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The problem of robust H∞ dynamic output feedback control design with pole placement con-
straints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear
model is obtained and linearized using the FAST software developed for wind turbines. The main
contributions of this paper are threefold. Firstly, a family of linear models are represented based
on an affine parameter-varying model structure for a wind turbine system. Secondly, the bounded
parameter-varying parameters are removed using upper bounded inequalities in the control
design process. Thirdly, the control problem is formulated in terms of linear matrix inequalities
(LMIs). The simulation results show a comparison between controller design based on a constant
linear model and a controller design for the linear parameter-varying model. The results show the
effectiveness of our proposed design technique.

1. Introduction

Wind energy is nowadays one of the fastest growing renewable industries. As a consequence
of the oil crises in the early 1970s and a general interest of renewable energy, the wind energy
sector has had a tremendous growth over the last decades. With Europe leading the global
market, the turbine capacity has had an annual growth rate of up to 30% [1].

Wind turbines are complex mechanical systems, and they are highly nonlinear due to
the conversion of wind energy to mechanical torque. This makes the wind turbine a chal-
lenging task both to model and control. In literature, linear and nonlinear controllers have
been extensively used for power regulation through the control of blade pitch angle (see, for
instance, [2–14] and the references therein). More recently, the problem of gain scheduling
and output feedback H∞ control design for an offshore floating wind turbine was studied in
[15, 16]. Furthermore, a mixed H2/H∞ control design was proposed for an offshore floating
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Figure 1: Operating region of a typical wind turbine.

wind turbine system investigated in [17]. However, the performance of these controllers
is limited by the highly nonlinear characteristics of the wind turbine. These controllers
are designed on the basis of one operating condition and therefor can only guarantee
performance and stability at this point. By designing the controller on the basis of a linear-
parameter-varying (LPV) model, it is possible to overcome these limitations. So, in order to
sustain the growth in the wind industry sector, design of advanced control methodologies
is one research area where such improvements can be achieved. In recent years, several
advanced wind turbine simulation softwares have emerged, such as HAWC2 [18], FAST
[19], and Cp-Lambda [20]. In this paper we will use FAST interfaced with MATLAB for all
the simulations. The operation region of a wind turbine is often divided into four regions
(Figure 1).

In region I (v < vcut-in) the wind speed is lower than the cut-in wind speed and no
power can be produced. In region II (vcut-in ≤ v < vrated) the pitch is usually kept constant
while the generator torque is the controlling variable. In region III (vrated ≤ v < vcut-out) the
main concern is to keep the rated power and to limit loads on critical parts of the structure by
pitching the blades. In region IV (v ≤ vcut-out) the wind speed is too high, and the turbine is
shut down. In this paper we will focus on the above rated wind speed scenario, that is, region
III.

This paper makes three specific contributions. First, it suggests a family of linear
models for a wind turbine system based on an affine parameter-varying model structure.
Second, robust stabilization and disturbance attenuation of such parameter-varying models
are investigated using H∞ method such that the bounded parameter-varying parameters
are removed using upper bounded inequalities in the control design procedure. Third, the
control problem is formulated in terms of linear matrix inequalities (LMIs) and a dynamic
output feedback controller is computed. Finally, the simulation results show that the obtained
controller can achieve the robust stability and disturbance attenuation, simultaneously.

This paper is organized as follows. Section 2 describes the model under consideration
and how to include the parameter-varying terms in the closed loop system. Section 3 is
devoted to the control design technique. Simulation results are presented in Section 4. Finally,
concluding remarks and suggestions to future works are discussed in Section 5.

The notations used throughout the paper are fairly standard. I and 0 represent identity
matrix and zero matrix; the superscript T stands for matrix transposition; �n denotes the
n-dimensional Euclidean space; �n×m is the set of all real m by n matrices. ‖ · ‖ refers
to the Euclidean vector norm or the induced matrix 2-norm. diag{· · · } represents a block
diagonal matrix. The operator sym(A) denotesA+AT , and ⊗ denotes the Kronecker product.
The notation P > 0 means that P is real symmetric and positive definite; the symbol ∗ denotes
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the elements below the main diagonal of a symmetric block matrix. Finally given a signal
x(z), ‖x(z)‖2 denotes the L2 norm of x(z), that is, ‖x(z)‖22 =

∫∞
0 xT (z)x(z)dt.

2. Wind Turbine Model

The wind turbine model is obtained from the wind turbine simulation software FAST [19].
The simulation model is an upscaled version of Statoil’s Hywind 2.3 (MW) turbine, which is
located off the Norwegian west coast. This upscaled version is also a floating turbine and has
the capacity 5 (MW). For specifications, see [21].

FAST provides a fully nonlinear wind turbine model with up to 24 degrees of freedom
(DOF). For the controller design, we need a linear model and we want the linear model to be
as simple as possible. All the DOFs available cannot be included, so we choose the ones we
think will represent the most important dynamics. Linearization routines are available in the
FAST package. The model is now linearized at each desired azimuth angle. We find this angle
in the plane of rotor rotation. One linear model at each 10th angle is obtained, that is, the total
amount of 36 models are obtained. The models is of the following standard state space form:

ẋ = Aix + Biu,

y = Cix, i = 1, 2, . . . , 36,
(2.1)

where x is the state vector with dimensions Rn×1, u is the control signal with dimensions
Rp×1, y is the model outputs with dimensions Rm×1, andA, B, C are the system matrices with
dimensions Rn×n, Rn×p, Rm×n, and Rm×p, respectively. The states in this linear model are tower
fore-aft displacement (x1), generator position (x2), rotor position (x3), and the last three states
are the first derivative of x1−3. The model input u, which will eventually be calculated by the
controller, is the blade pitch angle. The model outputs in y are tower fore-aft displacement,
generator speed, and rotor speed.

A commonway to simplify these models is to take the average of all the 36 models and
use this as basis for the controller design. By doing this simplification, important information
is easily lost. This is why in this paper we will try to do the controller design based on a
model representation which tries to include as much as possible of the information in the 36
models. The matrices A and B are behaving in a periodic way, and the matrix values depend
on the rotor azimuth angle. Several things are the cause of this periodic behavior, that is,
aerodynamic loads, tower shadow, gravitational loads, and deflections of the tower due to
thrust loading. The matrix associated with the output y is not varying, since this C-matrix
only handles the measurements. In (2.2)we define the varying matrices in an affine way, and
A(z) and B(z) vary in a continuous manner:

A(z) = An + ΔA(z),

B(z) = B2n + ΔB(z),
(2.2)

where An and B2n are the nominal plant matrices, ΔA(z) and ΔB(z) contributes with the
varying terms, and z represents the rotor azimuth angle. We are looking to represent the
parameter-varying terms in this way: ΔA(z) = FΔ(z)E, and a similar expression for ΔB(z).
After analyzing the 36 models we find appropriate matrices F and E, but we also find out
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that more than one scheduling parameter is needed. The periodic matrices A(z) and B(z)
can now be represented in a continuous way with the use of sine and cosine functions. The
parameter-varying terms in (2.2) are defined in the following way:

ΔA(z) =
2∑

i=1

2∑

j=1

FiΔj(z)Ejia,

ΔB(z) =
2∑

i=1

2∑

j=1

FiΔj(z)Ejib,

(2.3)

where the vectors F and E have appropriate dimensions, and the scheduling variables
Δ1(z) and Δ2(z) are found to be sin(ωt), and cos(ωt) respectively. A plot which shows
what the different parameters are in the original matrices A1,...,36 and B1,...,36 and in the new
representation An + ΔA(z) and B2n + ΔB(z) is found in the appendix.

3. Control Design

The purpose ofH∞ control is to minimize the effect of disturbances on the controlled output.
The control design is formulated in terms of LMIs. After manipulating the linear model
obtained from FAST, we end up with a state space system with parameter-varying A and
B matrices. This model is more accurate than if we just took the average of all the 36 models.
By using a LPV model of the system we are able to catch some of the dynamics that are lost
under the linearization. The challenge is now to incorporate these additional terms into the
control design.

These robust control designs mostly deal with frequency domain aspects of the closed
loop system, but it is well known that the location of the closed loop poles play a large role
in the transient behavior of the controlled system. By adding pole placement to the list of
constraints we can prevent large poles and end up with a system which can respond in a
realistic way. The controller we are searching for will try to keep the generator speed at its
rated value while mitigating oscillations in the drive train and in the tower.

The LMIs for the control design are solved using YALMIP [22] interfaced with
MATLAB, and we are using the solver SeDuMi. This solver is searching for two positive
definite matricesX and Y which stabilizes the system. If these matrices exist, we can calculate
the controller. The next sections present how to obtain the LMIs for the controller design and
also how to incorporate the parameter-varying part of the state space system.

3.1. System Representation

Figure 2 shows the output feedback control scheme, where P(s) is the generalized plant and
K(s) is the controller. The two blocks represent in the equations (3.1) and (3.2). P(s) includes
the wind turbine model and the signals of interest:

ẋ = Ax + B1w + B2u,

z∞ = C1ix +D1iw +D2iu,

y = C2x +D21w,

(3.1)
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Figure 2: Output feedback block diagram.

where A, B2, and C2 represent the matrices from the standard state space form in (2.1). To
include the parameter-varying matrices, A is substituted with A(z) and B2 with B(z). The
other matrices are considered with appropriate dimensions. u is the control input, w is the
disturbance signal, and y is the measured output. The signal z∞ is the controlled output for
H∞ performance measure. For system (3.1), the dynamic output feedback, u(s) = K(s)y(s),
is of the following form:

K(s)

{
ζ̇ = Akζ + Bky,

u = Ckζ +Dky.
(3.2)

The closed loop system is given in (3.3)with the states xcl = [ x ζ ]T :

ẋcl = Aclx + Bclw,

z∞ = Cclx +Dclw.
(3.3)

The closed loop system is divided into two parts, one with constant state space matrices and
one where the parameter-varying matrices are

(
Acl Bcl

Ccl Dcl

)

=

(
Acl 1 Bcl 1

Ccl 1 Dcl 1

)

+

(
Acl 2(z) Bcl 2(z)

0 0

)

=

⎛

⎜
⎝

An + B2nDkC2 B2nCk B1 + B2nDkD21

BkC2 Ak BkD21

C1i +D2iDkC2 D2iCk D1i +D2iDkD21

⎞

⎟
⎠

+

⎛

⎜
⎝

ΔA(z) + ΔB(z)DkC2 ΔB(z)Ck ΔB(z)DkD21

0 0 0

0 0 0

⎞

⎟
⎠.

(3.4)
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3.2. H∞ Control

Because of the parameter-varying state space system we now get an additional term to
the standard Bounded Real Lemma (BRL). This additional term is the second part of the
summation in constraint (3.5). We want to make sure that the closed loop H∞ norm of the
closed loop transfer function does not exceed γ . This is true if and only if there exists a sym-
metric matrix X such that

⎛

⎜
⎜
⎜
⎜
⎝

AT
cl 1X +XAcl 1 XBcl 1 CT

cl 1

∗ −γI DT
cl 1

∗ ∗ −γI

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

AT
cl 2(z)X +XAcl 2(z) XBcl 2(z) 0

∗ 0 0

∗ ∗ 0

⎞

⎟
⎟
⎟
⎟
⎠

< 0

X > 0.

(3.5)

3.3. Change of Variables

Obviously, theH∞ constraint (3.5) is not an LMI because of the nonlinear terms which occur
whenwe close the loop. In order to transform these nonlinear terms into proper LMIswe need
to do two things. First, we need to linearize them with the use of change of variables. Second,
we need to remove the parameter-varying terms. The linearization part is not as straight
forward as for the state feedback case, additional information about this can be found in [23].

The new Lyapunov matrix is partitioned in the following form:

X =
[
Y N
NT #

]
, X−1 =

[
X M
MT #

]
, (3.6)

where X and Y are symmetric matrices of dimension n × n. It is not necessary to know the
matrices noted as #.

In addition, we define the following two matrices:

Π1 =
[
X I
MT 0

]
, Π2 =

[
I Y
0 NT

]
, (3.7)

that, as can be inferred from the identity XX−1 = I, satisfy

XΠ1 = Π2. (3.8)
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Then, the following change of controller variables are defined:

Â = NAkM
T +NBkC2X + YB2nCkM

T + Y (An + B2nDkC2)X,

B̂ = NBk + YB2nDk,

Ĉ = CkM
T +DkC2X,

D̂ = Dk.

(3.9)

Now we are ready to convert our nonlinear matrix inequalities into LMIs. By performing
congruence transformation with diag(Π1, I, I) on the obtained inequality (3.5), we end up
with following matrix inequality:

Σ1 + sym(G1Δ1(z)H1) + sym(G2Δ1(z)H1)

+ sym(G1Δ1(z)H2) + sym(G2Δ1(z)H2)

+ sym(G3Δ2(z)H3) + sym(G4Δ2(z)H3)

+ sym(G3Δ2(z)H4) + sym(G4Δ2(z)H4) < 0,

(3.10)

where the matrix Σ1 and the vectors Gi and Hi are defined in the appendix.

Lemma 3.1 (see [24]). Given Σ = ΣT , G, Δ, and H of appropriate dimensions with ΔTΔ ≤ I, then
the matrix inequality

Σ + (GΔH) < 0 (3.11)

holds for all Σ if and only if there exists a scalar ε > 0 such that

Σ + εGGT + ε−1HTH < 0. (3.12)

By using Lemma 3.1 we are able to remove the parameter-varying parts Δi(z) in the
matrix inequality (3.10). We end up with a new LMI which contains the constants ε1 and ε2:

Σ1 + 2ε1G1G
T
1 + 2ε−11 HT

1 H1 + 2ε1G2G
T
2 + 2ε−11 HT

2 H2

+ 2ε2G3G
T
3 + 2ε−12 HT

3 H3 + 2ε2G2G
T
4 + 2ε−12 HT

4 H4 < 0.
(3.13)

By using the Schur complement we can convert (3.13) into the following LMIs:

(
Σ1 Σ2

∗ Σ3

)
< 0, (3.14)

(
X I
I Y

)
> 0, (3.15)
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where

Σ2 =
[
G1 HT

1 G2 HT
2 G3 HT

3 G4 HT
4

]

Σ3 = diag
{
−1
2
ε−11 ,−1

2
ε1,−12ε

−1
1 ,−1

2
ε1,

−1
2
ε−12 ,−1

2
ε2,−12ε

−1
2 ,−1

2
ε2

}
.

(3.16)

3.4. LMI Region

An LMI region is any convex subset D of the complex plane that can be characterized as an
LMI in z and z [25] as follows:

D =
{
z ∈ C : L +Mz +M

T
z < 0

}
, (3.17)

for some fixed real matrices M and L = L
T
, where z is a complex number. This class of

regions encompasses half planes, strips, conic sectors, disks, ellipses, and any intersection
of the above. From [25], we find that all eigenvalues of the matrix A are in the LMI region
{z ∈ C : [lij +mijz +mjiz]i,j < 0} if and only if there exists a symmetric matrix X such that

[
lijX +mijA

TX +mjiXA
]

i,j
< 0, X > 0. (3.18)

Also, here we need to include the change of variables and remove the parameter-varying
terms, this is done in (3.19). The LMI is obtained in a manner similar to the one that was used
for the H∞ constraint:

(
Σ4 Σ5

∗ Σ3

)
< 0, (3.19)

where

Σ5 =
[
ε1P1 NT

1 ε1P2 NT
2 ε2P3 NT

3 ε2P4 NT
4

]
(3.20)

and Σ4 and the other terms in Σ5 are defined in the appendix.

Remark 3.2. It is observed that the inequalities (3.14), (3.15), and (3.19) are linear in
(X,Y, Â, B̂, Ĉ, D̂) and thus the standard LMI techniques can be exploited to find the LMI solu-
tions. It is also seen from the above results that there exists much freedom contained in the
design of control law, such as the choices of appropriate ε1 and ε2. This design freedom can
be exploited to achieve other desired closed loop properties.
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The desired regionD is a disk (Figure 3), with center located along the x-axis (distance
q from the origin) and radius r. This determines the region

D =
( −r q + z
q + z −r

)
. (3.21)

From this we can find the matrices L and M, which are the two matrices that determine the
LMI region.

All constraints in (3.14), (3.15), and (3.19) are now subjected to the minimization
of the objective function, which is the H∞ norm. They need to be solved in terms of
(X,Y, Â, B̂, Ĉ, D̂).

Once all these matrices are obtained, the controller matrices are computed in the
following way. First we obtain M and N from the factorization problem

MNT = I −XY. (3.22)

Second, the controller matrices are computed from the following relationship:

Dk = D̂,

Ck =
(
Ĉ −DkC2X

)(
MT
)−1

,

Bk = N−1
(
B̂ − YB2nDk

)
,

Ak = N−1
(
Â −NBkC2X − YB2nCkM

T − Y (An + B2nDkC2)X
)(

MT
)−1

.

(3.23)
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Figure 4: Wind profile.

4. Simulation Results

The simulations are carried out with FAST software interfaced with MATLAB/Simulink. The
controllers are tested on the fully nonlinear system with 22 out of 24 DOFs enabled. Yaw and
platform surge-motion are left out. The wind turbine system is subjected to extreme wind
conditions. The wind profile is a 50-year extreme case with an average speed of 18 [m/s]
(Figure 4) and a turbulence intensity of 17%. Significant wave hight is 6 [m] with a peak
wave period of 10 [s]. The wind profile is obtained from the software Turbsim [26].

Suitable results are found with the following H∞ performance measure:

z∞ = x1 + x2 + x6 + u. (4.1)

The blue line in the plots is the result where the parameter-varying terms are taken into
consideration in the controller design. The red line shows the result where the parameter-
varying terms are left out. We also show NREL’s PI gain scheduled controller (cyan colored
line) as a reference plot. Our two controllers are designed and tested on exactly the same
operating conditions, that is, same performance measure, same pole placement constraint,
and same wind condition. From Figures 5 and 6 we see that the blue line is operating more
steady around the rated values for the rotor and generator, which are 12.1 [rpm] and 1173.7
[rpm], respectively. This will in turn result in a smoother torque output, as seen in Figure 7.

Our two controller designs show a large increment in pitching activity, see Figure 8. If
we inspect the pitching rate, we see that it is not more than 5–10 [deg/s] and hence should
be within the wind turbine’s limit. The blue line in Figure 9 shows that the amplitude of the
oscillations is lower in the fore-aft direction than in the other two plots. From these plots we
see that the results are according to the controller objectives.
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Figure 6: Generator speed.

5. Conclusions

In this paper we have obtained and linearized a wind turbine model using the commercial
software FAST. The output from the linearization is a family of models describing the turbine
system at each 10th azimuth angle. This family of models is converted into one parameter-
varying model. The new model is dependent on the azimuth angle. In this way we can make
the control design based on amodel consisting of more information than if we had done it the
conventional way, which is to use the average of the family of models. The controller is tested
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Figure 8: Blade pitch.

on the fully nonlinear system subjected to 50-year extreme wind conditions. The simulation
results show a comparison between controller design done with the new method and done
the conventional way. The plots show that the simulation results meet our control objectives.

Based on the results in this paper, interesting future research may be prospective as
follows.
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(1) It is worth noting that in this paper a constant controller is designed for a para-
meter-varying model. A next step could be to design a parameter-varying con-
troller, where the scheduling parameter is the azimuth angle.

(2) The methods presented in [27, 28] can be used for a stochastic model of a wind
turbine system with constrained information exchange and a partial knowledge of
the state variables.

(3) Fault detection and control design for wind turbine systems over a network (see,
for instance, [29, 30]) can be studied in the framework of this paper.

(4) Though the addressed issue is the control problem, the methods proposed in the
paper can be extended to filtering problems (see, for instance, [31]).

Appendix

The size of the A matrix is 6 × 6, and the B matrix has size 6 × 1. Only the last three rows
are shown in Figures 10 and 11, respectively. The first three rows contain either constant
or zero values. The blue line shows how the 36 linear models are distributed along the 360
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Figure 10: Continued.
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Figure 10: Parameters in A matrix rows 4–6.
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Figure 11: Parameters in B-matrix rows 4–6.

azimuth angles. The red line shows our attempt to emulate these periodic matrix values with
a function on the form An + ΔA(z) for the A matrix and B2n + ΔB(z) for the B matrix

Σ1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

sym
(
AX + B2Ĉ

)
ÂT +A + B2D̂C2 B1 + B2D̂D21 XCT

1i + ĈTDT
21

∗ sym
(
YA + B̂C2

)
YB1 + B̂D21 CT

1i + CT
2 D̂

T +DT
2i

∗ ∗ −γI DT
1i +DT

21D̂DT
2i

∗ ∗ ∗ −γI

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (A.1)
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G1 =
[
F1 01 × 8

]T
, G2 =

[
01 × 6 YF1 01 × 2

]T
,

G3 =
[
F2 01 × 8

]T
, G4 =

[
01 × 6 YF2 01 × 2

]T
,

H1 =
[
E11aX + E11bĈ E11a + E11bD̂C2 E11bD̂D210

]
,

H2 =
[
E12aX + E12bĈ E12a + E12bD̂C2 E12bD̂D210

]
,

H3 =
[
E21aX + E21bĈ E21a + E21bD̂C2 E21bD̂D210

]
,

H4 =
[
E22aX + E22bĈ E22a + E22bD̂C2 E22bD̂D210

]
,

(A.2)

Σ4 =

(

L ⊗
(
X I
I Y

)
+M ⊗

(
AX + BĈ A + BD̂C

Â YA + B̂C

)

+M
T ⊗
(
AX + BĈ A + BD̂C

Â YA + B̂C

)T
⎞

⎠,

(A.3)

G1 =
[
F1 01 × 6

]T
, G2 =

[
01 × 6 YF1

]T
, G3 =

[
F2 01 × 6

]T
, G4 =

[
01 × 6 YF2

]T
,

H1−2 =
[
E11aX + E11bĈ E11a + E11bD̂C2

]
, H2−2 =

[
E12aX + E12bĈ E12a + E12bD̂C2

]
,

H3−2 =
[
E21aX + E21bĈ E21a + E21bD̂C2

]
, H4−2 =

[
E22aX + E22bĈ E22a + E22bD̂C2

]
,

N1 = I2 × 2 ⊗H1−2, N2 = I2 × 2 ⊗H2−2, N3 = I2 × 2 ⊗H3−2, N4 = I2 × 2 ⊗H4−2,

H1 = M ⊗G1−2, H2 = M ⊗G2−2, H3 = M ⊗G3−2, H4 = M ⊗G4−2.
(A.4)
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