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We propose the degenerate-generalized likelihood ratio test (DGLRT) for one-sided composite
hypotheses in cases of independent and dependent observations. The theoretical results show
that the DGLRT has controlled error probabilities and stops sampling with probability 1 under
some regularity conditions. Moreover, its stopping boundaries are constants and can be easily
determined using the provided searching algorithm. According to the simulation studies, the
DGLRT has less overall expected sample sizes and less relative mean index (RMI) values in
comparison with the sequential probability ratio test (SPRT) and double sequential probability
ratio test (2-SPRT). To illustrate the application of it, a real manufacturing data are analyzed.

1. Introduction

Consider the following hypotheses test problem:

H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 (θ0 < θ1) (1.1)

with the error constraints

Pθ

{
acceptH1

} ≤ α for θ ≤ θ0

Pθ

{
acceptH0

} ≤ β for θ ≥ θ1.
(1.2)

Here, θ0, θ1 ∈ Θ, and Θ is the parameter space. Sequential tests for the problem (1.1) with
independently and identically distributed (i.i.d.) observations have been widely studied.
In cases of the one parameter exponential family with monotone likelihood ratio, the
sequential probability ratio test (SPRT) proposed by Wald [1] provided an optimal solution to
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the problem (1.1), in the sense of minimizing the expected sample sizes (ESSs) at θ = θ0 and
θ = θ1, among all tests satisfying the constraints (1.2).

However, its ESSs at other parameter points are even larger than that of the test
methods with fixed sample sizes. This led Weiss [2], Lai [3], and Lorden [4] to consider the
problem (1.1) from the minimax perspective. Subsequently, Huffman [5] extended Lorden’s
[4] results to show that the 2-SPRT provides an asymptotically optimal solution to the
minimax sequential test problem (1.1). Instead of the minimax approach, Wang et al. [6]
proposed a test minimizing weighted ESS based on mixture likelihood ratio (MLR). Since the
ESSs over [θ0, θ1] are hard to control and are usually focused on applications, Wang et al. [6]
paid much attention to investigate the performance of the ESS over [θ0, θ1]. Many tests for
the problem (1.1) under independent observations are developed from other perspectives,
including [7–11] and so forth.

It is true that in many practical cases the independence is justified, and hence these
tests have been widely used. However, such tests may not be effective in cases when
the observations are dependent, for example, Cauchy-class process for sea level (cf. [12]),
fractional Gaussian noise with long-range dependence (cf. [13, 14]) and the power law
type data in cyber-physical networking systems [15]. Especially for the power law data, the
sequential tests for dependent observations are particularly desired. This need is not limited
to these cases.

So far, many researchers studied sequential tests for various dependent scenarios.
Phatarfod [16] extended the SPRT to test two simple hypotheses H0 : θ = θ0 versus
H1 : θ = θ1 when observations constitute a Markov chain. Tartakovsky [17] showed that cer-
tain combinations of one-sided SPRT still own the asymptotical optimality in the ESS under
fairly general conditions for a finite simple hypotheses. Novikov [18] proposed an optimal
sequential test for a general problem of testing two simple hypotheses about the distribution
of a discrete-time stochastic process. Niu and Varshney [19] proposed the optimal parametric
SPRT with correlated data from a system design point of view. To our best knowledge,
however, there are few references available for considering the problem (1.1) with dependent
observations from the perspective of minimizing the ESS over [θ0, θ1]. Similar to Wang et al.
[6], one can extend the MLR to the dependent case. However, unlike the i.i.d. case, the MLR
under the dependent case may not be available because of the complexity of its computation.
Besides, its test needs to divide [θ0, θ1] into two disjoint parts by inserting a point. In i.i.d.
cases, this point can be selected following Huffman’s [5] suggestion. But, in the dependent
case, this suggestion may not be effective. One also can use the generalized likelihood ratio
(GLR) instead of the MLR. Unfortunately, as opposite to the MLR, the GLR does not preserve
the martingale properties which allow one to choose two constant stopping boundaries in
a way to control two types of error. Moreover, the computation of the GLR is hard to be
obtained in cases when the maximum likelihood estimator should be searched. This usually
happens in the dependent case.

In this paper, we propose a test method for both dependent and independent observa-
tions. It has the following features: (1) it has good performances over [θ0, θ1] in the sense of
less overall expected sample sizes; (2) its computation is reasonably simple; (3) its stopping
boundaries can be determined conveniently. The rest of the paper is organized as follows. In
Section 2, we describe the construction of the proposed test in details and present its basic
theoretical properties. Based on these theoretical results, we provide a searching algorithm
to compute stopping boundaries for our proposed test. In Section 3, we conduct some
simulation studies to show the performance of the proposed test. Some concluding remarks
are given in Section 4. Some technical details are provided in the appendix.
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2. The Proposed Test

Let xi =: (x1, x2, . . . , xi), i = 1, 2, . . . and suppose that the conditional probability distribution
of each xi|xi−1, f(xi|xi−1, θ) has an explicit form. Here, x1|x0 =: x1 and f(x1|x0, θ) =: f(x1, θ).
Thus, likelihood ratio can be defined as

Rn

(
θ, θ′) =

n∏
i=1

f
(
xi | xi−1, θ

)
f
(
xi | xi−1, θ′) , θ, θ′ ∈ Θ. (2.1)

Lai [20] introduced this model to construct a sequential test for many simple hypotheses
when the observations are dependent. It is very general and also includes the i.i.d. cases.

Example 2.1. Consider, for instance, a simple nonlinear time series model:

xi = θx2
i−1 + εi, εi ∼ N(0, 1). (2.2)

In this case, Rn(θ, θ′) =
∏n

i=1φ(xi − θx2
i−1)/φ(xi − θ′x2

i−1), x0 = 0, and φ(·) is the probability
density function of the standard normal distribution.

To overcome the difficulty stated in Section 1, we propose a test statistic which
minimizes the likelihood ratio with restriction to a finite parameter points in [θ0, θ1]. First, we
insert k (≥3) points into [θ0, θ1] uniformly, denoted as θ̃i with θ̃i = θ0 + (i− 1)(θ1 − θ0)/(k − 1),
i = 1, . . . , k. Next, we define the test statistic as max1≤i≤k Rn(θ̃i, θ′). It can be checked that this
test statistic not only preserves the martingale properties, but also inherits the merit of the
GLR. As long as k is not very large (e.g., k > 100), its computation will be very simple. Thus,
it has all the three features stated in Section 1. Since this maximization is restricted to some
finite points, we refer to it as degenerate-generalized likelihood ratio (DGLR).

Based on the DGLR, we define a stopping rule T for the problem (1.1) by

T = inf
{
n ≥ 1,max

1≤i≤k
Rn

(
θ̃i, θ0

)
≥ A or max

1≤i≤k
Rn

(
θ̃i, θ1

)
≥ B

}
, (2.3)

with the terminal decision rule

Δ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
accept H1, max

1≤i≤k
RT

(
θ̃i, θ0

)
≥ A,

accept H0, max
1≤i≤k

RT

(
θ̃i, θ1

)
≥ B,

continue sampling, else,

(2.4)

where 0 < A, B < ∞ are two stopping boundaries. Hereafter, the sequential test method
with (2.3) and (2.4) is called the degenerate-generalized likelihood ratio test (DGLRT). It has
some theoretical properties which are stated as follows. These theoretical properties provide
a guide to the design of the DGLRT, whose proofs are provided in the appendix.
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Let

α′(θ,A, B) = Pθ

{
max
1≤i≤k

RT

(
θ̃i, θ0

)
≥ A

}
, θ ∈ Θ0,

β′(θ,A, B) = Pθ

{
max
1≤i≤k

RT

(
θ̃i, θ1

)
≥ B

}
, θ ∈ Θ1

(2.5)

be the real error probabilities, where Θ0 and Θ1 represent the parameter subsets under H0

and H1, respectively.

Proposition 2.2. Suppose

∫
f
(
xi | xi−1, θ′′)

f
(
xi | xi−1, θ′) f(xi | xi−1, θ

)
dxi ≤ 1, (2.6)

for any positive integer n and every triple θ ≤ θ′ ≤ θ′′. For the DGLRT defined by (2.3) and (2.4), one
has α′(θ,A, B) ≤ k/A for all θ ∈ Θ0 and β′(θ) ≤ k/B for all θ ∈ Θ1.

Remark 2.3. The assumption (2.6) given in Proposition 2.2 is not restrictive. This holds for the
general one parameter exponential family and many others (cf. Robbins and Siegmund [21]).

Proposition 2.4. Suppose that there exists a constant ε > 0 such that Eθ′′[log{f(xi|xi−1; θ′)} −
log{f(xi|xi−1; θ)}] ≥ ε for all i and every triple θ ≤ θ′ ≤ θ′′. Under the assumptions stated in
Proposition 2.2, one has Pθ{T < ∞} = 1 for all θ ∈ Θ.

Remark 2.5. For θ′′ ≥ θ′, we have

Eθ′′
[
log

{
f
(
xi | xi−1; θ′

)}
− log

{
f
(
xi | xi−1; θ

)}]
= −Eθ′′

[
log

{
f
(
xi | xi−1; θ

)}
− log

{
f
(
xi | xi−1; θ′

)}]
≥ − log

{
Eθ′′

[
f
(
xi | xi−1; θ

)
f
(
xi | xi−1; θ′)

]}

≥ 0.

(2.7)

The last inequality follows from (2.6). Eθ′′[log{f(xi|xi−1; θ′)} − log{f(xi|xi−1; θ)}] is positive
with probability 1 if θ /= θ′. Heuristically, the requirement that the difference be greater than
the constant ε > 0 for all i amounts to assuming that the sequence of data cumulatively adds
information about all the θ′′ ≥ θ′, which is generally true in sequential studies.

From Proposition 2.2, we conclude that the DGLRT satisfies the error constraints (1.2)
if A = k/α and B = k/β. From Proposition 2.4, it is easy to find that we absolutely stop
sampling after finite observations. These results imply that the DGLRT can be useful in a
sequential study for testing the problem (1.1).

In the DGLRT (2.3) and (2.4), the value of the parameter k should be large but finite.
In practice, we suggest that k = 10 (cf. Section 3). Regarding A and B, we can compute them
by simulation. Proposition 2.2 shows A ≤ k/α and B ≤ k/β. Thus, we can search (A, B) over
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Table 1: The ESSs at θ = −0.8 (0.1) 0 for −θ0 = θ1 = 0.5 and α = β = 0.01.

θ −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
k = 3 6.293 7.121 8.181 9.545 11.241 13.156 15.136 16.600 17.141
k = 5 6.355 7.173 8.254 9.557 11.172 13.073 14.958 16.396 16.974
k = 10 6.380 7.228 8.264 9.577 11.138 13.039 14.897 16.344 16.889
k = 50 6.394 7.231 8.265 9.578 11.113 13.070 14.872 16.321 16.862

[1, k/α] × [1, k/β] with the real error probabilities being computed by simulations. One may
consider a density grid searching on [1, k/α] × [1, k/β]. But this is a time consuming job. To
reduce the computation, we introduce an efficient approach as follows. In the first step, we
can use bisection searching to find A1 (∈ [1, k/α]) such that α′(θ0, A1, k/β) = α. Then, fix A1

to find B1 (∈ [1, k/β]) such that β′(θ1, A1, B1) = β. Since α′(θ0, x, y) and 1−β′(θ1, x, y) increase
in x and decrease in y, we conclude that (A,B) ∈ [1, A1]× [1, B1]. Hence, we repeat the above
step over [1, A1] × [1, B1]. In this way, we generate a sequence of pairs (A1, B1), (A2, B2), . . ..
Following the above program, we have

A1 ≥ A2 ≥ · · · ≥ 1, B1 ≥ B2 ≥ · · · ≥ 1. (2.8)

It can be checked that these pairs converge to the exact stopping boundaries. In practice, we
repeat the above process and stop at step l if |α′(θ0, Al, Bl) − α| ≤ tol1 and |β′(θ1, Al, Bl) − β| ≤
tol2. Here, tol1 = 2%α and tol2 = 2%β. Computation involved in finding A and B is not
difficult partly due to the rapid developments in information technology. For example, in the
nonlinear time series model (2.2), setting −θ0 = θ1 = 0.25, α = 0.01, β = 0.05, and k = 10,
it requires 15 minutes to obtain the stopping boundaries A and B for the DGLRT based on
100,000 simulations, using Intel-Core i7-2.80 GHz CPU. Since this is a one-time computation
before testing, it is convenient to accomplish.

3. Numerical Studies

In this section, we present some simulation results regarding the numerical performance of
the proposed DGLRT. In the DGLRT, the parameter k needs to be chosen. We first investigate
the effect of k on the performance of the DGLRT according to i.i.d. observations from the
normal distribution N(θ, 1). Setting −θ0 = θ1 = 0.5 and α = β = 0.01, we compare the
DGLRTs with k = 3, 5, 10, 50. The corresponding stopping boundaries (A,B) are (69.3, 69.3),
(74.3, 74.3), (75.7, 75.7), and (76.7, 76.7), respectively. The ESSs at θ = −0.8 (0.1) 0.8 (i.e., θ
takes values from −0.8 to 0.8 with step 0.1) are computed based on 100,000 simulated data
and are provided in Table 1.

Because of the symmetry, we only include results for θ ∈ [−0.8, 0]. Table 1 shows that
the ESSs under a larger k are smaller than those under a smaller k if θ ∈ (θ0, θ1). Meanwhile,
it can be seen that a smaller k has a better performance outside (θ0, θ1). In order to assess
the overall performance of the tests, we compute their relative mean index (RMI) values.
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The RMI is introduced by Han and Tsung [22] for comparing the performance of several
control charts. It is defined as

RMI =
1
N

N∑
l=1

ESS(θl) − MESS(θl)
MESS(θl)

, (3.1)

where N is the total numbers of parameter points (i.e., θl’s) we considered, ESS(θl) denotes
the ESS at θl, and MESS(θl) is the smallest one among all the three ESS(θl). So, (ESS(θl) −
MESS(θl))/MESS(θl) can be considered as a relative difference of the given test, compared
to the best test, at θl, and RMI is the average of all such difference values. By this index, a
test with smaller RMI value is considered better in its overall performance. Since we focus on
the performance over the parameter interval [θ0, θ1], θl = −0.5 + 0.1(i − 1), i = 1, . . . , 10 in this
illustration. The resulting RMIs for the DGLRT under k = 3, 5, 10, 50 are 0.0116, 0.0042, 0.0017,
and 0.0011, respectively, which shows that the DGLRT under a larger k is more efficient than
the one under a smaller k. The improvement is minor when k is large enough. Considering
the complexity of computation, we select k = 10 for practical purposes. From now on, the
DGLRT is always the DGLRT under k = 10 unless otherwise stated.

Next, we investigate the performance of the DGLRT in controlling the ESSs over
[θ0, θ1]. In the i.i.d. case, we know the 2-SPRT has a better performance in controlling the
maximum ESS. For the ESSs over the neighborhoods of θ0 and θ1, the SPRT provides a closely
approximation. Based on extensive simulations, we conclude that these features still preserve
in the dependent case. Therefore, the SPRT and the 2-SPRT are compared with the DGLRT in
this paper. The following three cases are considered.

Case 1. Observations collected from normal distributions with mean θ and variance 1. Set
−θ0 = θ1 = 0.5 and α = β = 0.01 for the test problem (1.1).

Case 2. Observations collected from exponential distributions with mean 1/θ. The problem
(1.1) is set with θ0 = 0.5, θ1 = 2, and α = β = 0.01.

Case 3. Consider the test problem (1.1) for the simple nonlinear time series model (2.2) with
θ0 = 0, θ1 = 1 and α = β = 0.01.

In each case, the inserted point for the 2-SPRT is searched over [θ0, θ1]. The stopping
boundaries are also computed following the searching algorithm stated in Section 2. These
stopping boundaries (A,B) are listed in the order of the SPRT, 2-SPRT, and DGLRT: Case 1:
(56.4, 56.4), (37.4, 37.4), and (75.7, 75.7); Case 2: (63.8, 25.5), (42.5, 23.5), and (79.5, 39.5); and
Case 3: (14.5, 25.5), (8.2, 26.8), and (22.5, 36.5). Figures 1–3 display the ESS curves over [θ0 −
0.5, θ1 + 0.5] under the three tests for Cases 1–3 with the dashed line for the SPRT, the dotted
line for the 2-SPRT, and the solid line for the DGLRT. Figure 1 shows that the DGLRT is
comparable to the 2-SPRT in the middle of the parameter range and performs as well as the
SPRT in the two tails. It implies that the DGLRT controls both the maximum ESS and the
ESSs under H0 and H1 very well. The same conclusions can also be obtained from Figures 2
and 3. The RMIs for the SPRT, 2-SPRT, and DGLRT under the three cases are also computed.
The results are listed in Table 2. It can be seen that the RMI for the DGLRT is the smallest one
among the three tests under all three cases. Thus, the DGLRT performs the best, compared
with the SPRT and the 2-SPRT over [θ0, θ1].
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Figure 1: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 1: −θ0 = θ1 = 0.5
for the normal distribution with mean θ and variance 1.
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Figure 2: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 2: θ0 = 0.5 and
θ1 = 2 for the exponential distribution with mean 1/θ.
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Table 2: The RMI for the SPRT, 2-SPRT, and DGLRT under Cases 1–3.

Case The SPRT The 2-SPRT The DGLRT
1 0.1194 0.0402 0.0103
2 0.1148 0.0263 0.0135
3 0.0370 0.0105 0.0059
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Figure 3: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 3: θ0 = 0 and
θ1 = 1 for the nonlinear time series (2.2).

To illustrate the DGLRT, we apply it to a real manufacturing data (cf. Chou et al. [23]).
A customer specifies an average breaking strength of a strapping tape as 200 psi, and the
standard deviation is 12 psi. The data are the breaking strength of different strapping tapes,
so the random errors mainly stem from the measurement errors. Thus, the observations can
be assumed to be independent. The Shapiro and Wilk [24] test shows that the data are taken
from a normal distribution. Consider the test problem (1.1) with θ0 = 200 and θ1 = 212 and
standardize the observations by using a transformation Xi → (Xi −206)/12, i = 1, 2, . . .. Then
the resulting test problem is equivalent to H0 : θ ≤ −0.5 versus H1 : θ ≥ 0.5. Under α =
β = 0.01, the corresponding stopping boundaries for the DGLRT are (75.7, 75.7). Based on the
first 20 real observations, we compute the test statistics of the DGLRT, which are displayed in
Table 3. In Table 3, standardized Xi indicates (Xi − 206)/12. Table 3 shows that
max1≤j≤k Ri(θ̃j , θ1) increases in i rapidly, while max1≤j≤k Ri(θ̃j , θ0) keeps constant for i = 1, 2,
. . . , 20 under the real data. Since max1≤j≤k Ri(θ̃j , θ1) crosses its stopping boundary at the 11th
observation, we should accept the null hypothesis according to the terminal decision rule
(2.4).
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Table 3: Implementation of the DGLRT with the first 20 observations of breaking strength of a strapping
tape.

Standardized The DGLRT
i Xi Xi max1≤j≤kRi(θj , θ0) max1≤j≤kRi(θj , θ1)
1 191 −1.250 1 3.490
2 193 −1.083 1 10.309
3 204 −0.167 1 12.182
4 215 0.750 1 5.755
5 182 −2.000 1 42.521
6 223 1.417 1 10.309
7 194 −1.000 1 28.022
8 202 −0.333 1 39.095
9 214 0.667 1 20.065
10 210 0.333 1 14.382
11 186 −1.667 1 76.172
12 211 0.417 1 50.199
13 202 −0.333 1 70.035
14 201 −0.417 1 106.272
15 191 −1.250 1 370.925
16 193 −1.083 1 1095.537
17 196 −0.833 1 2519.964
18 189 −1.417 1 10394.166
19 194 −1.000 1 28254.274
20 209 0.250 1 22004.450

4. Concluding Remarks

In this paper, we have proposed the DGLRT test in cases where the conditional density func-
tion has an explicit form. It has been shown that the properties of the DGLRT can guarantee
bounding two error probabilities. To make our method be more applicable, we further discuss
the selection of the parameter k and the searching algorithm for its stopping boundaries.
From our numerical results, we conclude that the DGLRT has several merits: (1) in contrast
to the SPRT, the DGLRT has much smaller ESS for θ in the middle of the parameter range and
nearly has the same performance for θ outside the interval (θ0, θ1). It is not surprising that the
2-SPRT performs the best in minimizing the maximum ESS because it is designed to be opti-
mal in the minimax sense. However, the relative difference of the maximum ESS between the
DGLRT and the 2-SPRT is minor. Moreover, for θ outside (θ0, θ1), the ESSs of the DGLRT are
much smaller than those of the 2-SPRT. That is to say, the DGLRT controls the maximum ESS
and the ESSs under two hypotheses; (2) under the RMI criteria, the DGLRT performs more
efficiently than the SPRT and the 2-SPRT over [θ0, θ1]; (3) its implementation is very simple.

While our focus in this paper is on methodological development, there are still some
related questions unanswered yet. For instance, at this moment, we do not know how to
determine the critical stopping boundaries for the DGLRT in an analytical way instead of the
Monte Carlo method. Besides, our method controls the ESS in pointwise, so it can be used to
construct control chart for detecting the small shifts. These questions will be addressed in our
future research.
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Appendix

Proof of Proposition 2.2. Let

T1 = inf
{
n ≥ 1, max

1≤i≤k
Rn

(
θ̃i, θ0

)
≥ A

}
,

T2 = inf
{
n ≥ 1, max

1≤i≤k
Rn

(
θ̃i, θ1

)
≥ B

}
.

(A.1)

So,

α′(θ,A, B) = Pθ

{
accept H1

}
= Pθ

{
T < ∞,max

1≤i≤k
RT

(
θ̃i, θ0

)
≥ A

}

= Pθ

{
T1 ≤ T2, T < ∞,max

1≤i≤k
RT

(
θ̃i, θ0

)
≥ A

}

≤ Pθ{T1 < ∞} ≤
∫
{T1<∞}

1
A

max
1≤i≤k

RT1

(
θ̃i, θ0

)
dPθ

≤
k∑
i=1

1
A

∫
{T1<∞}

RT1

(
θ̃i, θ0

)
dPθ

≤ k

A
.

(A.2)

The last inequality follows from (2.6). Till now, we prove that the result α′(θ,A,B) ≤ k/A for
all θ ∈ Θ0. The other result can also be proven in a similar way.

Proof of Proposition 2.4. Since we insert k (≥3) points in [θ0, θ1], we can find a point θ2

which belongs to (θ0, θ1). Thus, there exists a ε > 0 such that Eθ[log{f(xi|xi−1; θ2)} −
log{f(xi|xi−1; θ0)}] ≥ ε. It implies that Eθ[Rn(θ2, θ0)] → ∞ for θ ≥ θ2. So,

lim
n→∞

Pθ

{
max
1≤i≤k

Rn

(
θ̃i, θ0

)
≥ A

}
≥ lim

n→∞
Pθ{Rn(θ2, θ0) ≥ A} = 1. (A.3)

Thus, we have the result that Pθ{T < ∞} = 1 for all θ ≥ θ2. In a similar way, we can
obtain Pθ{T < ∞} = 1 for all θ ≤ θ2. Combining the two results, we complete this proof.
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