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A key requirement of lunar rover autonomous navigation is to acquire state information accurately
in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model
for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF-) based real-
time celestial navigation (RCN) method. The proposed method considers the rover position and
velocity on the lunar surface as the system parameters and establishes a constant velocity (CV)
model. In addition, the attitude quaternion is considered as the system state, and the quaternion
differential equation is established as the state equation, which incorporates the output of angular
rate gyroscope. Therefore, the measurement equation can be established with sun direction vector
from the sun sensor and speed observation from the speedometer. The gyro continuous output
ensures the algorithm real-time operation. Finally, we use the dual-EKFmethod to solve the system
equations. Simulation results show that the proposed method can acquire the rover position
and heading information in real time and greatly improve the navigation accuracy. Our method
overcomes the disadvantage of the cumulative error in inertial navigation.

1. Introduction

In order to conduct scientific exploration on the lunar surface, lunar rover must have the
ability to execute tasks in unstructured environment. Its navigation system must have a
high degree of autonomy and the capabilities of high-accuracy real-time positioning and
orientation. On lunar surface, some commonly used navigation methods on the earth are not
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applicable. There is no GPS system on the moon. If we use radio navigation, the rover control
may fail because of the two-way communication delay. The moon rotation is very slow, so we
cannot use north seeking gyro. Also, lunar magnetic field is very weak, so magnetic sensor-
based methods are ineffective.

Lunar rover navigation techniques mainly include absolute positioning and relative
positioning. For absolute positioning, such as autonomous celestial navigation [1], position
and heading errors are bounded and do not accumulate over time, and the output is discrete.
The initial positioning is generally absolute positioning, and its accuracy directly affects
relative positioning accuracy. Relative positioning, such as inertial navigation, achieves high
accuracy of position and heading in short time, but the errors accumulate over time (which
may lead to divergence), and the output is continuous. The current trend for lunar rover
navigation is integrated navigation, which combines the advantages of celestial navigation
and inertial navigation.

The earliest researchers [2–4] carried out celestial navigation by the altitude difference
method through observing the sun, earth, and fixed stars. Kuroda et al. [5] utilized celestial
navigation and dead-reckoning-based integrated navigation method to obtain lunar rover’s
absolute position and heading, which is achieved by observing the altitude and azimuth of
the sun and the earth. However, on the moon, the time period during which the sun and
the earth appear simultaneously is very short. Therefore, the application of this method is
limited. Altitude difference method is very sensitive to measurement noise, and positioning
accuracy [6] is low. Vision-based navigation is often used in robotics (Chen 2012, see [7, 8]),
but it has difficulty in determining the absolute location and attitude.

Recent researchers use vector-observations-based quaternion estimation (QUEST) to
get the rover heading angle [9–12]. Ashitey proposed an absolute heading detection method
for the field integrated, design and operation (FIDO) rover [9]. When stopped, it uses sun
sensor and accelerometer to sense the sun orientation and the local gravity orientation, supply
absolute heading for rover with QUEST, and correct the gyroscope cumulative error. Ali
described that the US Mars rovers (the “Hope” and the “Spirit”) utilized this method to self-
correct the heading information [10]. Some recent technologies used in robotics can be found
in the works of Chen et al. [13]. Methods in Chinese literature are similar to the method
by Ashitey and they also calculate the heading through QUEST [11, 12]. Thein analyzed
the relationship between lunar rover positioning accuracy and astronomical instrument
measurement noise [14]. If we want to limit the position error within 50m, measurement
noise should be less than 5.93 arcsec.

The above celestial navigation methods (except [5]) do not combine celestial
positioning with orientation and cannot get the absolute heading and location information
in real time. Ning established a position and attitude determination method based on
celestial observations [15], but its reference frame is moon fixed coordinate system rather
than local level coordinate system, and it does not consider the impact of the position and
speed changes on the gyro angular rate output. Ning proposed a lunar rover kinematics
model-based augmented unscented particle filter (ASUPF) as a new autonomous celestial
navigation method for dealing with systematic errors andmeasurement noise [16]. However,
the altitude angle measurements in this method are based on the local level provided by
the inertial measurement unit (IMU), assuming the rover is keeping static or in constant
motion. When the rover is moving, it needs the support of attitude update algorithm in
inertial navigation, because the gyro accumulates error and the local level precision is low. Pei
proposed a strapdown inertial navigation and celestial-navigation-based integrated method
for lunar rovers [17].
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Since lunar rover position change on the lunar surface is very slow, in order to reduce
the dimension of the system, we can set position as a gradual system parameter to estimate
the rover state, that is, heading and attitude. To correct the position of the lunar rover, the
velocity observation is introduced.Meanwhile, in order to obtain real-time navigation output,
the output of the gyro is needed in integrated navigation. In this paper, a method of real-time
celestial navigation is proposed, in which positioning and orientation are simultaneous. Also,
the error bounded sun sensor output and high accuracy rate gyro output are fused, which
ensures the navigation output to be both real-time and of higher accuracy when the rover
is moving. Because there is no accelerometer in the system, the impact of the accelerometer
error and gravity anomaly on navigation is avoided.

The organization of the paper is as follows. Section 1 describes the principles of
celestial navigation and attitude quaternion kinematics. Section 2 describes the dual EKF-
based real-time celestial navigation method. Section 3 presents the results of computer
simulations and compares the accuracy of the results obtained with and without velocity
observation. Section 4 presents conclusions and discussions.

2. Celestial Navigation Principle and Attitude Kinematics

2.1. Principle of Celestial Navigation

Set the selenocenter celestial coordinate system as the inertial coordinate system (i), the moon
fixed coordinate system asm, geographic coordinate system (NED) as n, the lunar rover body
coordinate system as b, the local level coordinate system as l, and the sun sensor coordinate
system as c. After installation, the sensor coordinate systems b and c coincide with each other.

Celestial navigation system can detect the rover geographical position and heading
provided that the local gravity datum (level posture) is known. The outputs are lunar rover
position (latitude and longitude) on the moon and the attitude, including the heading, pitch,
and roll. State vector of the system x = [λ, L,An] is used to describe the lunar rover position
and heading information, in which (λ, L) is the lunar rover longitude and astronomical
latitude and An is just heading relative to North Pole of the moon.

In Figure 1, the moon fixed coordinate system, after rotating λ (east longitude is
positive) around the Z axis, becomes coordinate system O − x1y1z1. After further rotating
by −L − π/2 (north latitude is positive) around the Oy1 axis, the navigation coordinate w is
obtained. The attitude matrix about the latitude and longitude is as follows [18]:

n
m� = �y

(
−L − π

2

)
�z(λ). (2.1)

The attitude matrix about the navigation coordinate system and the lunar body coordinate
system is:

b
n� = �x

(
ϕ
)�y

(
ψ
)�z(θ). (2.2)

Here, θ is the heading, ψ is the pitch angle, and ϕ is the roll. To prevent the risk of rollover,
lunar rover pitch and roll should between ±45◦. The attitude matrix about the moon fixed
coordinate system and the local level coordinate system is A = l

m� (called target matrix
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Figure 1: Moon-fixed (m) and navigation (n) coordinate system.

here). Substituting �z(θ), �y(−L − π/2),�z(λ) into the above formula, we get the following
equation:

l
m� = �z(θ) �y

(
−L − π

2

)
�z(λ). (2.3)

2.2. Quaternion Attitude Kinematics

Attitude can be expressed in several mathematical parameters: quaternion, attitude matrix,
Euler angles, Rodrigues parameters, and so on. The attitude matrix contains a total of nine
parameters, but because it is orthogonal matrix, only three components are independent. One
of the most useful parameters is the attitude quaternion, which is a four-dimensional vector,
defined as q = [ρT q4]

T , where ρ = [q1 q2 q3]
T = ê sin(ϑ/2) and q4 = cos(ϑ/2). Here, ê is the

rotation axis and ϑ is the rotation angle. When using a four-dimensional vector to describe
the three-dimensional rotation, the four parameters of quaternion are not independent, and
they are subject to the constraint qTq = 1. The relationship between the attitude matrix and
the quaternion from the inertial coordinate system i to the body coordinate system b is

b
iA(q) = ΞT (q)Ψ(q), (2.4)

where

Ξ(q) ≡
[
q4I3×3 + [ρ×]

−ρT
]
, Ψ(q) ≡

[
q4I3×3 − [ρ×]

−ρT
]
· Ξ(q) ≡

[
q4I3×3 + [ρ×]

−ρT
]
,

Ψ(q) ≡
[
q4I3×3 − [ρ×]

−ρT
]
.

(2.5)
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Here [ρ×] is the cross-product matrix, defined as [ρ×] =
[ 0 −q3 q2

q3 0 −q1
−q2 q1 0

]
. One advantage of using

quaternion is that the attitude matrix is quadratic equation of the parameter and thus does
not include any transcendental function. For small angles, the vector part of the quaternion
is approximately half of the rotation angle, and therefore ρ ≈ α/2, q4 ≈ 1, where the 3-
dimensional vector α includes roll, pitch, and heading. Therefore, the attitude matrix can be
approximated as b

iA ≈ I3×3 − [α×], which is effective in the first-order approximation.
The attitude kinematics equation is

b
i Ȧ = −

[
ωb
ib×

]
b
iA . (2.6)

Here, ωb
ib is the angular velocity of the b frame relative to i frame expressed in b coordinates.

The quaternion differential equation is

q̇ =
1
2
Ξ(q)ωb

ib =
1
2
Ω
(
ωb
ib

)
q, (2.7)

where

Ω
(
ωb
ib

)
≡

⎡
⎢⎣
−
[
ωb
ib×

]
ωb
ib

−
(
ωb
ib

)T
0

⎤
⎥⎦. (2.8)

The main advantage of using the quaternion is that the kinematics equation is linear
and there is no singularity. Another advantage is that continuous rotation of coordinate
frames can be expressed as the quaternion multiplication. Suppose a continuous rotation can
be expressed as

A
(
q′)A(q) = A

(
q′ ⊗ q

)
. (2.9)

The composition of the quaternion is bilinear, with

q′ ⊗ q =
[
Ψ
(
q′) q′]q = [Ξ(q) q]q′, (2.10)

and the inverse quaternion is defined by q−1 =
[ −ρ
q4

]
. Note that q ⊗ q−1 = [ 0 0 0 1 ]T is the

identity quaternion.

3. Dual-EKF-Based RCPO Method

Assume the state vector of the navigation system is xs, the system parameter vector is xp, and
the observation vector is ỹk. According to the problem, a continuous-discrete nonlinear state
space model can be derived:

ẋs(t) = f
{
t, xs(t),u(t), xp(t)

}
+w(t),

ỹk = hk
(
xs,k, xp,k

)
+ vk,

(3.1)



6 Mathematical Problems in Engineering

where f(·), h(·) are implicit vector functions, w(t) is the continuous process noise, and vk
is the discrete measurement noise. In the state vector xs = [qT , βT ]T , q is the heading and
attitude quaternion in the navigation frame (w) for the lunar rover and β is the constant bias
for gyro. In parameter vector xp = [pT , vT ]T , p = [L λ]T is the rover position, which is the
latitude and longitude; V = [vL vλ]

T is the north speed and east speed on the lunar surface.

3.1. System Parameter and State Equations

The lunar rover position and velocity equations constitute the system parameter equations:

ẋp = Fpxp +wp (3.2)

with the parameter vector xp = [pT VT ]T , the state transition matrix Fp =
[ 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

]
, the

parameters process noise wp =
[ 0

0
wL
wλ

]
, and the noise covariance Qp = diag[0 0 σ2

L σ
2
λ].

The lunar rover attitude constitutes the system state equations, and the quaternion
differential equation is expressed by

q̇2 =
1
2
Ω
(
ωb

nb

)
q2. (3.3)

Here,ωb
nb is the angular velocity of the b frame relative to n frame expressed in b coordinates.

The gyro measurement model is

ω̃b
ib = ω

b
ib + β + ηv,

β̇ = ηu.
(3.4)

Here, ωb
ib is the angular velocity of the b frame relative to i frame expressed in b coordinates.

β is the constant bias of the gyro, ηv and ηu are zero mean Gaussian white noise processs, and
their spectral density functions are σ2

vI3×3 and σ
2
uI3×3, respectively.

Because the selenocenter celestial coordinate system is the inertial coordinate system
here, so

ωb
nb = ω

b
ib − b

nA(q2)ωn
in. (3.5)

Also, ωn
in is the angular velocity of the n frame relative to i frame expressed in n coordinates

ωn
in = ωim

⎡
⎣

cosL
0

− sinL

⎤
⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

VE
R

−VN
R

−VE tanL
R

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, VE = vλR cosL, VN = vLR. (3.6)
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In (3.6), ωim is the angular velocity of the m frame relative to i frame, and the second
expression on the right side is the angular velocity of the n frame relative to m frame. The
angular velocity of them frame relative to i frame ωim is

ωim = ωgz + m
i Aωzz . (3.7)

In (3.7), ωgz is the revolution angular velocity of the moon around the earth, ωzz is the moon
spin velocity, and m

i A is the attitude matrix from the inertial reference frame i to the moon
fixed framem, which can be calculated after querying ephemeris [18].

3.2. Celestial and Speed Observation Equations

The measurement principle of vector observation attitude sensor can be expressed as b̃i =
A(q)ri + vi, i = 1, . . . , n. If n celestial bodies are observable simultaneously, we can get n
vector pairs, so the measurement equation at time k is

b̃k =

⎡
⎢⎢⎢⎣

A(q2)A(p1)r1
A(q2)A(p1)r2

...
A(q2)A(p1)rn

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣ tk
+

⎡
⎢⎢⎢⎣

v1
v2
...
vn

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣ tk
, (3.8)

where A(q2) = b
nA, A(p1) = n

mA = �y(−L − π/2)�z(λ).

Set vk =

⎡
⎣

v1
v2
...
vn

⎤
⎦
∣∣∣∣ tk , its variance is R = diag[σ2

1I3×3, σ
2
2I3×3, . . . , σ

2
nI3×3], where diag[· · ·]

is the diagonal matrix. In this paper, n = 1, r = is, b = bs, where is is the sun unit vector in
inertial frame and bs is the sun unit vector in the body frame.

The speed observation equation of the speedometer is

Ṽk = Vk + uk, (3.9)

where Ṽk is speed measurement at time k, uk is the measurement noise, and its covariance
matrix is Ru = σ2

uI2×2.

3.3. Dual Continuous-Discrete EKF

Dual-EKF algorithm uses two mutual coupling extended Kalman filters working in parallel
and a state estimator working between the system parameter time update process and the
measurement update process [19]. Dual-EKF can estimate the system state and parameter
online. Using the above model, a continuous-discrete extended Kalman filter can be derived
(Chen 2012, [20]). The process equation about the system parameter is a continuous linear
equation, which can be discretized directly. The process equations about the system state



8 Mathematical Problems in Engineering

are nonlinear equations, and the Jacobian matrix needs to be calculated. Finally, we get the
discrete linear state space model (without considering the control input uk):

xs,k+1 = f
{
xs,k, xp,k

}
+wk,

ỹk = hk
(
xs,k, xp,k

)
+ vk.

(3.10)

3.3.1. Linearization of State Process Equations

In order to maintain the quaternion normalization constraint, we use the multiplicative error
quaternion in the body frame to express the attitude error:

δq = q ⊗ q̂−1, (3.11)

where q̂−1 is the inverse of the quaternion estimate and δq ≡ [δρT δq4]
T . If the error

quaternion δq is very small, we can use the small angle approximation. After a series of
derivation, the linear kinematic model of the attitude error [21] is obtained:

δα̇ = −
[
ω̂b
nb×

]
δα + δωb

ib −A(q̂2)δωn
in, δq̇4 = 0, (3.12)

where δωb
ib
= ωb

ib
− ω̂b

ib
and δωn

in = ωn
in − ω̂n

in = 0. Also, δωb
ib
= −(Δβ + ηv) is available by the

above gyro model, in which Δβ ≡ β − β̂. So the above formula becomes

δα̇ = −
[
ω̂b
nb×

]
δα − (

Δβ + ηv
)
. (3.13)

The remaining error equation can be obtained by similar methods. The state vector,
the state error vector, and the process noise vector and covariance in this EKF are defined as

xs ≡
[
q
β

]
, Δxs ≡

[
δα
Δβ

]
, ws ≡

[
ηv
ηu

]
, Qs =

[
σ2
vI3×3 03×3
03×3 σ2

uI3×3

]
. (3.14)

The error dynamics of time update in the EKF is Δẋ = FΔx + Gw. Here, the state
transition matrix F and the noise coefficient matrix G are

F ≡
[
−
[
ω̂b
nb×

]
−I3×3

03×3 03×3

]
, G ≡

[−I3×3 03×3
03×3 I3×3

]
S. (3.15)

3.3.2. Linearization of Measurement Equations

Next we determine the sensitive matrixHs(x̂−s ) of the system state observation equation. The
true value and the estimate of the celestial bodies vector in the body coordinate system are

b = A(q2)A
(
p̂−
1

)
r, b̂− = A

(
q̂−
2

)
A
(
p̂−
1

)
r. (3.16)
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According to (2.6),

A(q2) = A(δq2)A
(
q̂−
2

)
= (I3×3 − [δα2×])A

(
q̂−
2

)
. (3.17)

From (3.16), we have

Δb = b − b̂− =
[
A
(
q̂−
2

)
A
(
p̂−
1

)
r×]δα2. (3.18)

Note that Hsq = [A(q̂−
2 )A(p̂−

1 )r×], so the sensitivity matrix for all measurements is

Hs

(
x̂−s
)
=

⎡
⎢⎢⎢⎣

Hsq1 03×3
Hsq2 03×3

...
...

Hsqn 03×3

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣ tk
. (3.19)

Next we determine the sensitive matrix Hp(x̂−p) of the system parameter observation
equation.

The true value and the estimate of the celestial bodies vector in the body coordinate
system are

b = A
(
q̂−
2

)
A(p)r, b̂− = A

(
q̂−
2

)
A
(
p̂−)r. (3.20)

Function A(p) is expanded as a Taylor series, which is

A(p) ≈ A(
p̂−) +

2∑
j=1

A−
j Δpj , (3.21)

where A−
1 = ∂A/∂L|L̂− , A−

2 = ∂A/∂L|λ̂− .
Finally, we have

Δb = b − b̂− =
2∑
j=1

A
(
q̂−
2

)
A−
j rΔpj . (3.22)

Note that Hp =
[
A(q̂−

2 )A
−
1 r A(q̂−

2 )A
−
2 r

]
. Combined with the speed observations, the

sensitivity matrix of all measurements is

Hp

(
x̂−p
)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Hp1 03×2
Hp2 03×2
...

...
Hpn 03×2
02×2 I2×2

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣ tk

. (3.23)



10 Mathematical Problems in Engineering

Table 1: Dual-EKF algorithm.

Initialization Parameter: x̂p(t0) = x̂p,0, Pp(t0) = Pp,0
State: x̂s(t0) = x̂s,0, Ps(t0) = Ps,0

State measurement update

Ks,k = P−
s,k
HT

s,k
[Hs,kP

−
s,k
HT

s,k
+ R]−1

εk = b̃s,k − hk(x̂−
s,k
, x̂−

p,k
)

Δx̂+
s,k

= Ks,kεk

q̂+
2,k = q̂−

2,k +
1
2
Ξ(q̂−

2,k)δα̂
+
2,k , normalization

β̂
+
k = β̂

−
k + Δβ̂

+
k

P+
s,k

= [I −Ks,kHs,k]P−
s,k

Parameter measurement update

Kp,k = P−
p,k
HT

p,k
[Hp,kP

−
p,k
HT

p,k
+ R′]−1

R′ = diag([R,Ru])
x̂+
p,k

= x̂−
p,k

+Kp,k[εk ; (Ṽk − V̂−
k
)]

P+
p,k

= [I −Kp,kHp,k]P−
p,k+1

Parameter time update
x̂−
p,k+1 = Φpx̂

+
p,k

P−
p,k+1 = ΦpP

+
p,k

ΦT
p +Qp

State time update

ω̂b
nb

= (ω̃b
ib
− β̂+

k
) −A(q̂+

2,k)ω
n
in(x̂

−
p,k+1)

˙̂q2 =
1
2
Ω(ω̂b

nb)q̂2

˙̂β = 0
Ṗs = FsPs + PsFsT +GQsG

T

3.3.3. Dual-EKF Algorithm

Finally the proposed algorithm of dual-EKF is shown in Table 1.

4. Simulations and Discussions

4.1. Simulation Conditions

Specific simulation parameters are shown in Table 2.

4.2. Simulation of Moving Lunar Rover

In this paper, we carried out lunar rover simulation under various moving conditions
described in Table 3, and navigation accuracy with and without the speed observation is
compared. The lunar rover movement includes rotational and translational movements,
where the former can be sensed by the gyro angular velocity and the latter can be measured
by the speedometer line speed.

The simulation results of the lunar rover are shown in Figure 2, with the left diagram
on each figure representing the simulation result without speed observation and the right
diagram representing the simulation result with speed observation.

Figure 2 shows the position error and its 3σ boundary, and we see the latitude and
longitude errors in the left diagram diverge at last. After the uniform motion error expands,
we mainly have the lunar rover speed changes, so the constant velocity (CV) model is no
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Figure 2: Position error and 3σ boundary.

Table 2: Simulation parameters.

Beginning time 2011-01-01 00:00:00

Sampling interval Δt = 1 s

Initial origin λ(t0) = 0◦, L(t0) = 0◦

Initial velocity vL = −0.1m/(s · R), vλ = 0.1m/(s · R)
Initial attitude q(t0) = [ 0 0 0 1 ]T

Gyro biases β(t0) = 0.1[ 1 1 1 ]T deg/hr

Initial covariance

P
p

0 = 0.052 deg2

PV
0 = 0.12(m/s)2

Pα
0 = 0.12 deg2

P
β

0 = 0.22(deg/hr)2

Gyro noise (Qs)
σgv =

√
10 × 10−7 rad/s1/2

σgu =
√
10 × 10−10 rad/s3/2

CV model (Qp)
σL = σL = 0.0001m/(s · R)
(R: moon radius, the same below)

Sun sensor (R) 1′(3σs)

Velocity sensor (Ru) σu = 0.001m/(s · R)
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Figure 3: The speed error and 3σ boundary.

Table 3: Lunar rover motion.

Motion Time (s) Angular velocity
( ◦/s)

Linear velocity
(m/(s · R))

(1) Static 1∼100 0 0

(2) Rotation 101∼200 ωz = 1 0

(3) Uniform motion 201∼300 0 vL = 0.2
vλ = −0.25

(4) Rotation and uniform motion 301∼500 ωz = 1 vL = 0.2
vλ = −0.25

(5) Static again 501∼600 0 0

longer applicable. The navigation error in the right diagram is kept within the 3σ boundary,
and it does not diverge. Because of the speedometer line speeds information, the absolute
position of the rover can be adjusted in real time. The mean of the latitude error is 3.97

′′
,

and the standard deviation is 0.83
′′
; the mean of longitude error is 1.07

′′
, and the standard

deviation is 1.42
′′
. Converted into the line error according to the lunar radius, the error is

35.51m.
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Figure 4: Attitude, heading error, and 3σ boundary.

Figure 3 shows the speed error and its 3σ boundary. The initial velocity is not accurate.
In the left diagram, when uniform motion speed changes cannot be sensed any longer, the
error shape exhibits phase steps. While the speed observation is available, the navigation
system can sense it after the speed change. We see the two speed changes in the lunar rover
movement are in zigzag fashions on the speed error figure and then quickly disappear.

Figure 4 shows the attitude, heading error, and its 3σ boundary, but the heading
information is of main interest in the navigation. The mean of the heading error in the left
diagram is −5.55” with a standard deviation of 3.03”. The mean of the heading error in the
right diagram is 1.71”, with a standard deviation of 3.53”.

Figure 5 shows the constant gyro bias error and its 3σ boundary. As can be seen from
the graph, the 3-channel constant bias basically converges in the Motion 1 stage, that is, static,
and completes the initial alignment of the gyroscope.
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Figure 5: The constant gyro bias error and 3σ boundary.

4.3. Discussions and Remarks

From the above analysis and simulation, it can be seen that the significance of this work is to
combine celestial and inertial sensor data to obtain the attitude and heading information for
the real-time navigation of the lunar rover. The simulation results indicate that the dual-EKF
method is valid in this field. To obtain better results, the following two properties are worth
of being further investigated in the future work on navigation.

Computational accuracy: the technology of imaging processing plays a role in the
celestial navigation. The performance of noise filtering and feature extraction for
the astronomical images will affect the navigation precision directly (Liao et al.,
see [22, 23]; Yang et al., see [24, 25]). In addition, the nonlinear properties, such as
fractals [26, 27], in the astronomical images can affect the navigation effect also.

Computational complexity: though the Kalman filter is the most widely used attitude
estimation algorithm for navigation and it offers the optimal recursive solution to
the nonlinear estimation problem, the implementation efficiency of the recursive
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Kalman estimator has been an issue. Correlation is a useful technique in the field.
Real-time navigation may use it to help in Kalman filtering [28, 29].

5. Discussion and Conclusions

In this paper, a sun-orientation-and-speed-observations-based lunar rover real-time celestial
navigation method is proposed, using dual-EKF to estimate system parameters and state.
The method treats the position and velocity as system parameters and establishes a position,
velocity differential equation. Further, the rover attitude quaternion is treated as the system
state, and the quaternion differential equation is established as the state equation. To establish
the measurement equation, the sun direction vector is obtained from the sun sensor and the
speed observation is obtained from the speedometer. Finally, the rover position and heading
information is obtained in real-time through the dual-extended Kalman filter (Dual-EKF).
The proposed system does not use accelerometers and thus avoids the acceleration noises.
Also, the system uses a high-precision gyro to improve the navigation accuracy.

Simulation results show that the proposed technique is able to obtain the rover
navigation information in real time, and it overcomes the two shortcomings of more
traditional navigation methods: the discrete output (of pure celestial navigation) and
cumulative error (of inertial navigation).
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