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Abstract. 
Mathematical modeling and parameter estimation are critical steps in the optimization of biotechnological processes. In the 1,3-propanediol (1,3-PD) production by glycerol fermentation process under anaerobic conditions, 3-hydroxypropionaldehyde (3-HPA) accumulation would arouse an irreversible cessation of the fermentation process. Considering 3-HPA inhibitions to cells growth and to activities of enzymes, we propose a novel mathematical model to describe glycerol continuous cultures. Some properties of the above model are discussed. On the basis of the concentrations of extracellular substances, a parameter identification model is established to determine the kinetic parameters in the presented system. Through the penalty function technique combined with an extension of the state space method, an improved genetic algorithm is then constructed to solve the parameter identification model. An illustrative numerical example shows the appropriateness of the proposed model and the validity of optimization algorithm. Since it is difficult to measure the concentrations of intracellular substances, a quantitative robustness analysis method is given to infer whether the model is plausible for the intracellular substances. Numerical results show that the proposed model is of good robustness.


1. Introduction
Microbial conversion of glycerol to 1,3-propanediol (1,3-PD) is particularly attractive in that the process is relatively easy and does not generate toxic byproducts. 1,3-PD has numerous applications in polymers, cosmetics, foods, lubricants, and medicines. Industrial 1,3-PD production has attracted attention as an important monomer to synthesize a new type of polyester, polytrimethylene terephthalate (PTT) [1]. However, compared with chemical routes, microbial production is difficult to obtain a high 1,3-PD concentration. The fermentation of glycerol by Klebsiella pneumoniae (K. pneumoniae) under anaerobic conditions is summarized in Figure 1. In the reductive pathway, 3-hydroxypropionaldehyde (3-HPA) is a toxic intermediary metabolite and its accumulation would arouse inhibitions to cells growth and to activities of the enzymes (such as glycerol dehydratase (GDHt) and 1,3-propanediol oxidoreductase (PDOR)) in glycerol metabolism [2–5].


	
		


	
		



	
		



	
		


	


	
		
			
				
			
				
			
		
	


	
		
			
				
			
				
			
		
	


	
		
			
				
					
						
					
						
					
				
			
		
	


	
		
			
				
			
				
			
		
	


	
		


	
		


	
		


	
		
			
				
			
				
			
		
	


	
		
			
				
			
				
			
		
	


	
		
			
				
			
				
			
		
	


	
		
			
				
			
				
			
		
	


	
		


	
		
			
			
				
			
		
	


	
		
			
			
				
			
		
	


	
		
			
		
			
		
	


	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
		
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
		
	


	
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
	

Figure 1: Anaerobic metabolism pathways of glycerol by K. pneumoniae [6].


It is critical to formulate the fermentation process using a precise mathematical model in the optimization of biotechnological processes. An excess kinetic model for substrate consumption and product formation was established in previous studies [7–10]. The models have been studied for parameter identification [11] and optimal control [12–14] in fed-batch fermentation process. However, the intermediate and intracellular substances or enzymes of glycerol metabolism are not taken into consideration in those models. In fact, some important intermediate substances (such as 3-HPA), intracellular substances (such as 1,3-PD), and enzymes GDHt and PDOR play significant roles in glycerol metabolism. A mathematical model of glycerol fermentation concerning enzyme-catalytic reductive pathway and transports of glycerol and 1,3-PD across cell membrane was established in [6]. Although the achieved results are interesting, the effect of 3-HPA on cells growth is ignored. Moreover, that model is based on an assumption that 3-HPA inhibits the activities of the enzymes GDHt and PDOR all the time. In fact, there exists inhibitory effect of 3-HPA on cells growth owing to its toxicity. In addition, only when the accumulation of 3-HPA reaches some critical concentration, the inhibitions to enzymes can occur [3, 4].
Robustness is one of the fundamental characteristics of biological systems. By saying that a system is robust we imply that a particular function or characteristic of the system is preserved despite changes in the operating environment [15]. For robust biological systems, we expect that mathematical models attempting to explain these systems should also be robust [16]. In this paper, we are interested in the robustness to variations in kinetic parameters and use it to validate the plausibility of the mathematical model. This topic has been studied by the sensitivity analysis technique [17–19], that is, repeated simulations by varying one parameter while holding all others fixed. However, single parameter insensitivity may not be sufficient owing to interactions between several parameters. Therefore, new methods are needed for studying multiparameter robustness.
Considering 3-HPA inhibitions to cells growth and to activities of the enzymes GDHt and PDOR in glycerol metabolism, we propose a novel mathematical model to describe 1,3-PD production by K. pneumoniae in continuous cultures. Some properties of the model, such as existence and uniqueness of the solution, continuity of the solution in kinetic parameters, and compactness of the set of feasible parameters, are discussed. Furthermore, a parameter identification model is established to determine the kinetic parameters in the presented system. Basing on the penalty function technique and an extension of the state space method, an improved genetic algorithm (GA) is then constructed to solve the identification model. Numerical example shows the appropriateness of the proposed system and the validity of optimization algorithm. Finally, a quantitative robustness analysis method is given to infer whether the model is robust, and numerical result shows that the proposed system is of good robustness.
This paper is organized as follows. In Section 2, the kinetic model is formulated to describe continuous fermentation process, whose important properties are also discussed. In Section 3, a parameter identification model is presented and an optimization algorithm is developed. Section 4 explores the robustness analysis of the proposed dynamical system. Finally, conclusions are provided.
2. Mathematical Model in Continuous Culture and Its Properties
2.1. Mathematical Model
During continuous fermentation of glycerol metabolism by K. pneumoniae under anaerobic conditions, glycerol is fed to the reactor continuously. As stated in [6], we assume that(H1) the transport of extracellular glycerol across cells membrane by passive diffusion and by glycerol transport facilitator;(H2) intracellular 1,3-PD is expected to be diffused from the intracellular environment to the extracellular medium in the fermentative broth.
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Since 3-HPA is a toxic intermediary metabolite, its inhibition to the specific cellular growth rate is introduced besides substrate and products inhibitions. Therefore, the specific cellular growth rate 
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The governing equations based on mass balance [6, 10] can still be used to describe the concentrations of substrate and products for glycerol metabolism, for example, biomass, extracellular glycerol, extracellular 1,3-PD, acetate, ethanol, and intracellular glycerol which are described by (2.3)–(2.7), respectively 
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The reductive pathway is emphasized because 3-HPA is the key intermediate for 1,3-PD production. 3-HPA accumulation during fermentation process can cause growth cessation and low product formation [2, 4]. Moreover, when the accumulation of 3-HPA reaches some critical concentration, the inhibitions to enzymes GDHt and PDOR can occur [3, 4]. So the intracellular concentration change of 3-HPA can be described by
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The intracellular 1,3-PD concentration depends on the conversion of 3-HPA catalyzed by PDOR whose activity is inhibited by the substrate, the diffusion from the intercellular to the extracellular and the dilution effect on cell growth, so whose variation can be formulated by 
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2.2. Properties of the Dynamical System
To begin with, we introduce some symbols which will be used below. Let 
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For the system (2.12), we assume that(H3) the set 
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Under the assumptions (H3) and (H4), we can easily verify the following properties of the velocity vector field 
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, 
	
		
			

				𝐶
			

			

				5
			

			
				∶
				=
				|
				𝑘
			

			
				1
				4
			

			
				|
				+
				𝜇
			

			

				𝑚
			

			
				|
				𝑘
			

			
				1
				5
			

			
				|
				+
				|
				𝑘
			

			
				1
				6
			

			

				|
			

		
	
, 
	
		
			

				𝐶
			

			

				6
			

			
				∶
				=
				(
				1
				/
				|
				𝑘
			

			

				2
			

			
				|
				)
				(
				|
				𝑘
			

			

				3
			

			
				|
				+
				|
				𝑘
			

			

				5
			

			
				|
				𝑀
			

			

				2
			

			
				+
				𝐶
			

			

				2
			

			
				−
				𝐷
				)
			

		
	
, 
	
		
			

				𝐶
			

			

				7
			

			
				∶
				=
				|
				𝑘
			

			
				1
				8
			

			
				|
				(
				|
				𝑘
			

			
				2
				2
			

			
				|
				+
				|
				𝑘
			

			
				2
				3
			

			
				|
				𝜇
			

			

				𝑚
			

			
				+
				|
				𝑘
			

			
				2
				4
			

			
				|
				)
				+
				|
				𝑘
			

			
				2
				0
			

			
				|
				(
				|
				𝑘
			

			
				2
				6
			

			
				|
				+
				|
				𝑘
			

			
				2
				7
			

			
				|
				𝜇
			

			

				𝑚
			

			
				+
				|
				𝑘
			

			
				2
				8
			

			
				|
				)
			

		
	
, 
	
		
			

				𝐶
			

			

				8
			

			
				∶
				=
				|
				𝑘
			

			
				2
				0
			

			
				|
				(
				|
				𝑘
			

			
				2
				6
			

			
				|
				+
				|
				𝑘
			

			
				2
				7
			

			
				|
				𝜇
			

			

				𝑚
			

			
				+
				|
				𝑘
			

			
				2
				8
			

			
				|
				+
				|
				𝑘
			

			
				3
				0
			

			
				|
				𝑀
			

			

				1
			

		
	
. Let 
	
		
			

				𝐿
			

			

				𝑖
			

			
				∶
				=
				𝐶
			

			

				𝑖
			

			
				+
				𝐷
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				3
				,
				4
				,
				5
			

		
	
, 
	
		
			

				𝐿
			

			

				2
			

			
				∶
				=
				m
				a
				x
				{
				𝐷
				𝐶
			

			
				𝑠
				0
			

			
				,
				𝐶
			

			

				2
			

			

				}
			

		
	
, 
	
		
			

				𝐿
			

			

				𝑖
			

			
				∶
				=
				m
				a
				x
				{
				𝐶
			

			

				𝑖
			

			
				,
				𝜇
			

			

				𝑚
			

			

				}
			

		
	
, 
	
		
			
				𝑖
				=
				6
				,
				7
				,
				8
			

		
	
. Then, we can obtain
									
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑓
			

			

				1
			

			
				|
				|
				|
				|
				𝑥
				(
				𝑥
				,
				𝑢
				,
				𝑘
				)
				≤
				(
				𝜇
				+
				𝐷
				)
			

			

				1
			

			
				|
				|
				≤
				𝐿
			

			

				1
			

			
				(
				‖
				|
				|
				𝑓
				𝑥
				‖
				+
				1
				)
				,
			

			

				2
			

			
				|
				|
				(
				𝑥
				,
				𝑢
				,
				𝑘
				)
				≤
				𝐷
				𝐶
			

			
				𝑠
				0
			

			
				|
				|
				𝑥
				+
				𝐷
			

			

				2
			

			
				|
				|
				+
				|
				|
				𝑞
			

			

				2
			

			
				|
				|
				|
				|
				𝑥
			

			

				1
			

			
				|
				|
				≤
				𝐿
			

			

				2
			

			
				|
				|
				𝑓
				(
				‖
				𝑥
				‖
				+
				1
				)
				,
			

			

				3
			

			
				|
				|
				(
				𝑥
				,
				𝑢
				,
				𝑘
				)
				≤
				𝑀
			

			

				2
			

			
				|
				|
				𝑘
			

			

				1
			

			

				𝑥
			

			

				1
			

			
				|
				|
				|
				|
				𝑥
				+
				𝐷
			

			

				3
			

			
				|
				|
				≤
				𝐿
			

			

				3
			

			
				(
				|
				|
				𝑓
				‖
				𝑥
				‖
				+
				1
				)
				,
			

			

				𝑖
			

			
				|
				|
				≤
				|
				|
				𝑞
				(
				𝑥
				,
				𝑢
				,
				𝑘
				)
			

			

				𝑖
			

			
				|
				|
				|
				|
				𝑥
			

			

				1
			

			
				|
				|
				|
				|
				𝑥
				+
				𝐷
			

			

				𝑖
			

			
				|
				|
				≤
				𝐿
			

			

				𝑖
			

			
				(
				|
				|
				𝑓
				‖
				𝑥
				‖
				+
				1
				)
				,
				𝑖
				=
				4
				,
				5
				,
			

			

				𝑖
			

			
				|
				|
				(
				𝑥
				,
				𝑢
				,
				𝑘
				)
				≤
				𝐶
			

			

				𝑖
			

			
				+
				𝜇
				𝑥
			

			

				𝑖
			

			
				≤
				𝐿
			

			

				𝑖
			

			
				(
				‖
				𝑥
				‖
				+
				1
				)
				,
				𝑖
				=
				6
				,
				7
				,
				8
				.
			

		
	

								Finally, set 
	
		
			

				𝐿
			

			

				
			

			
				∶
				=
				m
				a
				x
				{
				𝐿
			

			

				𝑖
			

			
				,
				𝑖
				∈
				𝐼
			

			

				8
			

			
				∶
				=
				{
				1
				,
				2
				,
				…
				,
				8
				}
				}
			

		
	
, then we have (2.14) holds with 
	
		
			
				√
				𝛼
				=
				𝛽
				=
				2
			

			
				
			
			
				2
				𝐿
			

			

				
			

		
	
. The proof is completed.
Then, the existence and uniqueness of the solution for the system (2.12) can be confirmed in the following theorem.
Theorem 2.1.  For any 
	
		
			
				𝑘
				∈
				𝐾
			

		
	
 and 
	
		
			
				𝑢
				∈
				𝑈
			

		
	
, the system (2.12) with given initial state 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑊
			

			

				𝑎
			

		
	
 has a unique solution denoted by 
	
		
			
				𝑥
				(
				⋅
				;
				𝑢
				,
				𝑘
				)
			

		
	
. Moreover, 
	
		
			
				𝑥
				(
				𝑡
				;
				𝑢
				,
				𝑘
				)
			

		
	
 is continuous in 
	
		
			

				𝑘
			

		
	
 on 
	
		
			

				𝐾
			

		
	
. 
									
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				;
				𝑢
				,
				𝑘
				)
				=
				𝑥
			

			

				0
			

			
				+
				
			

			
				𝑡
				0
			

			
				[
				]
				.
				𝑓
				(
				𝑥
				(
				𝑠
				)
				,
				𝑢
				,
				𝑘
				)
				𝑑
				𝑠
				,
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	

Proof. The proof can be obtained from Properties 1, and 2 and the theory of ordinary differential equations [22].
Given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑊
			

			

				𝑎
			

		
	
, we define the solution set 
	
		
			

				𝒮
			

			

				0
			

		
	
 of the system (2.12) as follows:
								
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			

				𝒮
			

			

				0
			

			
				[
				]
				∶
				=
				{
				𝑥
				(
				⋅
				;
				𝑢
				,
				𝑘
				)
				∣
				𝑥
				(
				𝑡
				;
				𝑢
				,
				𝑘
				)
				i
				s
				a
				s
				o
				l
				u
				t
				i
				o
				n
				o
				f
				t
				h
				e
				s
				y
				s
				t
				e
				m
				(
				2
				.
				1
				2
				)
				c
				o
				r
				r
				e
				s
				p
				o
				n
				d
				i
				n
				g
				t
				o
				𝑘
				∈
				𝐾
				a
				n
				d
				𝑢
				∈
				𝑈
				f
				o
				r
				a
				n
				y
				𝑡
				∈
				0
				,
				𝑇
				}
				.
			

		
	

							Since the concentrations of biomass, glycerol, 3-HPA, and products are restricted in 
	
		
			

				𝑊
			

			

				𝑎
			

		
	
 during the actual continuous cultures, the set of admissible solutions is 
								
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝒮
				∶
				=
				𝑥
				(
				⋅
				;
				𝑢
				,
				𝑘
				)
				∈
				𝒮
			

			

				0
			

			
				∣
				𝑥
				(
				𝑡
				;
				𝑢
				,
				𝑘
				)
				∈
				𝑊
			

			

				𝑎
			

			
				[
				]
				
				.
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	

							Furthermore, let the set of feasible parameter vectors corresponding to 
	
		
			

				𝒮
			

		
	
 be 
								
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				ℱ
				∶
				=
				{
				𝑘
				∈
				𝐾
				∣
				𝑥
				(
				⋅
				;
				𝑢
				,
				𝑘
				)
				∈
				𝒮
				}
				.
			

		
	

 From Theorem 2.1 and the above definitions, we have the following result. 
Theorem 2.2.  The feasible parameter set 
	
		
			

				ℱ
			

		
	
 defined by (2.19) is a compact set. 
 Proof. In view of the compactness of 
	
		
			

				𝐾
			

		
	
, we obtain that 
	
		
			

				ℱ
			

		
	
 is a bounded set. Moreover, for any sequence 
	
		
			
				{
				𝑘
			

			

				𝑖
			

			

				}
			

			
				∞
				𝑖
				=
				1
			

			
				∈
				𝐾
			

		
	
, there exists at least a subsequence 
	
		
			
				{
				̂
				𝑘
			

			

				𝑖
			

			
				}
				⊆
				{
				𝑘
			

			

				𝑖
			

			

				}
			

		
	
 such that 
	
		
			
				̂
				𝑘
			

			

				𝑖
			

			
				→
				̂
				𝑘
			

		
	
 as 
	
		
			
				𝑖
				→
				∞
			

		
	
. It follows from Theorem 2.1 that 
	
		
			
				̂
				𝑘
				𝑥
				(
				⋅
				;
				𝑢
				,
			

			

				𝑖
			

			
				)
				∈
				𝒮
			

			

				0
			

		
	
 and 
	
		
			
				̂
				𝑥
				(
				⋅
				;
				𝑢
				,
				𝑘
				)
				∈
				𝒮
			

			

				0
			

		
	
. Since 
	
		
			

				𝑊
			

			

				𝑎
			

		
	
 is a compact set, we must conclude that 
	
		
			
				̂
				𝑥
				(
				⋅
				;
				𝑢
				,
				𝑘
				)
				∈
				𝒮
			

		
	
, which implies the closeness of set 
	
		
			

				ℱ
			

		
	
. The proof is completed.
3. Parameter Identification Model and Optimization Algorithm
3.1. Parameter Identification Model
 Now, we determine the kinetic parameter 
	
		
			

				𝑘
			

		
	
 in 
	
		
			

				𝐾
			

		
	
 by constructing an identification problem as follows.
Let 
	
		
			

				𝑙
			

		
	
 be the total number of experiments carried out under different dilution rates and initial glycerol concentrations. For given 
	
		
			

				𝑢
			

			

				𝑗
			

			
				=
				(
				𝐶
			

			
				𝑗
				𝑠
				0
			

			
				,
				𝐷
			

			

				𝑗
			

			

				)
			

		
	
, 
	
		
			
				𝑗
				∈
				𝐼
			

			

				𝑙
			

		
	
, we have the experimental steady-state data of extracellular substances in continuous cultures. Denote the steady-state concentrations of biomass, extracellular glycerol, extracellular 1,3-PD, acetate, and ethanol as 
	
		
			

				𝑦
			

			
				𝑗
				1
			

			
				,
				𝑦
			

			
				𝑗
				2
			

			
				,
				𝑦
			

			
				𝑗
				3
			

			
				,
				𝑦
			

			
				𝑗
				4
			

			
				,
				𝑦
			

			
				𝑗
				5
			

		
	
, correspondingly. Let 
	
		
			

				𝑦
			

			

				𝑗
			

			
				∶
				=
				(
				𝑦
			

			
				𝑗
				1
			

			
				,
				𝑦
			

			
				𝑗
				2
			

			
				,
				𝑦
			

			
				𝑗
				3
			

			
				,
				𝑦
			

			
				𝑗
				4
			

			
				,
				𝑦
			

			
				𝑗
				5
			

			
				)
				∈
				𝑅
			

			
				5
				+
			

			
				,
				𝑗
				∈
				𝐼
			

			

				𝑙
			

		
	
.
In particular, the stable state of a dynamical system (2.12) in the following identification problem is actually referred to the approximate stability defined as follows. 
Definition 3.1. For given 
	
		
			

				𝑢
			

			

				𝑗
			

			
				∈
				𝑈
			

		
	
, a state vector 
	
		
			
				𝑥
				(
				𝑇
			

			

				𝑗
			

			
				;
				𝑢
			

			

				𝑗
			

			
				,
				𝑘
				)
			

		
	
 is said to be an approximately stable solution within a precision 
	
		
			
				𝜀
				>
				0
			

		
	
 if there exists 
	
		
			
				𝑘
				∈
				𝐾
			

		
	
 such that 
	
		
			
				𝑥
				(
				⋅
				;
				𝑢
			

			

				𝑗
			

			
				,
				𝑘
				)
			

		
	
 is a solution of the system (2.12) satisfying
									
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				
				𝑥
				
				𝑇
			

			

				𝑗
			

			
				
				,
				𝑢
			

			

				𝑗
			

			
				
				‖
				‖
				,
				𝑘
				<
				𝜀
				,
			

		
	

								where 
	
		
			
				‖
				⋅
				‖
			

		
	
 is the Euclidean norm, and 
	
		
			

				𝑇
			

			

				𝑗
			

			
				=
				i
				n
				f
				{
				𝑡
			

			

				𝜀
			

			
				∶
				‖
				𝑓
				(
				𝑥
				(
				𝑡
				)
				,
				𝑢
			

			

				𝑗
			

			
				,
				𝑘
				)
				‖
				<
				𝜀
				f
				o
				r
				a
				l
				l
				𝑡
				∈
				[
				𝑡
			

			

				𝜀
			

			
				,
				𝑇
				]
				}
			

		
	
. 
Since the orders of magnitude for concentrations involved are different, we adopt the average relative error between the computational values 
	
		
			
				𝑥
				(
				𝑇
			

			

				𝑗
			

			
				;
				𝑢
			

			

				𝑗
			

			
				,
				𝑘
				)
			

		
	
 and the experimental data 
	
		
			

				𝑦
			

			

				𝑗
			

		
	
 at steady-state moments 
	
		
			

				𝑇
			

			

				𝑗
			

			
				,
				𝑗
				∈
				𝐼
			

			

				𝑙
			

		
	
, as the criterion
								
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				1
				𝐽
				(
				𝑘
				)
				∶
				=
			

			
				
			
			

				5
			

			

				5
			

			

				
			

			
				𝑚
				=
				1
			

			

				∑
			

			
				𝑙
				𝑗
				=
				1
			

			
				|
				|
				𝑥
			

			

				𝑚
			

			
				
				𝑇
			

			

				𝑗
			

			
				;
				𝑢
			

			

				𝑗
			

			
				
				,
				𝑘
				−
				𝑦
			

			
				𝑗
				𝑚
			

			
				|
				|
			

			
				
			
			

				∑
			

			
				𝑙
				𝑗
				=
				1
			

			

				𝑦
			

			
				𝑗
				𝑚
			

			

				.
			

		
	

To determine the parameter values of the system (2.12), a parameter identification problem, in which 
	
		
			
				𝐽
				(
				𝑘
				)
			

		
	
 is taken as the cost function, can be formulated as 
								
	
 		
 			

				(
			
 			
				P
				I
				P
			
 			

				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
				
				𝑥
				
				𝑇
				m
				i
				n
				𝐽
				(
				𝑘
				)
				s
				.
				t
				.
			

			

				𝑗
			

			
				
				,
				𝑢
			

			

				𝑗
			

			
				
				‖
				‖
				,
				𝑘
				<
				𝜀
				,
				𝑗
				∈
				𝐼
			

			

				𝑙
			

			
				,
				𝑘
				∈
				ℱ
				.
			

		
	

Following the above properties, we can conclude the following theorem. 
Theorem 3.2.  For 
	
		
			

				𝑢
			

			

				𝑗
			

			
				∈
				𝑈
			

		
	
, 
	
		
			
				𝑗
				∈
				𝐼
			

			

				𝑙
			

		
	
, there exists 
	
		
			

				𝑘
			

			

				∗
			

			
				∈
				ℱ
			

		
	
 in 
	
		
			
				(
				P
				I
				P
				)
			

		
	
 such that 
	
		
			
				𝐽
				(
				𝑘
			

			

				∗
			

			
				)
				≤
				𝐽
				(
				𝑘
				)
				,
				f
				o
				r
				a
				l
				l
				𝑘
				∈
				ℱ
			

		
	
. 
3.2. Optimization Algorithm
 In 
	
		
			
				(
				P
				I
				P
				)
			

		
	
, the constraint 
	
		
			
				𝑘
				∈
				ℱ
			

		
	
 actually involves the constraint of continuous state, that is, 
	
		
			

				𝑥
			

			

				∗
			

			
				≤
				𝑥
				(
				𝑡
				;
				𝑢
			

			

				𝑗
			

			
				,
				𝑘
				)
				≤
				𝑥
			

			

				∗
			

			
				,
				𝑡
				∈
				[
				0
				,
				𝑇
			

			

				𝑗
			

			
				]
				,
				𝑘
				∈
				𝐾
				,
				𝑗
				∈
				𝐼
			

			

				𝑙
			

		
	
. In this section, we will develop a computational method for solving our proposed parameter identification problem 
	
		
			
				(
				P
				I
				P
				)
			

		
	
. By means of the penalty function technique and an extension of state space method, we transcribe 
	
		
			
				(
				P
				I
				P
				)
			

		
	
 into an optimization problem only with box constraint. First of all, we introduce a new state variable 
	
		
			

				𝑧
			

		
	
 satisfying
								
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				
				̇
				𝑧
				=
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝑗
			

			
				
				,
				𝑗
				∈
				𝐼
			

			

				𝑙
			

			
				𝑧
				(
				0
				)
				=
				0
				,
			

		
	

							where 
	
		
			
				𝑔
				(
				𝑥
				(
				𝑡
				)
				)
				∶
				=
				[
				𝑥
				(
				𝑡
				)
				−
				𝑥
			

			

				∗
			

			

				]
			

			

				+
			

			
				+
				[
				𝑥
			

			

				∗
			

			
				−
				𝑥
				(
				𝑡
				)
				]
			

			

				+
			

		
	
, and 
	
		
			
				[
				̃
				𝑥
				]
			

			

				+
			

			
				∑
				∶
				=
			

			
				8
				𝑖
				=
				1
			

			
				(
				m
				a
				x
				{
				̃
				𝑥
			

			

				𝑖
			

			
				,
				0
				}
				)
			

			

				2
			

		
	
.
Obviously, the process 
	
		
			
				𝑥
				(
				𝑡
				;
				𝑢
			

			

				𝑗
			

			
				,
				𝑘
				)
			

		
	
 satisfies the constraint of continuous state if and only if 
	
		
			
				𝑧
				(
				𝑇
			

			

				𝑗
			

			
				)
				=
				0
				,
				𝑗
				∈
				𝐼
			

			

				𝑙
			

		
	
. Furthermore, denote the cost function in 
	
		
			
				(
				P
				I
				P
				)
			

		
	
  by 
								
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				
				𝐽
			

			
				𝜆
				,
				𝜇
			

			
				(
				𝑘
				)
				∶
				=
				𝐽
				(
				𝑘
				)
				+
				𝜆
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			
				‖
				‖
				𝑓
				
				𝑥
				
				𝑇
			

			

				𝑗
			

			
				
				,
				𝑢
			

			

				𝑗
			

			
				
				‖
				‖
				,
				𝑘
				+
				𝜇
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑧
				
				𝑇
			

			

				𝑗
			

			
				
				,
			

		
	

							where 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 are penalty factors. Then 
	
		
			
				(
				P
				I
				P
				)
			

		
	
  can be rewritten as
								
	
 		
 			

				(
			
 			
				P
				I
				P
				(
			
 			

				𝜆
			
 			

				,
			
 			

				𝜇
			
 			

				)
			
 			

				)
			
 		
	

	
		
			
				
				𝐽
				m
				i
				n
			

			
				𝜆
				,
				𝜇
			

			
				(
				𝑘
				)
				s
				.
				t
				.
				𝑘
				∈
				𝐾
				.
			

		
	

As a result, 
	
		
			
				(
				P
				I
				P
				(
				𝜆
				,
				𝜇
				)
				)
			

		
	
 is an optimization problem only with the box constraint and equivalent to 
	
		
			
				(
				P
				I
				P
				)
			

		
	
 as 
	
		
			
				𝜆
				→
				+
				∞
			

		
	
 and 
	
		
			
				𝜇
				→
				+
				∞
			

		
	
.
Since 
	
		
			
				
				𝐽
			

			
				𝜆
				,
				𝜇
			

			
				(
				𝑘
				)
			

		
	
 is nondifferentiable, we construct an improved genetic algorithm (GA) to solve 
	
		
			
				(
				P
				I
				P
				(
				𝜆
				,
				𝜇
				)
				)
			

		
	
 taking advantage of the problem’s characteristic. Let 
	
		
			
				̃
				𝑘
				∶
				=
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				,
				…
				,
				𝑘
			

			
				3
				0
			

			
				)
				∈
				𝐾
			

		
	
. In the improved genetic algorithm, we take 
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 as the individual, and (3.4) as the fitness function. Now, we describe the algorithm in detail as follows.
Algorithm 3.3. We have the following steps:  Step 1. Initialize population size 
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 individuals by uniform distribution, that is, 
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. Step 2. Compute the fitness value 
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 by taking 
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 into the systems (2.12) and (3.3). Step 3. Generate the crossover offspring 
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. Step 4. The individual produced by crossover is operated with normality variation until the produced one is in 
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. The mutation offspring is denoted by 
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. Step 5. Form the next generation 
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, if either 
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 or no progress is made in the last generations, then output the best individual and stop, otherwise go to Step 3.
3.3. Numerical Results
 According to the actual continuous fermentation process, the initial state 
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 and 22 groups of the experimental steady-state data are used. Here, 10 groups of experimental steady-state data under substrate-limited conditions and 12 groups of experimental steady-state data under substrate-sufficient conditions. The critical value 
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 is taken as the value in [23]. Moreover, the admissible set of parameter vectors 
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 is taken as the decrements and increments of 0.9 times the kinetic parameter values in [6]. By applying Algorithm 3.3, we obtained the optimal parameter vector 
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 of the system (2.12) under the substrate-limited and the substrate-sufficient conditions shown in Table 1. Accordingly, the cost function values, respectively, are 
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 under the above two cases. Here, all the computations are performed in Visual C++ 6.0 and numerical results are plotted by MATLAB 7.10.0. In particular, the ODEs in the computation process are numerically calculated by improved Euler method [24] with the relative error tolerance 
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. The parameters used in Algorithm 3.3 are 
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