 468.1

Table 5: The improvement of the precision of the new weight combination model.

Compared models The improved precision of new weight combination model
R-SPA model 22.6%
RBF model 47.4%
Autoregressive model 40.6%

So we conclude that the precision of the combination model is higher than that of three
models in terms of the error sum of squares.

4. Conclusions

A new optimal weight combination model, based on the R-SPA, RBF, and AR models and
one weight optimization model based on improved real-code genetic algorithm (IRGA), is
proposed in this paper. The annual precipitation time series of Beijing from 1978 to 2008 are
studied by using the new model. The main conclusions are given as follows.

(1) Three submodels, that is, R-SPA model, RBF model, and AR model, are tested to
forecast the annual precipitation of Beijing, and the results suggest that R-SPA is
better and RBF worst in the three models in terms of the error sum of squares. Dif-
ferent models have different precision for forecasting annual precipitation.

(2) The optimal weights can be obtained by use of IRGA in new optimal weight com-
bination model. Application results of the combination model indicate the weights
of the submodels can be appropriately confirmed and such method provides a new
way to improve the prediction precision for forecasting complex precipitation time
series.

(3) Compared with the results of R-SPA, RBF, and ARmodels, the proposed model can
improve the forecast accuracy of precipitation in terms of the error sum of squares,
and its improved precision is 22.6%, 47.4%, 40.6%, respectively. So the precision
of the three submodels can be improved by establishing the new model in preci-
pitation forecast.

(4) Because of the fail to avoid the drawbacks of three submodels completely, the
accuracy of the combination model is inevitably affected. In the future, the accuracy
of the combination model may be improved by applying some more advanced sub-
models.
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