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In order to organically combine the minimum-energy frame with the significant properties
of multiwavelets, minimum-energy multiwavelet frames with arbitrary integer dilation factor
are studied. Firstly, we define the concept of minimum-energy multiwavelet frame with
arbitrary dilation factor and present its equivalent characterizations. Secondly, some necessary
conditions and sufficient conditions for minimum-energy multiwavelet frame are given. Thirdly,
the decomposition and reconstruction formulas of minimum-energy multiwavelet frame with
arbitrary integer dilation factor are deduced. Finally, we give several numerical examples based
on B-spline functions.

1. Introduction

Wavelets transform has been widely applied to information processing, image processing,
computer science, mathematical physics, engineering, and so on. As you all know, it is not
possible for any orthogonal scaling wavelet function with compact support to be symmetric,
except for the Haar wavelets. In 1993, Goodman and Lee [1] established the multiwavelet
theory by introducing the multiresolution analysis (MRA) with multiplicity r, and gave the
spline multiwavelet examples. Using the fractal interpolation technology, Geronimo et al. [2]
constructed the GHM multiwavelet which have short support, (anti)symmetry, orthogonality
and vanishing moment with order 2 in 1994. From then on, multiwavelet has been a hot
research area. In 1996, Chui and Lian [3] reconstructed the GHM multiwavelet without
using the fractal interpolation technology, and they gave the general method on constructing
the multiwavelet with short support, (anti)symmetry, and orthogonality. After that, Plonka
and Strela [4] used two-scale similarity transforms (TSTs) to raise the approximation order
of multiwavelet and gave the important conclusions of the two-scale matrix symbol’s
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factorizations and so on. And, by Lawton et al. [5], the construction of multiwavelet has been
transformed into matrix extension problem in 1996. The construction theory of multiwavelet
had a great development after Jiang [6, 7] putting forward a series of effective methods.
Whether wavelets or multiwavelet, they require that the integer shifts of the scaling function
form Riesz bases, orthogonal basis, or biorthogonal basis for its span space. And this will
cause some defects: (1) the computational complexity can be increased during the course
of decomposition and reconstruction; (2) the numerical instability can be caused during the
procedure of reconstructing original signal (3) in the biorthogonal case, the analysis filter
bank can not replaced by the synthetic filter bank, and vice verse.

Fortunately, besides orthogonal wavelets and multiwavelet minimum-energy frames
can effectively avoid the difficulty which is caused by different bases functions during the
course of decomposition and reconstruction, still use the same wavelets both for analysis
and synthesis. The theory of frames comes from signal processing firstly. It was introduced
by Duffin and Schaffer to deal with problems in nonharmonic Fourier series. But in a
long time after that, people did not pay enough attention to it. After Daubechies et al. [8]
defined affine frames (wavelets frames) by combining the theory of continuous wavelets
transforms and frames while wavelets theory was booming, people start to research frames
and its application again. Benedetto and Li [9] gave the definition of frame multiresolution
analysis (FMRA), and their work laid the foundation for other people’s further investigation.
Frames cannot only overcome the disadvantages of wavelets and multiwavelet, but also
increase redundancy properly, then the numerical computation become much more stable
using frames to reconstruct signal. With well time-frequency localization and shift invariance,
frames can be designed more easily than wavelets or multiwavelet. Nowadays frames have
been used widely in theoretical and applied domain [10-22], such as signal analysis, image
processing, numerical calculation, Banach space theory, Besov space theory, and so on.

In 2000, Chui and He [11] proposed the concept of minimum-energy wavelets frames.
The minimum-energy wavelets frames reduce the computational complexity, maintain the
numerical stability, and do not need to search dual frames in the decomposition and
reconstruction of functions (or signals). Therefore, many people pay a lot of attention
to the study of minimum-energy wavelets frames. Huang and Cheng [15] studied the
construction and characterizations of the minimum-energy with arbitrary integer dilation
factor. Gao and Cao [18] researched the structure of the minimum-energy wavelets frames
on the interval and its application on signal denoising systematically. Liang and Zhao [23]
studied the minimum-energy multiwavelet frames with dilation factor 2 and multiplicity
2 and gave a characterization and a necessary condition of minimum-energy multiwavelet
frames. Unfortunately, the authors did not give the sufficient conditions of minimum-energy
multiwavelet frames. In fact, people need to pay close attention to the existence of sufficient
conditions of minimum-energy wavelet frames in most cases. On the other hand B-spline
functions which are the convolution of Shannon wavelets [24-26]. It can be seen that also
Shannon wavelets are minimum-energy wavelets. In this paper, in order to organically
combine the minimum-energy frame with the significant properties of multiwavelet,
minimum-energy multiwavelet frames with arbitrary integer dilation factor are studied.
Firstly, we define the concept of minimum-energy multiwavelet frame with arbitrary dilation
factor and present its equivalent characterizations. Secondly, some necessary conditions
and sufficient conditions for minimum-energy multiwavelet frame are given; Thirdly, the
decomposition and reconstruction formulas of minimum-energy multiwavelet frame with
arbitrary integer dilation factor and the multiplicity r are deduced. Finally, we give several
numerical examples based on B-spline functions.
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Let us now describe the organization of the material that as follows. Section 2
is preliminaries and basic definitions. Section 3 is main result. In Section4, we give
the decomposition and reconstruction formulas of minimum-energy multiwavelet frame.
Section 5 is numerical examples.

2. Preliminaries and Basic Definitions
Throughout this paper, let Z, R, and C denote the set of integers, real numbers, and complex

numbers respectively; a € Z with a > 2, w; = cos(2jr/a) +i sin(2jor/a), j=0,1,...,a-1.
A multiscaling function vector (refinable function vector) is a vector-valued function:

®=(gi1(x),- 4 (x), B ELR), 1=1,...7, (21)
which satisfies a two-scale matrix refinement equation of the form:

®(x) = Y P®(ax-k), x€R, (2.2)
keZ

r is called the multiplicity of @, the integer a is said to be dilation factor. The recursion
coefficients { Py }c; are r x r matrices.
The Fourier transform of the formula (2.2) is

D(w) = p(z)ci)(%’), z=eiwla (2.3)
where
P(z) = %Zszk. (2.4)
keZ

P(z) is the symbol of the matrix sequence { P };cz-
The multiresolution analysis (MRA) with multiplicity r and dilation factor a generated
by @(x) is defined as

{Vi} =span{¢.jx:1<7 <7, keZ, jeZ}, (2.5)

where ¢,k = a//*¢(a/x—k), and the sequence of closed subspace of L*(R) has the following
properties:

(2) UjeZVj = LZ(R)r ﬂjeZVj ={0};

(3) f(x) € V; & f(ax) € Vjyq, forall j € Z;

“4) f(x)eVie f(x- a’k) e V;, forallk,jeZ;

(5) {¢prok : 1 < T <1,k € Z} forms a Riesz basis of Vj;
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Definition 2.1. A finite family vector-valued function ¥’ = (¢}, ..., qfﬁ)T, i=1,...,N generates
a multiwavelet frames for L?>(R), if there exist constants 0 < A < B < oo such that for any
f(x) € LA(R)

r

AP <33 S (e, )f <

i=1 7=1 jkeZ

(2.6)

where (pi].k = al?¢i(alx - k).

Definition 2.2. A nested subspace generated by a multiscaling vector-valued function
@(x) satisfies formula (2.5) and its additional conditions, then finite family vector-valued
function {¥!,...,¥N} generates a frame multiresolution analysis associated the vector-
valued function ®(x), if the finite family pio= (qxi,...,qxﬁ)T, i = 1,...,N satisfies the
formulation (2.6) with ¢l € V4,i=1,... N;7=1,...,r.

Definition 2.3. Let @( x) (P1(x),.. (])r(x))T, with $T € LR)NL*R), T = 1,...,7, @
continuous at 0 and (D(O) #0, be a multiscaling vector-valued function that generates the

nested subspace {Vj}]. <z in the sense of (2.5). Then a finite family vector-valued function
{¥!,..., ¥N} C V; is called a minimum-energy multiwavelet frames associated with @(x), if
for for all f € L%(R)

r

DI TSRS DN (1 HISEED 39393 [ I (27)

7=1 k€Z 7=1 k€Z i=1 7=1 keZ

Remark 2.4. By the Parseval identity, minimum-energy multiwavelet frames {¥!,..., ¥N}
must be tight frames for L?(R) with frames bound equal to 1.

Remark 2.5. The formula (2.7) is equivalent to the following formulas:

ZZU Pr1k)Pr ik —ZZ frrok) ¢r0k+Z§r: (f 9hox )ik (2.8)

7=1 k€Z 7=1 k€Z i=1 7=1 keZ

The interpretation of minimum energy will be clarified later.

3. Main Result

In this section, we will give a complete characterization of minimum-energy multiwavelet
frames associated with some given multiscaling vector-valued function in term of their two-
scale symbols. Let ®(x) = (¢1(x),..., ¢, (x))" with ¢, € L*(R) N L2(R), 7 = 1,...,7, D
continuous at 0, and ®(0) #0 be a multiscaling vector-valued function which satisfies (2.2)—
(2.5). Consider {¥',...,¥N} c Vi, then

¥ (x) = > QP(ax — k), (3.1)

keZ
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where {Q;{ beezs 1 = 1,..., N are r x r matrices. Using Fourier transform on (3.1), we can get
their symbols as follows:

Ql(z) ZQ I= 1/"'/N' (32)

keZ
With P(z), Qi(z),l=1,...,N, we formulate the (N + 1)r x ar block matrix as follows:

P(z) P(wz) - Pwa-12)
Qi(z) Qi(wiz) -+ Qi(wa-12)
R(z)=1] . : : , (3.3)

Qn(2) Qn(@iz) - Qn(warz)

and the R*(z) denotes the complex conjugate of the transpose of R(z).
The following theorem presents the equivalent characterizations of the minimum-
energy multiwavelet frames with arbitrary integer dilation factor.

Theorem 3.1. Suppose that every element of the symbols, P(z), Qi(z), l = 1,...,N, in (2.4) and
(3.2) is a Laurent polynomial, and the multiscaling vector-valued function ®(x) associated with P(z)
generates a nested subspace {V; }i <z Then the following statements are equivalent:

(1) {¥1,..., ¥N} is a minimum-enerqy multiwavelet frames associated with ®(x):

2)

R*(2)R(z) =1, forV|z| =1, (3.4)

®)

amij =0, VYm,dl€Z;ij=1,...,r1, (3.5)

where

T
L Ti% T] t,Tix tTj _ .
Amlij = ZZ<PI akPonak ZQI k- ak> abmi,ij,

keZr=1

1, m=1Ii=j,
6ml,ij:{ J

(3.6)

0, else.

Proof. By using the two-scale relations (2.2) and (3.1) and notation a,,;j for for all f € L*(R),
(2.8) can be written as

T T

> 2 i (f, pi(ax —m))pj(ax 1) = (3.7)

1eZ meZ i=1 j=1
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On the other hand, (3.4) can be reformulated as

N
P*(2)P(2) + D Qi (2)Qi(2) = I,
t=1

. N (3.8)
P*(z)P(wjz) + ZQt (2)Q¢(wjz) =0y,
=1
ji=12,...,a-1, V|z|=1,
and it is equivalent to
a-1 N a-1
S P wz)P(2) + 3. 3 QHw2)Qi(z) = I,
k=0 t=1k=0
N a-1
<P*(Z) ZP* (wk2)> P(z)+ ), <Qt (2)- DO (sz)> Qi(z) = I,
t=1 k=1
a-1 a-1
<ZP* (wiz) —2P* (wlz)> P(z) + Z ( Q; (wkz) - 2Q; (wlz)> Qi(z) =1,
k=0 k=0
1=1,2,...,a-1;, V|z|=1
(3.9)
With |z| = 1, Z¢F = z7F, wf = wh =w, and
a-1 a-1
Wk =S wl = {0 we#l (3.10)
1=0 1=0 a wp=1,
the formulation (3.9) is equivalent to
N
> Pz P(z) + 3> Q% 2 Qu(z) = I,
keZ t=1keZ
N
<ZZ]DI* akZ )P(Z) + Z <ZZQ1 akz >Qt (Z) (Cl - 1)Ir/
I=1keZ I=1keZ (3.11)

<Ze‘(251”/“>’ZPI* - )P(Z) + Z (Ze_(zsm/u)lZQz akZ" >Qf(z)

keZ keZ

s=1,2,...,a-1, V|z|=1.
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Using the properties of roots of unity, the Vandermonde matrix and Cramer’s rule, the
above equation is equivalent to

N
> Pz P(z) + D D0 2% Qi(z) = I,

kez t=1keZ

N
Pz P(2) + D QN 4z Q=) = 1,
keZ t=1keZ (3_12)

N
ZP;_l_akZak—m—l P(Z) + ZZij_l_akZak—aHQt(Z) =1,.

keZ t=1keZ

We multiply the identities in (3.12) by &)(w/ a)z,1=0,1,...,a-1, respectively, where
z = e @/ to get

Z {Pf_akzakp(z)&)<%)> + iQ;ﬁakzqut(z)&)(%J> } - &)(£>Zl, 1=0,...,a-1. (3.13)

k t=1

Hence, (3.12) is equivalent to

N
Z{P,*_ 2D (w) + ZQ;iukzak@f(w)} = &n(%’)aﬂw/a, 1=0,...,a-1 (3.14)

k ti=1

or

N
> {P,*_ a2 O(x k) + DQI Lz W (x - k)} =a®(ax-1), 1=0,...,a-1, (3.15)
k t=1

which can be reformulated as

N
> {P,*_ a2 O(x — k) + D QI Lz W (x - k)] = a®(ax - 1). (3.16)
k t=1

By using the two-scaling relations (2.2) and (3.1), we can rewrite (3.16) as

ZZaml’ij(;bj(ax -m)=0, i=1,...,r; VIEZ. (3.17)
m j=1

In conclusion, the proof of Theorem 3.1 reduces to the proof of the equivalence of (3.5),
(3.7), and (3.17).
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It is obvious that (3.5)=(3.17)=(3.7). To show (3.7)=(3.5), let f € L*(R) be any
compactly supported function. By using the properties that for every fixed m, a,,;; = 0 expect
for finitely many 1,1, j, then the functional

Bii(f) = Ziaml,ij<f/ pi(ax —m)) (3.18)

m =1

just has finite nonzero forl € Z,j =1,...,r.
Using the property of Fourier transform, we obtain

Ziﬁw (f)j(w)e ™/ = 0. (3.19)
1

1 j=

Since (}Tl(a)) is nontrivial function, then f;;(f) =0,1 € Z, j = 1,...,r, in other words, we have

<f,Z§r:aml,ij¢,-(ax - m)> =0, lez, j=1,...,r (3.20)

m i=1

Then the series in the above equation is a finite sum and hence represents a compactly
supported function in L?(R). By choosing f to be this function, it follows that

Ziaml,ijd’i(ax -m) =0, (3.21)

m i=1

which implies that the trigonometric polynomial 3, 3| @pij <i;i(w)e’i’”“’ is identically equal
to 0 so that ay,;; =0, forallm,l €Z; i,j=1,...,r.

We complete the proof of Theorem 3.1 because the set of compactly supported
functions is dense in L2(R). O

Theorem 3.1 characterizes the necessary and sufficient condition for the existence of
the minimum-energy multiwavelet frames associated with ®. However it is not a good choice
to use this theorem to construct the minimum-energy multiwavelet frames. For convenience,
we need to present some sufficient conditions in terms of the symbols.

In this paper, we just discuss the minimum-energy frames with compact support, that
is, every element of symbols is Laurent polynomial.

Theorem 3.2. A compactly supported refinable vector-valued function ®(x) = (¢1(x),..., ¢, ()T,
with ® continuous at 0 and D(0) #0. Let {W!,..., WN} be the minimum-energy multiwavelet frames
associated with it, then

r
Npij@z)]? <1 Vz1=1,1<j<r, 0<I<a-1, (3.22)
i=1

a-1r ’

1=0 j=1
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Proof. Using Theorem 3.1, it is clear to show that the [>-norm of every row vector of the
symbol for @ is less than 1, in other words, (3.22) is valid. In order to prove (3.23), leti = 1.

First, we set

f(Z) = [Pll(z) Plr(Z) Pll(wa—lz) plr(wa—lz)]/

and the rest of R(z) removed f(z) as F(z). Then we can reformulate (3.4) as

f@)f(2) + F(2)'F(2) = Lr,

(3.24)

(3.25)

or equivalently, F(z)"F(z) = I.,—f(z)" f (z), which is a nonnegative definite Hermitian matrix

for |z| = 1 so that
det(Ior ~ f(2)'f(2)) 20 Yzl =1,

and this gives

Ipj(@iz)]* <1 Vz| = 1.

a-1r

—

=0 j=1

In fact, we have

<fl(ar> f(iz)*>< J{“(f) —f§z>*) _ <Iar—f(2)*f(z) 0
z —f(z

derl (g T9N) = ae(( 1))
det((_}a(rz) g Y)*)) = det<<1(a)r 1 —}{Sj‘(@))

then
det(Lor = f(2) f(2)) (1~ f(2)f(2)") = (1= f(2)f(2)")’,
and it gives 1 — f(z) f(z)* > 0, for all |z| = 1, that is,

a-1r

|pi]-(wlz)|2 <1 V|z|]=1,1<i<r.

=0 j=1

The proof of Theorem 3.2 is completed.

0 1-f(2)f(@)°

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

O

Remark 3.3. By the proof of Theorem 3.2, we know that the restriction in Theorem 3.2 on the
two-scale symbol P(z) of a refinable vector-valued function @(x) is a necessary condition for
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the existence of a minimum-energy frames associated with ®(x) via the rectangular unitary
matrix extension approach, even if @(x) is not compactly supported.

Remark 3.4. For a certain compactly supported refinable vector-valued function, it cannot

exist in minimum-energy frames.
We write P(z), Qj(z),j =1,..., N in their polyphase forms:

P(z) = */75 (Pl(z“) + 2Py (2% + -+ z“‘lPa(z“)>, (3.31)

Qi(2) ﬁ(Qﬂ(zﬂ) +2Qp(2%) + - + z“*lgja(za)), j=1,...,N, (3.32)

a

where Pi(z), Qij(z),i = 1,...,a;j = 1,...,N are r x r matrices and their every element is
Laurent polynomial. Observe that

I, z ', zi-ag, Pi(z%) Pz - Pu(z%
va |Ir (@iz) ', - (w12) L Qu(z?) Qn(z?) - Q1a(z)

R(Z)7a : : : = . : . (3.33)
I, (Wa12) 'L -+ (wao12)'I, On1(z%) On2(2%) -+ OQna(z?)
Therefore, we have
Pi(z%) Py(z%) - Pu(z%) 1°[ Pi(z%) Pz --- Pa(z9
. Qu(z?) Qun(z?) - Q1a(z) Qn(z? Qun(z?) - Qua(z)
Oni(z) Ona(z?) - Ona(z) LOni(z7) Qna(z®) -+ Qnalz®)
I, z', -z 10 I, ', - oz
L (wz)'L - (w012)™ I (wz) 'L - (w012)'™I
=|. : : R(2)*R(z) ) ,
I'r (Wa—l.z)_llr (Wa—lz)l_alr I, (waflz)_llr (waflz)l_ﬂlr
(3.34)
and it follows from (3.4), that
Pi(z%) Pz - Pa(z) T[ Pi(z")  Pa(z") - Pa(z%
Qu(z?) Qn(z?) - Qua(z) Qu(z?) Qn(z?) - Q1a(z)
: : : : : : =Lar, Yzl =1
Qn1(z%) On2(2%) -+ Ona(z9)] LON1(2%) On2(27) -+ OnNa(z?)
(3.35)

And it is easy to obtain (3.35) from (3.4).
For convenience, we denote z% = u. Next, we present some theorems to give several

sufficient conditions for existence of minimum-energy multiwavelet frames.
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Theorem 3.5. A compactly supported vector-valued function ®(x) = (¢1(x),... ,d),(x))T with ®
continuous at 0 and @(0) #0, its symbol P(z) satisfies

a-1 r

> lpijwiz)| <1, Vz|=1. (3.36)

T
i=1 1=0 j=1

Then there exist minimum-energy multiwavelet frames associated with ®.

Proof. Let Pj(z), j=1,...,abe the polynomial components of P(z), that is,

Ja

P(z) = *= (pl(zﬂ) + 2Py (%) + -+ zu-lpa(zu)). (3.37)

Using (3.34) and (3.35), we can get

S>> <1 (3.38)

i=11=1 j=1

Then we can find r real numbers x1, x5, ..., x,, with

r a r
ISEERD
i=1

ij 2 .
> plw| <x, 1<i<r (3.39)
=1 j=

By the Riesz lemma [27, Lemma 6.13], we can find Laurent polynomials P; a2, i=1,..r
satisfying

N

iih’?(u)r * PZ+1(u)|2 =x, 1<i

I=1 j=1

r. (3.40)

Foreveryi € {1,...,r}, using the method in the reference [15, Theorem 3] on the unit
vector

\/Lx,i(Pi'l(z) Plir(z) Pél(z) p;r(z) p;H(z)), (3.41)

we can get a matrix

Pl'(z) - P(z) -+ Pg(z) - Pi(z) Pi,(2)
Ri(z) = ! 1) - Q@ - QL o QU2 Qa2 |, (342)

i

(@) Qi) - Q) - Ql(z) QL (2)

which satisfies Ri(z)*Ri(z) = Iups1.
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Therefor, the block matrix

VIR (2)

VIR (2)

R(z) = (3.43)

VER(2)

satisfies R(z)*R(z) = Lops.

We can get matrix R(z) which satisfies R(z)*R(z) = I, after adjusting the rows of
R(z) and removing the last column of it, and the r rows in the front of matrix R(z) are the
polynomial components of the symbol P(z).

Then we complete proof of Theorem 3.5 using the formulas (3.34), (3.32), and
Theorem 3.1. O

Theorem 3.5 requests the sum of I>-norm for every row in the matrix symbol
P(z) associated with the vector-valued function ®@. Then we can find a minimum-energy
multiwavelet frames associated with the function using the theorem. The condition in
Theorem 3.5 is too stringent compared with the sufficient conditions in Theorem 3.2. We can
get the following theorem by strengthening the structure of the matrix symbol P(z).

Theorem 3.6. Let ®(x) = (p1(x),..., P, ()T with @ continuous at 0 and ®(0) #0 a compactly
supported multiscaling vector-valued function. If the block matrix

[P(z) P(wiz) -+ P(wa-12z)] (3.44)

satisfies standard orthogonal by row, then there exist a minimum-energy multiwavelet frames associ-
ated with the function ©.

Proof. Let Pj(z), j = 1,..., a are the polynomial components of P(z), that is,
P(z) = \/TE (P +2Po(2) + -+ 27 Pu(2%), (3.45)
with (3.34) and (3.35), we can know that the block matrix
N(u) = [Pi(u) Px(u) -+ Pa(u)],, .. (3.46)

satisfies standard orthogonal by row.

Now, we use the method in the reference [15, Theorem 3] to deal with the first unit
row vector Ni(u) in the matrix N(u). And, we can find a paraunitary matrix H;(u) which
satisties Ny (u)H;(u) =e; = (1,0,...,0), and

N () Hi (1) = <1 N(u))’ (3.47)

with N (1) also a matrix standard orthogonal by row.
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By mathematical induction, there are r paraunitary matrices H;(u),..., H,(u) satis-
fying

1---00 ---0
N@)Hy(u)---Ha(u)= | : - @ - , (3.48)

then the matrix N(u) is equivalent to the front r rows in the paraunitary matrix
Hi(u)"Ha(u)" -+ Ha(u)".

Using the formulation (3.34), (3.35), and Theorem 3.1, we completed the proof of this
theorem. O

Theorem 3.6 requests that the multiscaling vector-valued function’s symbol P(z)
satisfies standard orthogonal by row. This means the [*norm of every row in P(z) is 1. If
the I>-norm of every row in P(z) is less than 1 strictly, and we can find a matrix P, (1) to
make the block matrix

[Pe() Pa() - Pa(u) Ppor(u)] (3.49)

satisfy standard orthogonal by row, then there exist minimum-energy multiwavelet frames
associated with the function @.

Corollary 3.7. Let ®(x) = (¢1(x),... ,gbr(x))T with @ continuous at 0 and ®(0) #0 a compactly
supported multiscaling vector-valued function. If the 1*-norm of every row in P(z) is less than 1
strictly, that is,

a-1r
|Pij(wlz)|2 <1, V|z[=1,1<i<r, (3.50)
1=0 j=1

and there exists a matrix P,.1(u) to make (3.49) satisfy standard orthogonal by row, then there exist
minimum-energy multiwavelet frames associated with the function ®.

By Theorem 3.1, if we can find some row vectors a;(z),...,a,(z) with multiplicity
ar and the matrix in (3.3) formed by the vectors and the symbol of @ satisfies standard
orthogonal by column, there exist a minimum-energy multiwavelet frames associated with
@, and vice versa. However, the number of columns in the symbol of @ is so larger, that it
is not easy to find the frames using Theorem 3.1. Corollary 3.7 requests some column vectors
pr1(u),..., Pm(u) with multiplicity r and the matrix in (3.49) formed by the vectors and the
polynomial components of P(z) satisfies standard orthogonal by row, then we can find a
minimum-energy frames associated with ®@. Obviously, the problem is vastly simplified.

For some multiscaling vector-valued function with small multiplicity which satisfies
the conditions in Theorem 3.2, the matrix P,,1(u) that makes the block matrix in (3.49)
satisfied standard orthogonal by column can be found using the method of undetermined
coefficients. We will give some examples later.
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4. Decomposition and Reconstruction Formulas of
Minimum-Energy Multiwavelet Frames

Suppose the multiscaling vector-valued function @ has an associated minimum-energy
multiwavelet frames {¥?,..., ¥N}. Now, we consider the projection operators P; of L?(R)
onto the nested subspace V; defined by

Pif = > > (f rjik)Prjk- (4.1)

T=1k€Z

Then the formula (2.8) can be rewritten as

N r
Prorf = Bif = 333 f 00 )0 (42)

i=1 T=1keZ

In other words, the error term g; = Pj,1f — P; f between consecutive projections is given by
the frame expansion:

8 = iiz <f' (/fi-,j,k >‘I’;]’,k- (4.3)

i=1 7=1keZ

N,

Suppose that the error term g; has other expansion in terms of the frames {¥!,..., ¥
that is,

N r
EDIPIPICTL (4.4)

i=1 7=1keZ

Then by using both (4.3) and (4.4), we have

(8i f) = i ZTIZKf, wi,j,k>|2 = iiZ%k@ Y (4.5)

i=1 7=1keZ i=1 7=1keZ

and this derives

0 < iiz CT,j,k - <f/ (Fi-,j,k>|2

i=11=1keZ
N r ) N r - N ) )

= 23 Skl 223 Seniu(foyd ) + 22D (fr v )| (46)
i=11=1keZ i=117=1keZ i=1 T=1k€eZ

-3 Slenl - STt

i=11=1keZ i=1 7=1keZ
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This inequality means that the coefficients of the error term g; in (4.3) have minimal
I>-norm among all sequences {cy,;x } which satisfy (4.4).

We next discuss minimum-energy multiwavelet frames decomposition and recon-
struction. For any f € L?(R), define the vector coefficients as follows:

k= (FO),  di=(f¥,) =1 N (4.7)

The inner product of f with vector-valued ®;, ‘P;. w1 =1,...,N is a vector, its every

component is the inner product of f with the corresponding component of @;, ‘P;k, i=
1,...,N.
(1) Decomposition Algorithm

suppose the vector coefficients {cj;1, : [ € Z} are known. By the two-scale relations (2.2) and
(3.1), we have

1 . 1w _
Dji(x) = —= D Peear®juii(x), ¥ (x)= —aZQL-azlp}u,k(x)r i=1,...,N. (48)

\/E keZ " keZ

Then, the decomposition algorithm is given as

1 . 1 . : .
il = — E —alCj+1k/ = —Z k—at 91 =4, N .
Cl—ﬁ Pr_aicjiik d _\/E Qr_ad i=1 N (4.9)
kezZ keZ

(2) Reconstruction Algorithm
from (3.16), it follow that
1 N )
Dji(x) = — D24 P @i (x) + ZQ;ﬁak‘P}’k (x) }. (4.10)
L o
Taking the inner products on both sides of this equality, we get

1 ) N
EVES —ﬁZ {Pz_akcj,k + Q7 iy } (4.11)
k i=1

5. Numerical Examples

By Theorem 3.6, the orthogonal multiwavelet always have minimum-energy multiwavelet
frames associated with them, for example, DGHM multiwavelet and Chui-Lian multiwavelet.
These examples are trivial. In this section, we will construct some minimum-energy
multiwavelet frames in general sense.
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It is well known that the mth-order cardinal B-spline N} (x) with dilation factor a has
the two-scale relation as follows:

— _— a-1\ ™ .
Ni (@) = P(2)N; (), p;(z>=<““%>, z=e@a (51)

In addition, if a scale wavelet ¢(x) satisfies the refinable function

k1
$(x) = D prdp(ax —k), (5.2)

k=ko

and let ®(x) = (p(x), p(x - 1),...,p(x -1+ 1))7, then the vector-valued function @ satisfies
(2.2) with some matrixes {Py}.

Below, upon these conclusions, using Theorem 3.5 and Corollary 3.7 in Section 3, the
minimum-energy multiwavelet frames be presented with the dilation factors a = 2, a = 3,
a = 4, respectively.

51.a=2

Example 5.1. With a = 2, the symbol of the B-spline N3 (x) is
1 1 1
2(z) = = 4+ —z + —Z2. 5.3
Pi(z) = 7+ 52+ ;2 (5.3)
Take ¢(x) = N. 22(x), and the support of this function is [0, 2]. The function satisfies

P(x) = }L¢(2x) + %gb(Zx -1)+ }L¢(2x -2). (5.4)

Let ®(x) = (¢(x), p(x —1))", and

11 11
53 53 00 00
D(x) = D(2x) + Ox-1)+( 1 1 )JP2x-2)+| 1 1 J®(2x-3).
00 00 2 2 2 2
(5.5)
The coefficient matrixes in (5.5) are not unique.
And the symbol of @ has polyphase components as follows:
11 00
2 - -
Py(u) = Py(u) = % 22 ) +ul 4 4 (5.6)
00 5 3
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Take
V2 V2 0 0
Ps(u) = ? 2 2 |+u sl (5.7)
0 0 3 2
which satisfies
Py (u)Py(u)* + Po(u)Po(u)* + P3(u)P3(u)* = L. (5.8)

Using Theorem 3.5, we can get matrix the following:

1 1 1 1
( 2 2 2 E\
wononu
2 2 2 2
-1 0 1 0
2
C(u) = % , (5.9)
0 -1 0 1
11 11
2 22
U u U u
22 232/
which satisfy the formula (3.35). Then we take symbols as
1//-1 0 10
o33 )G9
& 11 0 0 0 0 (5.10)
== 2 2 22 2 3
Qz(z)—2 +z +z _1 1]+% _1 1
0 0 0 0 5 )

The graphs of @ and its minimum-energy frames are shown in Figure 1.
We may discover from Figure 1 that every component of minimum-energy frames is
(anti)symmetrical.

Example 5.2. With a = 2, the symbol of the B-spline NZ(x) is

Pg(z) = 1 + §z + §22 + 1z3. (5.11)
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¥
05 2

Figure 1

Take ¢(x) = N32(x), and the support of this function is [0, 3].

(1) Let @(x) = (¢(x), p(x 1)), and

11 11 11
dx)=| 4 4 |o2x)+| 2 2 |®@2x-1)+ ‘11‘11 D2x - 2)
00 00 -z
4 4 (5.12)
00 00
+11 1 d(2x -3) + 11 d(2x - 4).
2 2 4 4
The symbol of @ has polyphase components as follows:
11
11 -z 00
Pl(u)=ii 4 4 |4y 44 +u? ,
2 11 11
00 11 4 4
4 4 (5.13)
11 00
V2 Z oz
Pz(u)=7 2 2 +u 11
00 53
Take
V2 W2 V2 1 u
| 7 3* 7 2tz O (5.14)
P ﬁu + ﬁuz Qu 0 4y w ) |
4 4 2 2 2
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which satisfies Py (1) Py (u)* + Po(u) Pa(u)" + Ps(u)Ps(u)" = I,. Using Theorem 3.5, we can get
the following symbols:

1 -1 00
[/ v2 V2 v2 V2 0 0
Qz(z)=¥ 44 | 422 4 +z* Vi 3 ,
- vy | e
\ 4 4 4 4
/71 1 11 11 0 0 00
Q3(z)=¥ 4 4|z 22 )42 14 14 +23 1 1 +z4 11
\ 00 11 272 i1
(5.15)

Then, we get the minimum-wavelet frames associated with @. The graphs of them are shown
in Figure 2.

We can discover from Figure 2 that every component of the minimum-energy frames
is (anti)symmetrical and smooth.

(2) Take D(x) = (p(x), p(x — 1), P(x — 2))", which satisfies

1
1 1
(003 031 311
(I)(x)=1 000 |P@x+2)+] (o o o |P@x+1)+ 001 D(2x)
000 000 008
1
11% 130
+1 o 1 1 |@@x-1)+ 1 1 1 |®P2x-2)
3 3
000 00 3
(5.16)
L 000
3 1 1
115 [eer-3)+ 130 loex-9
1
1 11
S
0 3 3
(1) 0 000 000
+| 3 ? d2x-5)+ | © ‘1) 0 lo@x-6)+ ‘13’00 D2x -7)
11! 130 500
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¥
038 1 2
s ‘\
\
\
0.6} \
\
\
\
\
\
\
\
04F \
\\
\
\
\
02t |
\
\
\
\
\
\\
0 - -1 '
0 4 0 2 4
(b)
0.4 IP,'3
0.2

components:

Figure 2

and the symbol of this multiscaling vector-valued function has the following polyphase

=[5
oo O

W= = O

o o O

—_ W= o

O oWl

S O W=

o O

_ O O
W—=o o

OW| = =

u+

o O O

O Wl =
(@] —_ Q| =
W= = ()
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1
1
1 11 1 - 00
L 3
V2 0 3 1 3 1 ,
Pz(u):? 0o0o0 |+ %1u+ 11§u
000 0 0 0 X
3
? 00 000
+| 3 00 [+ (1) 0 u
1 ~00
(5.17)
Let
V2
P3(u)=?
\@+?u 0 —<\@+?u> Véu -+/6 0 0
X 7
—(4) 4 0 0 V6u? - /6u 0
0 -(B) B 0 0 V6u® — /6u?
(5.18)

where o/ denotes v6u + (v6/3)u?, and B denotes /6u> + (v/6/3)u®, which satisfies
Py(u)Py(u)" + Py (1) Py(u)* + P3(u) Ps(u)* = I3. Using Theorem 3.5, we can get

Qi(z)
V2 < <—0.23547806816473105 —-0.1969247665800399 —0.14891401559609693>

0.08212785057744523  —0.18555493781122898 —0.19106026688126101
0.027375950192481735 —-0.061851645937076295 —0.07928888488639749

0.9033589710742332  —0.07112938093948917 —-0.016506887733618497
+z| -0.0608286139211068 0.905683150972805  —0.03808257781757404
—0.020276204640368934 —0.04704107893504214  0.9404994196162103

—0.20402395049705468 —0.05175658881673616 0.01828281901756732
—0.2489115696557434  —0.0979600599918386 —0.016863228869914655

—-0.0700638169224561 —0.12222299444169772 -0.11122693740098887

—-0.05175658881673616  0.01828281901756732  0.006094273005855774
—-0.0979600599918386 —0.016863228869914655 -0.005621076289971551

—0.12222299444169776 —0.11122693740098887 —0.03707564580032962

+z2<
0.018282819017567314 0.0060942730058557715 0
+ 24 -0.016863228869914648 —0.005621076289971549 0
-0.11122693740098877 —0.03707564580032959 0

0.0060942730058557715 0 0O
—-0.005621076289971549 0 0 ,
—0.03707564580032959 0 0
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Q2(2)
\/§<<—0.099863Z5103103813 0.31589881995517033 0.0052538925646165024>

0.0854124922234307 -0.26079578287935323  0.2998893006031239
0.014450758807607454 —0.05510303707581709 -0.30514319316774036

<—0.016309066862055847 0.005908379170891813 0.019381713326762175>
+z

0.0045583062090611155 —0.010950091637853966 —0.0031215427310982043
0.011750760652994713  0.005041712466962157 —-0.016260170595664

—0.20916114471771918 —0.051515547612800944  0.02048043820474356
—0.023639974479628924 —0.01950964138878848 —0.013083356132526147
0.23280111919734814  0.07102518900158937 —0.007397082072217509

-0.051515547612800944 0.02048043820474356 0.0068268127349145336
-0.019509641388788437 -0.013083356132526147 -0.00436111871084204
0.07102518900158936 -0.007397082072217509 -0.0024656940240724914

0.020480438204743462  0.006826812734914494 0
—-0.013083356132526154 —-0.004361118710842047 0
—-0.0073970820722173754 —-0.002465694024072461 0

+ z?
+2°
+z*
0.006826812734914494 0 0
+2°( -0.004361118710842047 0 0 ,
—-0.002465694024072461 0 0

Qs(z)

V2 -0.04725690064321836  0.21949688473386203 0.1639130739275549
=7 0.2523328524498961  -0.7281995751316489 (0.15918487102463674
-0.003904624220396051 0.054187773506410915 -0.7337722255518694

—0.02879898221803944 -0.07331833791750912 0.008051002298630018

—-0.0777261828042069 —0.06662667519576504 0.0330957179061223
+z
—0.042473900845222755 —0.03375725777108183 0.037548046190520684

—-0.0287070169546376 0.06098379400257172  0.07937189961088224

—-0.6930584034579804 —0.08791155686974436 0.16099639981828018
2
+z
0.06463681665260418 0.11607547646429853 0.10634610477760928

0.06098379400257172  0.07937189961088224 0.026457299870294076

—-0.08791155686974436 0.16099639981828018 0.053665466606093386
3
+z
0.11607547646429858 0.10634610477760928 0.03544870159253642

0.07937189961088217 0.026457299870294056 0

0.16099639981828012 0.05366546660609337 0
4
+z
0.10634610477760917 0.035448701592536394 0

0.05366546660609337 0 0
+2°( 0.026457299870294056 0 0 | ).
0.035448701592536394 0 0
(5.19)

They are the symbols of the minimum-energy multiwavelet frames associated with @.
The graphs of them are shown in Figure 3.
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0.8

() (d)
Figure 3

We can discover from Figure 3 that every component of the minimum-energy frames is
smooth. When r = 3, it is very difficult to construct the minimum-energy multiwavelet frames
with symmetry.

5.2.a=3

Example 5.3. With a = 3, the symbol of the B-spline ¢(x) = N3 (x) is
1+3z+62>+72% + 62* +32° + 2°

- (5.20)

Pj(z) =

Take ¢(x) = Ng’(x), and the support of this function is [0, 4].
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(1) Let d(x) = (¢p(x), p(x - 1))7, and this vector-valued function satisfies

D(x) =

The symbol of ®(x) is

P(z) = % <1

o

Pi(u) =

Py(u) =

Ps(u) =

then

Pr(u) Py (u)" + Po(u) Po ()" + Ps(u) P3(u)" =

3 3
<<1 §>¢>(3x)+ <§
00 0

27

3) OBx-1)+ <3
0 0

7
§> D (3x - 2)
0

3 3
3 = -1
DBx-3)+| 5 2 |DBx-4)+| 2 , |®Bx-5) (5.21)
2 3 >3
00 00
D(Bx - 6) + 3 Jo@x-7)+( 3 . )oBx-8) ).
3 = -1
2 2
7 3
3 7 3 3 =
z(23)+22(332)+22] 2 5 | +24 5 2
00 00 12 o 3
2 2 (5.22)
1 00 00 00
7+zéz3+z73§+28§1 ,
7 2 2 2
7
3 3 00
g <1 §>+ 2 4 u+<7 3>u2 ,
3
3 3 = 00
\2/—75 (E 3>+ 3 2 u+<3 3>u2 , (5.23)
00 5 3 2
3
7 -1 00
v3f (s 2 )+ 2 5 Jur(3 )
27\ \o 0 3 = 5 1
2
1 @+143+50u 2+§+50
L u u u
486 50 + 143u + 501> %+143+50u
(5.24)
(i) This example satisfies the conditions in Theorem 3.5. Let
V3 /[ 5-5u
Py(u) = <5u B 5u2)' (5.25)
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The sum of I>-norm for every row in the matrix in (3.34) formed by P (u), P»(u), P;(u), and
Py (u) is equivalent to 1. Using Theorem 3.5, we can get the symbols of the minimum-energy
frames associated with @ the following:

-1 -2 -2 -3 -3 -= Z 03
Ql(z):% 2 14z 2 + 27 2+ 2 54
0 0 0 0 0 0 -1 -5
5 2 >
+z4 3 +2z° ;
-5 -3 -3 -5
00 00 00
6 7 8
+z Z3 + z 3§ +z §1 ,
2 2 2
, 9v3 9f30 0 0 0 0
= — 2 2 3 4
Qs(2) 7 +z +z 93 +z 93 ,
00 00 0 2’
0 0
(28 503 _3v3 23 3
Q3(z)=ﬁ 2 +Zz 2 +z 9\/?:
0 0 0 0 - -3V3

0 0 0 0 0 0
0 0 0 0 0 0
+z 2 i R i +z . 3 _E i +z . i . ,
2V35 °V3s 35 2 V35 V35
2 45 45 2 2
454 = — 45\ — 454/ —= 0
Qs(z) = %7 133 266 | +z| /266 133 | + 22 133
0 0 0 0 0 0
0 0 0 0 0 0

4 5
POVIERE - R Y I T e WY I N I
133 /266 /266 133 133
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0.2

0.1

-0.1

-0.2

0 2 4
(6
Figure 4
. 14 33 33 24 24 NG
Qo(2) = 5 V95 2495 | +z| 2v95 V95 | +zZ*| V95
0 0 0 0 0 0
0 0 0 0 0 0
+2° +z* +2°
14 33 33 24 24 95
V95 24/95 295 V95 V95
(5.26)

The graphs of ® and the minimum-energy frames associated with it are shown in Figure 4.
From this figure, we can discover that every component of the minimum-energy

frames is smooth. The first vector-valued function of frames is antisymmetry and the second
function vanishes.

(ii) In fact, this example also satisfies the conditions of Corollary 3.7. Take

43
V3 5+5u = 52 —5v2u 0

Py(u) = o= (5.27)
27 43
—5u — 5u? -/ S U 0 5+v/2u — 5v/2u2
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27

and with P;(u), P>(u), and P;(u) to form matrix (3.49), which satisfies standard orthogonal
by row. By Theorem 3.6, we can get minimum-energy multiwavelet frames associated with

@.
(2) Let D(x) = (¢p(x), p(x = 1), Pp(x - 2))'. This vector-valued function satisfies
1 1
00 3 031 1o
_ 3
D(x) = = 00 0 DOBx+2)+ 000 OBx+1)+| 5 o o [PGx)
000 000 000
7 7 7
12 2 2 2 2) 2 1)
oo L |oGx-1+] 41 |0Gx-2)+| 1 |, |®Ex-3)
3 3 3
00 O/ 00 O/ 00 O/
1 1 1
(21 3 /1 3 0 /5 00
7 7 1
#1123 |®Bx-4+|2 32 |OBx-5+| 2 21 |O(3x-6)
1 1 1
\0 03/ \0 31/ \3 1%/
/000\ /OOO\ /000\
1 1 1
+121 3 [PGx-7)+ 1 3 0 |®Bx-8) + 3 00 |®@Bx-9)
7 7 7
\! 2 3 \2 3 2 321/
000 000 000
+[ 00 ‘1) oBx-10)+ | 0 (1) 0 loGx-11) + ? 00 lo@Ex-12) |,
21 = 1 = =
3 3 0 3 00
1
Py (1) Py ()" + P (1) Pa ()" + Py a0) Py ()" = =
l+®+141+50u+u 50+g 50+ l4+52+% 50 +1
Uz u ut ud u
x 1+50+141u+50u2+u3 +@+14l+50u+u %+2+E+50+u
u u ub u ou

1+50u+14112 +5003 +u*

Let
x(u) 0 —x(u)
x(w)u  x(u) 0

0 —x(wu x(u)u?

y(u)
0
0

Py(u) = <—

1
Z+50+141u+50u2+u3

lz+ 0 +141+50u+u?
u
(5.28)
0 0
y(u)u 0 , (5.29)
0 yuu?
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where

x(u) = 0.4067366251768559 + 0.167241087848479521 + 0.00337255616429033612,
(5.30)
y(u) = 0.46250686620877374 — 0.45360921162651374u — 0.00889765458225859512,

then

Py(u) Py (u)" + Po(u) Pa(u)™ + P3(u)Ps(u)* + Py(u)Py(u)* = I. (5.31)

By Corollary 3.7 and Theorem 3.6, we know that the existence of the minimum-energy
multiwavelet frames is associated with ©.

5.3.a=4

With a = 4, the symbol of the B-spline ¢(x) = Ni(x) is

144z +102% +202° + 31z* + 402° + 442° + 4027 + 3128 + 202° + 1020 + 42! + 212

4
(5.32)
Take ¢(x) = Nj(x), and the support of this function is [0, 5], the symbol is
31
1 12 25 » (/5 10 510 5
P(z) = 756 (0 0>+z<0 0>+z (O 0>+z
0 0
31
31 20 ==
A 2 20 L 5(20 22\, (22 20\ ; 2
2 5 5 10 31
1 2 10 —
2 (5.33)
31
it 2 1
28 2 . 2(10 5N, 0> 2 on
31 20 22 22 20 31
=~ 20 20 —
2
0 0
00 00 00
12 13 14 15
(3 0) (0 =93 9)
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The polynomial components of P(z) A = xr?

31
31 3l 0 0
1 12 - 20 o 2 10 5
Pl(u)zm 00)*H 2 i +uw’| 4 ,
1 2 > 20 > 10
1 //25 20 22\ ,/10 5\ /0 0
Pa(u) = @((0 0) +”<2 5) T <20 22) T <1o 5))
(5.34)
1 //510 2220\ ,/5 2\ . /00
Ps(u) = @((0 0) +”<5 10) T <22 20) T <5 2))
31
31 20 == 2 1
1 10 = > 5 <0 o>
Py(u) = — 2 ) +u +u 31 )| +u ,
(D)2 82 4) ot
2
and they satisfy the conditions in Theorem 3.5. If we take
1 [/ a+bu+cu?
Ps(u) = 128 <au +bu? + cu3>’ (5:35)
where
(—4467 + /19539353 ) \/4467 + /19539353
4= 1288 ’
(~3823 + /19539353 ) /4467 + /19539353 (5.36)
b= , :
1288
__ V4467 + V19539353

2

then the sum of I>norm for every row of matrix in (3.49) formed by P; (1), P> (1), Ps(u), Ps(u),
and Ps(u) is equivalent to 1. Using the method in Theorem 3.5, we can get

0.02144655154326434 0.04289310308652868
Ql (u) = 0 0

Z(0.04289310308652868 0.1072327577163217>
0 0

42 <O.1072327577163217 0.2144655154326434>
0 0
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+2°

0. 2144655154326434 0. 3324215489205973)
0

_ 0.19702904865778179  0.15557470886671548 )
-0.

02144655154326434 —0.04289310308652868

5

. 0.15557470886671548 0. 11193838675771434)

0.04289310308652868 —0.1072327577163217

T %\ -0.1072327577163217 —0.2144655154326434

7

. 0.07664965153915186 0. 053977382251572635)

—0.2144655154326434 —0.3324215489205973

8

. 0.044111750085627274 0.0284591936036305 )

0.19702904865778179 0.15557470886671548

9

6 <O 11193838675771434 0. 07664965153915186>
=

0.0284591936036305 0.01422959680181525
0.15557470886671548 0.11193838675771434
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(5.37)

they are the symbols of the minimum-energy multiwavelet frames associated with ®. The
graphs of the vector-valued functions are shown in Figure 5.

From Figure 5, we can find that every component of the minimum-energy frames is
smooth, but not (anti)symmetrical.

6. Conclusions

In this paper, minimum-energy multiwavelet frames with arbitrary integer dilation factor are
studied. Firstly, we define the concept of minimum-energy multiwavelet frame with arbitrary
dilation factor and present its equivalent characterizations. Secondly, some necessary
conditions and sufficient conditions for minimum-energy multiwavelet frame are given,
then the decomposition and reconstruction formulas of minimum-energy multiwavelet
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Figure 5

frame with arbitrary integer dilation factor are deduced. Finally, we give several numerical
examples based on B-spline.
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