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This paper develops the fuzzy hyperbolic model with time-varying delays guaranteed cost con-
troller design via state-feedback for a class of nonlinear continuous-time systems with parameter
uncertainties. A nonlinear quadratic cost function is developed as a performance measurement of
the closed-loop fuzzy system based on fuzzy hyperbolic model with time-varying delays. Some
sufficient conditions for the existence of such a fuzzy hyperbolic model based on data-driven
guaranteed cost controller via state feedback are presented by a set of linear matrix inequalities
(LMIs). A simulation example is provided to illustrate the effectiveness of the proposed approach.

1. Introduction

Since time delays are frequently encountered in various areas such as engineering systems,
biology, and economics, and the existence of time delays is often the main cause of instability
and poor performance of a control system, considerable attention has been paid to the
problem of stability analysis and controller synthesis for time-delay systems [1, 2].

Recently, the problem of designing guaranteed cost controllers for uncertain time-
delay systems has attracted a number of researchers’ attention [3–6]. Guaranteed cost control
(GCC) for time-delay systems can also be categorized into delay-independent methods and
delay-dependent methods. The recent research trend has been focus on delay-dependent
methods. In [3], delay-dependent GCCwas first proposed by utilizing model transformation.
It was first illustrated that delay-dependent GCC can provide even less guaranteed cost than
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the delay-independent GCC methods. Reference [4] considered both state delays and input
delays, and formulated the optimal guaranteed cost control problem which minimizes the
upper bound of the closed-loop cost function. Reference [5] extend the delay-dependent
method into the stabilization for time-delay T-S fuzzy systems, delay-dependent GCC prob-
lem for nonlinear systems with time-delays represented by the Takagi-Sugeno fuzzy mode
was studied.

A novel continuous-time fuzzy model, called fuzzy hyperbolic model with time-
varying delays (DFHM), has been proposed in [7]. Fuzzy Hyperbolic Model is essentially
a data-driven model. The DFHM based on data-driven has its own distinguishing chara-
cteristics. Firstly, neither structure identification nor completeness design of premise variables
space is required when the DFHM is used to approximate the nonlinear systems, therefore
the computational effort of modeling the DFHM is lower than modeling the T-S models. Sec-
ondly, less computational effort is required when DFHM is used since only one LMI needs to
be solved. Thirdly, the DFHM based on data-driven we designed is naturally fuzzy nonlinear
saturated controller, which is suitable for applying to practical systems. Last but not least,
DFHM is a new kind of fuzzy neural networks, whose nodes have clear physical meanings.
Therefore, the advantages of the DFHM based on data-driven are more obvious.

In this paper, delay-dependent fuzzy guaranteed cost controller via state feedback
design based on DFHM, called delay-dependent fuzzy hyperbolic model based on data-
driven guaranteed cost controller (DD-DFHMGCC), is addressed. To the best of our knowl-
edge, this is the first time to study the guaranteed cost controller problem of DFHM. By using
the LMI technique, the DD-DFHMGCC design problem is converted into a feasible problem
of LMI, which makes the prescribed attenuation level as small as possible, subject to some
LMI constraints. A simulation example is finally presented to illustrate the effectiveness of the
proposed design procedures.

2. System Description and Preliminaries

The DFHM modeling method for nonlinear systems was given in [7]. The following defini-
tion is addressed.

Definition 2.1. Given a plant with n state variables x(t) = [x1(t), . . . , xn(t)]
T , we call the fuzzy

rule base a hyperbolic type fuzzy rule base (HFRB) if it satisfies the following conditions.

(1) For each output variable ẋr(t), r = 1, 2, . . . , n, the kth fuzzy rule has the following
form: Rk.

If x1(t) is A
1,s
0 and x1(t − τ11(t)) is A1,s

1 and . . . x1(t − τ1d1(t)) is A1,s
d1

. . .

and xn(t) is A
n,s
0 and xn(t − τn1(t)) is An,s

1 and . . . xn(t − τndn(t)) is An,s
dn
,

then

ẋr(t) = cr
A1,s

0
+ · · · + cr

A1,s
d1

+ cr
A2,s

0
+ · · · + cr

A2,s
d2

+ · · · + cr
An,s

0
+ · · · + cr

An,s
dn

+ ur,

s ∈ {+,−},
(2.1)

where Aj,s

ij
is the fuzzy set of xj(t − τjij (t)), which include Pjij (positive) and N

j

ij

(negative), respectively, cr
A
j,s

ij

is a constant term, dj represents the number of
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transmission delays associated with xj , τjij (t) > 0 is the time-varying transmission
delay with τj0(t) = 0, ij = 0, 1, . . . , dj , j = 1, 2, . . . , n.

(2) The state variables in the If-part are optional, the same as the constant terms in the
Then-part. That is the constant term cr

A
j,s

ij

in the Then-part is corresponding to Aj,s

ij

in the If-part.

(3) There are 2n+
∑n

j=1 dj fuzzy rules in every ẋr(t), that is, all the possible Pjij and N
j

ij

combinations of input variables in the “If” part and all the linear combinations of
constants in the “Then” part (not including ur). So there are total n2n+

∑n
j=1 dj fuzzy

rules in the rule base.

(4) For every ẋr (r = 1, 2, . . . , n), we construct the same premise fuzzy subsets, but the
conclusion parameters are different.

Lemma 2.2. Given n HFRBs, if the membership functions of Pjij andN
j

ij
are defined as

μ
P
j

ij

(
xj
(
t − τjij (t)

))
= e−(1/2)(xj (t−τjij (t))−kjij )

2

, μ
N

j

ij

(
xj
(
t − τjij (t)

))
= e−(1/2)(xj (t−τjij (t))+kjij )

2

,

(2.2)

where ij = 0, 1, . . . , dj , j = 1, 2, . . . , n. kjij > 0 is a positive constant. Then the system can be derived
as

ẋ(t) = A tanh(Kx(t)) +
J∑

i=1

Ai tanh(Kix(t − τi(t))) + I, (2.3)

where I is a constant vector,A and Ai are constant matrix, (3) is called a fuzzy hyperbolic model with
time-varying delays (DFHM).

From Definition 2.1, if we set cr
A
j,+
ij

and cr
A
j,−
ij

negative to each other, we can obtain a

homogeneous DFHM:

ẋ(t) = A tanh(Kx(t)) +
J∑

i=1

Ai tanh(Kix(t − τi(t))). (2.4)

Since the difference between (2.3) and (2.4) is only the constant vector term in (2.3),
there is essentially no difference between the control of (2.3) and (2.4). In this paper, we will
design a fuzzyH∞ guaranteed cost controller based on DFHM described in (2.4).
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3. Fuzzy Hyperbolic with Time-Varying Delays Guaranteed Cost
Control Design via State-Feedback

The DFHM for the nonlinear time-delay systems with parameter uncertainty is proposed as
the following form:

ẋ(t) = (A + ΔA) tanh(Kx(t)) +
J∑

i=1

(Ai + ΔAi) tanh(Kix(t − τi(t))) + (B + ΔB)u(t),

x(t) = φ(t), ∀t ∈ [−τ, 0],
(3.1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state vector and input vector, respectively; A ∈
Rn×n, Ai ∈ Rn×n and B ∈ Rn×m, are known real constant matrices; τi(t) = [τ1i(t), τ2i(t), . . . ,
τni(t)]

T is the bounded time-varying delay and is assumed to satisfy 0 < τji(t) ≤ τ < ∞ and
τ̇ji(t) ≤ h, where τ and h are known constant scalars, j = 1, 2, . . . , n, i = 1, 2, . . . , J . The initial
condition φ(t) is given by initial vector function, which is continuous for −τ ≤ t ≤ 0; ΔA(t) ∈
Rn×n, ΔAi(t) ∈ Rn×n and ΔB(t) ∈ Rn×m are time-varying parameter uncertainty matrices and
satisfy the condition

[
ΔA(t) ΔAi(t) ΔB(t)

]
=MF(t)

[
N Ni Nb

]
, (3.2)

where M,N,Ni (i = 1, 2, . . . , J) and Nb are known real constant matrices of appropriate
dimension, and F(t) is an unknown matrix function satisfying FT (t)F(t) ≤ I (I is an identity
matrix with appropriate dimension). Such parametric uncertainties are said to be admissible.

Definition 3.1. Consider system (3.1) with the following cost function:

J =
∫∞

0

[
tanhT (Kx(t))S tanh(Kx(t)) − uT (t)Ru(t)

]
dt, (3.3)

u(t) = G tanh(Kx(t)), (3.4)

where S and R are symmetric, positive-definite matrices; G is the feedback gain. The con-
troller is called fuzzy hyperbolic model with time-varying delays guaranteed cost controller
(DFHMGCC) if there exist a fuzzy hyperbolic control u(t) as in (3.4) and a scalar J0 such that
the closed-loop system is asymptotically stable and the closed-loop value of the cost function
(3.3) satisfies J ≤ J0. J0 is said to be a guaranteed cost and control law u(t) is said to be a fuzzy
hyperbolic with time-varying delays guaranteed cost control law for system (3.1).

With the control law (3.4) the overall closed-loop system can be written as:

ẋ(t) = (A + ΔA + (B + ΔB)G) tanh(Kx(t)) +
J∑

i=1

(Ai + ΔAi) tanh(Kix(t − τi(t))),

x(t) = φ(t), ∀t ∈ [−τ, 0].
(3.5)

For convenience, let ΔA := ΔA(t), ΔAi := ΔAi(t)(i = 1, . . . , J), ΔB := ΔB(t).



Mathematical Problems in Engineering 5

Lemma 3.2 (see [8]). Given appropriate dimension matrices M, E, and F satisfying FTF ≤ I, for
any real scalar ε > 0, the following result holds:

MFE + ETFTMT ≤ εMMT + ε−1ETE. (3.6)

Lemma 3.3 (see [9]). For any constant positive definite matrixW ∈ Rm×m, a scalar β > 0, a function
η : [0, β] → R+, and the vector function ν : [β−η(β), β] → Rm such that the integrations in the fol-
lowing are well defined, then

η
(
β
)
∫β

β−η(β)
νT (s)Wν(s)ds ≥

(∫β

β−η(β)
ν(s)ds

)T

W

(∫β

β−η(β)
ν(s)ds

)

. (3.7)

Lemma 3.4 (see [10]). For any vector ς ∈ Rn, ςT = [ς1, ς2, . . . , ςn], and diagonal positive definite
matrix X, the following result holds:

˙tanhT (ς)X ˙tanh(ς) ≤ ς̇Xς̇. (3.8)

Then, we have the following results.

Theorem 3.5. Given scalars τ and h, for the nonlinear system (3.1) and associated cost function
(3.3), if there exist positive scalars ε01, ε02, ε03, ε04, εi (i = 1, 2, . . . , J), a positive definite diagonal
matrix P = diag[p1, . . . , pn], matrices Qλ > 0 (λ = 1, 2) and L such that the matrix inequality

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 0 Ξ13 Ξ14 PNT + LTNT
b 0 LTNT

b PNT 0
∗ Ξ22 Ξ23 0 0 0 0 0 0
∗ ∗ Ξ33 Ξ34 0 Ξ36 0 0 Ξ39

∗ ∗ ∗ Ξ44 0 0 0 0 0
∗ ∗ ∗ ∗ −ε04I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε03I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε02I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε01I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ξ99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.9)

holds, then, the control law, u(t) = G tanh (Kx(t)) is a fuzzy hyperbolic with time-varying delays
guaranteed cost control law and

J0 = 2
n∑

i=1

p −1
i ln

(
cosh

(
ki0φi(0)

))

+
J∑

i=1

∫0

−τi(0)
tanhT

(
Kiφ(s)

)
P

−1
Q1P tanh

(
Kiφ(s)

)
ds

+
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α))P Q2P ˙tanh(Kix(α))dαdβ,

(3.10)
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where

Ξ11 = KAP + PATK +KBL + LTBTK + ε01KMMTK + ε02KMMTK

+ S + LTRL +
J∑

i=1

εiKMMTK,

Ξ13 =
[
KA1P KA2P · · · KAJP

]
,

Ξ14 =
[(
K1AP +K1BL

)T · · ·
(
KJAP +KJBL

)T
]

,

Ξ22 = diag

⎡

⎢
⎢
⎣ Q1 − τ −1Q2 Q1 − τ −1Q2 · · · Q1 − τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦,

Ξ23 = diag

⎡

⎢
⎢
⎣ τ −1Q2 τ −1Q2 · · · τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦,

Ξ33 = diag

⎡

⎢
⎢
⎣−(1 − h) Q1 − τ −1Q2 · · · −(1 − h)Q1 − τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦,

Ξ34 = diag
[
PAT

1K1 PAT
2K2 · · · PAT

JKJ

]
,

Ξ36 = diag
[
PNT

1 PNT
2 · · · PNT

J

]
,

Ξ39 = diag
[
PNT

1 PNT
2 · · · PNT

J

]
,

Ξ44 = diag
[
−τ −1Q2 + ε03K1MMTK1 · · · −τ −1Q2 + ε03KJMMTKJ

]

+ ε04
[
MTK1 · · · MTKJ

]T[
MTK1 · · · MTKJ

]
,

Ξ99 = diag
[
ε1I ε2I · · · εJI

]
,

(3.11)

for any time-varying delay τi(t) = [τ1i(t), τ2i(t), . . . , τni(t)]
T satisfying 0 < τi(t) ≤ τ < ∞ and

τ̇i(t) ≤ h, i = 1, 2, . . . , J , and ∗ denotes the entries induced by symmetry.

Proof. A Lyapunov-Krasovskii functional candidate for the time-varying delay system (3.5)
is chosen as follows:

V (t) = V1(t) + V2(t) + V3(t), (3.12)
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where

V1(t) = 2
n∑

i=1

pi ln(cosh(ki0xi(t))),

V2(t) =
J∑

i=1

∫ t

t−τi(t)
tanhT (Kix(s))Q1 tanh(Kix(s))ds,

V3(t) =
J∑

i=1

∫0

−τ

∫ t

t+β

˙tanhT (Kix(α))Q2 ˙tanh(Kix(α))dαdβ,

(3.13)

and scalars pi > 0 (i = 1, 2, . . . , n), matrices Qλ > 0 (λ = 1, 2), P = diag[p1, p2, . . . , pn] is
diagonal positive definite matrix, and ki0 (i = 1, 2, . . . , n) are defined in (2.2).

Taking the derivative of V (t) with respect to t along the trajectory of (3.5) yields

V̇ (t)
∣
∣
(3.5) = V̇1(t) + V̇2(t) + V̇3(t), (3.14)

where

V̇1(t) = 2tanhT (Kx(t))KPẋ(t), (3.15)

V̇2(t) ≤
J∑

i=1

(
tanhT (Kix(t))Q1 tanh(Kix(t))

−(1 − h)tanhT (Kix(t − τi(t)))Q1 tanh(Kix(t − τi(t)))
)
,

(3.16)

V̇3(t) =
J∑

i=1

(

τ ˙tanhT (Kix(t))Q2 ˙tanh(Kix(t))

−
∫ t

t−τ
˙tanhT (Kix(s))Q2 ˙tanh(Kix(s))ds

)

.

(3.17)

According to 0 < τi(t) ≤ τ <∞ and Lemma 3.3, we have

−
∫ t

t−τ
˙tanhT (Kix(s))Q2 ˙tanh(Kix(s))ds

≤ −τ −1(tanh(Kix(t)) − tanh(Kix(t − τi(t))))TQ2(tanh(Kix(t)) − tanh(Kix(t − τi(t)))).

(3.18)

From (3.17), (3.18), and Lemma 3.4, we have

V̇3(t) ≤
J∑

i=1

(
τẋT (t)KiQ2Kiẋ(t) − τ −1(tanh(Kix(t)) − tanh(Kix(t − τi(t))))T

×Q2(tanh(Kix(t)) − tanh(Kix(t − τi(t))))).
(3.19)
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From Lemma 3.2 and (3.2), we have

2tanhT (Kx(t))KP(ΔA + ΔBG) tanh(Kx(t))

≤ tanhT (Kx(t))
(
ε01KPMMTPK + ε−101N

TN
)
tanh(Kx(t))

+ tanhT (Kx(t))
(
ε02KPMMTPK + ε−102

(
(NbG)TNbG

)
tanh(Kx(t))

)
,

2tanhT (Kx(t))KP
J∑

i=1

ΔAi tanh(Kix(t − τi(t)))

≤
J∑

i=1

(
εitanh

T (Kx(t))KPMMTPK tanh(Kx(t))

+ε−1i tanhT (Kix(t − τi(t)))NT
i Ni tanh(Kix(t − τi(t)))

)
.

(3.20)

So, we have

V̇ (t)
∣
∣
(3.5) ≤ ζT (t)

∏
ζ(t) − tanhT (Kx(t))S tanh(Kx(t)) − uT (t)Ru(t), (3.21)

where

ζT (t) =
[
tanhTK(x(t)) ψT (t) ηT (t)

]
,

ψT (t) =
[
tanhT (K1x(t)) tanhT (K2x(t)) · · · tanhT

(
KJx(t)

)]
,

ηT (t) =
[
tanhT (K1x(t − τ1(t))) tanhT (K2x(t − τ2(t))) · · · tanhT

(
KJx

(
t − τJ(t)

))]
,

∏
=

⎡

⎢
⎢
⎢
⎢
⎣

∏

11
+ ε−101N

TN + ε−102 (NbG)TNbG 0
∏

13

∗ ∏

22

∏

23

∗ ∗ ∏

33
+ Ψ3

⎤

⎥
⎥
⎥
⎥
⎦
+

⎡

⎣
τΨT

1Q2Ψ1 0 τΨT
1Q2Ψ2

∗ 0 τΨT
2Q2Ψ2

∗ ∗ 0

⎤

⎦,

∏

11

= KP(A + BG) + (A + BG)TPK + (ε01 + ε02)KPMMTPK +
J∑

i=1

εiKPMMTPK

+ S +GTRG,

∏

13

=
[
KPA1 KPA2 · · · KPAJ

]
,

∏

22

= diag

⎡

⎢
⎢
⎣ Q1 − τ −1Q2 Q1 − τ −1Q2 · · · Q1 − τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦,
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∏

23

= diag

⎡

⎢
⎢
⎣ τ −1Q2 τ −1Q2 · · · τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦,

∏

33

= diag

⎡

⎢
⎢
⎣ −(1 − h)Q1 − τ −1Q2 −(1 − h)Q1 − τ −1Q2 · · · −(1 − h)Q1 − τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦,

Ψ1 =
[
A + ΔA + (B + ΔBG)TK1 · · · A + ΔA + (B + ΔBG)TKJ

]
,

Ψ2 =
[
(A1 + ΔA1)TK1 · · · (

AJ + ΔAJ

)T
KJ

]
,

Ψ3 = diag
[
ε−11 N

T
1N1 ε−12 N

T
2N2 · · · ε−1J NT

J NJ

]
.

(3.22)

Let θ < 0. Then V̇ (t)|(3.5) ≤ −tanhT (Kx(t))S tanh(Kx(t))−uT (t)Ru(t) ≤ −λm(S)‖ tanh(Kx(t))‖2
< 0.

Thus, the closed-loop system is asymptotically stable. Furthermore, integrating
V̇ (t)|(3.5) ≤ −tanhT (Kx(t))S tanh(Kx(t)) − uT (t)Ru(t) from 0 to tf yields

∫ tf

0

[
tanhT (Kx(t))S tanh(Kx(t)) − uT (t)Ru(t)

]
dt ≤ V (0) − V (

tf
)
. (3.23)

Since V (t) ≥ 0 and V̇ (t) < 0, limtf →∞V (tf) = μwhich is a nonnegative constant. When
tf → ∞, (3.23) becomes

∫ tf

0

[
tanhT (Kx(t))S tanh(Kx(t)) − uT (t)Ru(t)

]
dt ≤ V (0)

= 2
n∑

i=1

pi ln
(
cosh

(
ki0φi(0)

))
+

J∑

i=1

∫0

−τi(0)
tanhT

(
Kiφ(s)

)
Q1 tanh

(
Kiφ(s)

)
ds

+
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α))Q2 ˙tanh(Kix(α))dαdβ.

(3.24)

By Schur complement,
∏

can be rewritten as the following form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∏

11
+ ε−101N

TN + ε−102 (NbG)TNbG 0
∏

13

∏

14

∗ ∏

22

∏

23
0

∗ ∗ ∏

33
+ Ψ3

∏

34

∗ ∗ ∗ ∏

44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
∏

14
∗ 0 0 0
∗ ∗ 0

∏

34
∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.25)



10 Mathematical Problems in Engineering

where

∏

14

=
[
(A + BG)TK1 (A + BG)TK2 · · · (A + BG)TKJ

]
,

∏

14

=
[
(ΔA + ΔBG)TK1 (ΔA + ΔBG)TK2 · · · (ΔA + ΔBG)TKJ

]
,

∏

34

= diag
[
AT

1K1 AT
2K2 · · · AT

JKJ

]
,

∏

34

= diag
[
ΔAT

1K1 ΔAT
2K2 · · · ΔAT

JKJ

]
,

∏

44

= diag

⎡

⎢
⎢
⎣ −τ −1Q2 −τ −1Q2 · · · −τ −1Q2
︸ ︷︷ ︸

J

⎤

⎥
⎥
⎦.

(3.26)

Comparing inequality (3.25)with Lemma 3.2, we can obtain

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
∏

14
∗ 0 0 0
∗ ∗ 0

∏

34
∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ ε04
[
0 0 0

∏̃

14

]T[
0 0 0

∏̃

14

]

+ ε−104
[
N +NbG 0 0 0

]T[
N +NbG 0 0 0

]

+ ε03
[
0 0 0

∏̃

34

]T[
0 0 0

∏̃

34

]

+ ε−103

[
0 0

∏̃

34

′
0
]T[

0 0
∏̃

34

′
0
]

,

(3.27)

where

∏̃

14

=
[
MTK1 MTK2 · · · MTKJ

]
,

∏̃

14

= diag
[
MTK1 MTK2 · · · MTKJ

]
,

∏̃

34

′
= diag

[
N1 N2 · · · NJ

]
.

(3.28)
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Thus, the necessary and sufficient condition for inequality (3.25) to hold is that there
exists a positive constant ε03 > 0 and ε04 > 0 such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∏

11
+ ε−101N

TN + ε−102 (NbG)TNbG 0
∏

13

∏

14

∗ ∏

22

∏

23
0

∗ ∗ ∏

33
+ Ψ3

∏

34

∗ ∗ ∗ ∏

44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ε−104
[
N +NbG 0 0 0

]T[
N +NbG 0 0 0

]

+ ε−103

[
0 0

∏̃

4

′
0
]T[

0 0
∏̃

4

′
0
]

< 0,

(3.29)

where

∏

44

=
∏

44

+ ε04
∏̃

14

T∏̃

14

+ ε03
∏̃

34

T∏̃

34

. (3.30)

By Schur complement, (3.29) is equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∏

11
0

∏

13

∏

14
(N +NbG)T 0 (NbG)T NT 0

∗ ∏

22

∏

23
0 0 0 0 0 0

∗ ∗ ∏

33

∏

34
0

∏̃

34

′T
0 0

∏̃

34

′T

∗ ∗ ∗ ∏

44
0 0 0 0 0

∗ ∗ ∗ ∗ −ε04I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε03I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε02I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε01I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.31)

where

Θ = diag
[
ε1I ε2I · · · εJI

]
. (3.32)

Pre- and post-multiplying diag[ P−1 P−1 ··· P−1
︸ ︷︷ ︸

2J+1

, I ··· I︸︷︷︸
3J+3

] to (3.31), and letting P = P−1,Qλ =

P−1QλP
−1 (λ = 1, 2), S = P−1SP−1 and L = GP−1, (3.9) can be obtained by Schur complement.

When LMI (3.9) is feasible, the guaranteed cost controller designed ensures the closed-loop
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system to be asymptotically stable and an upper bound of the closed-loop cost function given
by

J0 = 2
n∑

i=1

pi ln
(
cosh

(
ki0φi(0)

))
+

J∑

i=1

∫0

−τi(0)
tanhT

(
Kiφ(s)

)
Q1 tanh

(
Kiφ(s)

)
ds

+
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α))Q2 ˙tanh(Kix(α))dαdβ

= 2
n∑

i=1

p−1i ln
(
cosh

(
ki0φi(0)

))
+

J∑

i=1

∫0

−τi(0)
tanhT

(
Kiφ(s)

)
P
−1
Q1P

−1
tanh

(
Kiφ(s)

)
ds

+
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α))P
−1
Q2P

−1 ˙tanh(Kix(α))dαdβ.

(3.33)

The proof is completed.

In fact, any feasible solution to (3.9) yields a suitable robust guaranteed cost controller.
A better robust guaranteed cost control law minimizes the upper bound J0. Then, we can
obtain Theorem 3.6.

Theorem 3.6. Consider the nonlinear system (3.1) and its associated cost function (3.3). If the opti-
mization problem

min
εi,P ,Q1,Q2,V,G

δ + α · Tr(V )

Subject to (1) LMIS (3.5),

(2)

⎡

⎢
⎣

−V ΦT ΩT

∗ −P−1
Q1P 0

∗ ∗ −P−1
Q2P

⎤

⎥
⎦ < 0

has a solution ε̂i,
̂
P,

̂
Q1,

̂
Q2, V, G, where

ΦΦT =
∫0

−τi(0)
tanh

(
Kiφ(s)

)
tanhT

(
Kiφ(s)

)
ds,

ΩΩT =
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α)) ˙tanh(Kix(α))dαdβ.

(3.34)

Tr(·) denotes the trace of the matrix (·), δ = 2
∑n

i=1 p
−1
i ln(cosh(ki0φi(0))), then, the corres-

ponding guaranteed cost control law, u(t) = G tanh(Kx(t)) is an optimal guaranteed cost control.
Under this control law the closed-loop cost function (3.2) is minimized.



Mathematical Problems in Engineering 13

Proof. By Theorem 3.6, the control law constructed in terms of any feasible solution of (3.9)
is a guaranteed cost control law. According to Schur complement, the condition (2)) is

equivalent to ΦTP
−1
Q1PΦ +ΩTP

−1
Q2PΩ < V .

Since Tr(AB) = Tr(BA), we have

J∑

i=1

∫0

−τi(0)
tanhT

(
Kiφ(s)

)
P

−1
Q1P tanh

(
Kiφ(s)

)
ds

+
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α))P Q2P ˙tanh(Kix(α))dαdβ

=
J∑

i=1

∫0

−τi(0)
Tr
[
tanhT

(
Kiφ(s)

)
P

−1
Q1P tanh

(
Kiφ(s)

)]
ds

+
J∑

i=1

∫0

−τ

∫0

β

Tr
[

˙tanhT (Kix(α))P Q2P ˙tanh(Kix(α))
]
dαdβ

= Tr
[
ΦΦTP

−1
Q1P

]
+ Tr

[
ΩΩTP

−1
Q2P

]

= Tr
[
ΦTP

−1
Q1PΦ

]
+ Tr

[
ΩTP

−1
Q2PΩ

]

< Tr(V ).

(3.35)

So it follows that

J0 = 2
n∑

i=1

p−1i ln
(
cosh

(
ki0φi(0)

))
+

J∑

i=1

∫0

−τi(0)
tanhT

(
Kiφ(s)

)
P

−1
Q1P

−1
tanh

(
Kiφ(s)

)
ds

+
J∑

i=1

∫0

−τ

∫0

β

˙tanhT (Kix(α))P
−1
Q2P

−1 ˙tanh(Kix(α))dαdβ

≤ δ + Tr(V ).

(3.36)

Therefore, the guaranteed cost controller subject to (3.34) is an optimal guaranteed
cost control. Under this controller the closed-loop cost function (3.3) is minimized.

This completes the proof.

4. Simulation

In the following, we will give an example to demonstrate the effectiveness of the obtained
results.

Example 4.1. We apply the above analysis technique to a continuous stirred tank reactor
(CSTR) in which the first-order irreversible exothermic reaction A → B occurs [11, 12].
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The material and energy balance equations are

ẋ1(t) =
(−1
λ

+ ΔA0

)

x1(t) +
(
1
λ
− 1

)

x1(t − τ11(t)) +Dα(1 − x1(t)) exp
[

x2(t)
1 + x2(t)/γ0

]

,

ẋ2(t) = −
(
1
λ
+ β

)

x2(t) +
(
1
λ
− 1

)

x2(t − τ21(t)) +HDα(1 − x1(t)) exp
[

x2(t)
1 + x2(t)/γ0

]

+ βu(t),

(4.1)

whereΔA0 denotes the parameter uncertainty of original nonlinear systems. ConstantsH, β,
Dα, and γ0 are all positive. Here, the model parameters are given as

γ0 = 20, H = 8, β = 0.3, Dα = 0.072, λ = 0.8. (4.2)

Suppose that we have the following hyperbolic type fuzzy rule bases:

If x1(t) is A
1,+
0 , x1(t − τ11(t)) is A1,+

1 , x1(t − τ12(t)) is A1,+
2 , x2(t) is A

2,+
0 , then ẋ1 = C1

x1+
Cdx11 + Cdx12 + C

1
x2 ;

. . .

If x1(t) isA
1,−
0 , x1(t− τ11(t)) isA1,−

1 , x1(t− τ12(t)) isA1,−
2 ,x2(t) isA

2,−
0 , then ẋ1 = −C1

x1−
Cdx11 − Cdx12 − C1

x2 ;

If x1(t) is A
1,+
0 , x2(t) is A

2,+
0 , x2(t − τ21(t)) is A2,+

1 , x2(t − τ22(t)) is A2,+
2 , then ẋ2 = C2

x1+
C2
x2 + Cdx21 + Cdx22 ;

. . .

If x1(t) isA
1,−
0 , x2(t) isA

2,−
0 , x2(t−τ21(t)) isA2,−

1 , x2(t−τ22(t)) isA2,−
2 , then ẋ2 = −C2

x1−
C2
x2 − Cdx21 − Cdx22 .

Here we choose membership functions of Pjij andN
j

ij
(ij = 0, 1, 2, j = 1, 2) as (2.2).

Then, we have the following model:

ẋ(t) = A tanh(Kx(t)) +
2∑

i=1

Ai tanh(Kix(t − τi(t))) + Bu(t), (4.3)

where x(t) = [x1(t), x2(t)]
T , x(t − τi(t)) = [x1(t − τ1i(t)), x2(t − τ2i(t))]T ,

A =
[
C1
x1 C1

x2

C2
x1 C2

x1

]

, A1 =
[
Cdx11 0
0 Cdx21

]

, A2 =
[
Cdx12 0
0 Cdx22

]

,

K = diag
[
k10 k20

]
, Ki = diag

[
k1i k2i

]
, C =

[
0 Dx2

]
, i = 1, 2.

(4.4)
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Figure 1: States response of the closed-loop system.

We choose that τi1(t) = 0.8|1.1sin2(t) − 0.6|, τi2(t) = 0.5|1.1sin2(t) − 0.6|, i = 1, 2, and the
initial condition φ(t) = [1 − 1]T , for all t ∈ [−0.8 0]. The parameters of DFHM (4.3) can be
obtained using neural network BP algorithm [13, 14] as follows:

A =
[−3.6117 0.4922
5.0821 0.1119

]

, A1 =
[
0.5193 0

0 −2.3141
]

, A2 =
[
0.0589 0

0 −0.1868
]

,

K = diag
[
0.3165 0.2801

]
, K1 = diag

[
0.6211 0.1207

]
, K2 = diag

[
0.0562 0.0003

]
.

(4.5)

Other parameters are given as follows:

B =
[
0 0
0 1

]

. (4.6)

Consider the modeling errors, we assume M = [0.2 0.2]T , N = [0.1 0.2], N1 = [0.2 0.1],
F(t) = sin t. Solve the LMI problem in (3.34). We obtain

u =
[−0.0536 −0.1082
−6.0117 −33.9723

]

tanh(Kx(t)) (4.7)

and corresponding J = 80.9812. Figure 1 depicts the behavior of the closed-loop system based
on the DFHM for the initial conditions x(0) = [1 − 1]T . Figure 2 shows that the control input
u. Simulation result demonstrates the effectiveness of the fuzzy hyperbolic with time-varying
delays guaranteed control approach.
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Figure 2: The trajectories of control input.

5. Conclusion

In this paper, the delay-dependent fuzzy hyperbolic guaranteed cost control for nonlinear
uncertain systems with time delay using DFHM has been considered. The design problem of
DD-DFHMGCC is converted into linear matrix inequalities. The controller designed achieves
closed-loop asymptotic stability and provides an upper bound on the closed-loop value of
cost function. Simulation example is provided to illustrate the design procedure of the pro-
posed method.
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