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This paper presents an approach for data-driven design of fault diagnosis system. The proposed
fault diagnosis scheme consists of an adaptive residual generator and a bank of isolation observers,
whose parameters are directly identified from the process data without identification of complete
process model. To deal with normal variations in the process, the parameters of residual generator
are online updated by standard adaptive technique to achieve reliable fault detection performance.
After a fault is successfully detected, the isolation scheme will be activated, in which each isolation
observer serves as an indicator corresponding to occurrence of a particular type of fault in the
process. The thresholds can be determined analytically or through estimating the probability
density function of related variables. To illustrate the performance of proposed fault diagnosis
approach, a laboratory-scale three-tank system is finally utilized. It shows that the proposed
data-driven scheme is efficient to deal with applications, whose analytical process models are
unavailable. Especially, for the large-scale plants, whose physical models are generally difficult
to be established, the proposed approach may offer an effective alternative solution for process
monitoring.

1. Introduction

During the last two decades, diagnostic observers and parity space-based fault detection and
isolation (FDI) schemes for linear time invariant (LTI) systems are intensively studied [1–
6]. The core of the parity space FDI technique is, based on state space representation of the
system, construction of residual generator by means of the so-called parity vector, which
is the null space of the observability matrix. As pointed out in Ding [6], the design of an
observer-based residual generator can be equivalently formulated as a similar problem.

Since the majority of observer and parity space-based FDI schemes involve rigorous
development of process models based on the first principles, later identification techniques
that extracts transfer function [7] or state space model become a necessary step prior to
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the design. For this purpose, subspace identification methods (SIM) that identify the
complete state space matrices have been successfully implemented see Overschee and Moor
[8], Favoreel et al. [9], and Qin [10]. Provided the process model is known a priori, observer
and parity space-based FDI systems can be designed with a large number of applications
[11–13]. The approaches of filtering and control for such complex systems have been well
studied in the literature; see Shen et al. [14], Shen et al. [15], and Dong et al. [16], Dong
et al. [17]. Recently, an alternative data-driven approach has been proposed that does not
require the identification of complete set of process model but only the so-called primary
form of the residual generator from the process data; see Ding et al. [18]. Based on it, the
advanced observer-based FDI system can be designed in an efficient way [19–23]. Thanks
to its simple forms and less requirements on the design and engineering efforts, the data-
driven FDI approach becomes more efficient in many industry sectors, especially for large-
scale industry applications [24]. Recent survey given by Ding et al. [22, 23] provided the
reader with a comprehensive overview on the basic and advanced data-driven FDI schemes.

Our study is motivated by the aforementioned data-driven FDI approach, in that we
also recognize the wide existence of systems with uncertain or normal variation parameters
in practice, which have not been paid enough attention in research study. Extension of the
data-driven FDI scheme to such processes will improve the safety and reliability of these
applications and further reduce the complexity to perform FDI especially on the large-scale
systems. For this purpose, a data-driven fault diagnosis approach was proposed in this paper,
inwhich the issues of fault isolation and threshold settingwere studied to complete the earlier
work given by Ding et al. [19, 20]. The structure of the fault diagnosis scheme consists of an
adaptive residual generator and a bank of isolation observers, whose parameters are directly
updated from the plant data with standard adaptive technique to copewith normal variations
in the process. The threshold for fault detection can be determined either analytically or by
probability density function estimation technique. When a fault is detected, the fault isolation
scheme is activated, in which each isolation observer indicates the occurrence of a particular
type of fault in the process. Fault isolation is successfully achieved when all the isolation
indices, except the one responsible for the fault, exceed the thresholds. For the realization of
the isolation scheme, the standard projection algorithm is implemented [25, 26]. The sufficient
condition of fault isolability is also analyzed in this work.

The rest of the paper is organized as follows. In Section 2, the mathematical
preliminaries and problem formulation are presented. Section 3 addresses the theoretical core
of the proposed fault diagnosis scheme, in which both fault detection and isolation issues
will be analyzed in detail. In Section 4, the simulation of laboratory-scale three-tank system is
used to illustrate the performance of the proposed scheme. The paper ends with concluding
remarks in the last section.

2. Preliminaries and Problem Formulation

2.1. Preliminaries of Model-Based Residual Generator

Consider a discrete-time LTI system which is described by

xk+1 = Axk + Buk, (2.1)

yk = Cxk, (2.2)



Mathematical Problems in Engineering 3

where xk ∈ Rn, uk ∈ Rl, and yk ∈ Rm represent the vector of state variables and process
input and output, respectively.A, B, and C are systemmatrices with appropriate dimensions.
Reformulate (2.1)-(2.2) into

Z =
[
Y
U

]
=
[
Γs Hs,u

0 I

][
Xi

U

]
∈ R(s+1)(m+l)×N, (2.3)

where Xi = [xi xi+1 · · · xi+N−1] ∈ Rn×N , U = [us,k · · · us,k+N−1 ] ∈ R(s+1)l×N , Y =
[ys,k · · · ys,k+N−1] ∈ R(s+1)m×N , and

ys,k =

⎡
⎢⎣
yk−s
...
yk

⎤
⎥⎦, us,k =

⎡
⎢⎣
uk−s
...
uk

⎤
⎥⎦, Γs =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦, Hs,u =

⎡
⎢⎢⎢⎣

0 0 · · · 0
CB 0 · · · 0
...

. . . . . .
...

CAs−2B · · · CB 0

⎤
⎥⎥⎥⎦,

(2.4)

and s(≥ n) and N(� s) are integers. On the assumption of known A, B, and C, the design of
a parity space-based residual generator consists in solving

αsΓs = 0, (2.5)

for the so-called parity vector αs[αs,0 αs,1 · · · αs,s ] ∈ R1×(s+1)m. The design of an observer-
based residual generator is achieved by solving the so-called Luenberger equations

TA −AzT = LC, czT = gC, Bz = TB, (2.6)

Az ∈ Rs×s, T ∈ Rs×n, cz ∈ R1×s, g ∈ R1×m (2.7)

forAz (should be stable), Bz, cz, g, L together with a transformation matrix T . It follows then
the construction of the parity space-based residual generator

rk = αs

(
ys,k −Hs,uus,k

)
, (2.8)

and the observer-based residual generation

zk+1 = Azzk + Bzuk + Lyk ∈ Rs, (2.9)

rk = gyk − czzk ∈ R. (2.10)

In the above equations, rk is called residual signal and s the order of the parity space or
the observer-based residual generator. The following lemma given by Ding [6] describes the
one-to-one mapping between the parity vector and the solutions of Luenberger equations.
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Lemma 2.1 (see Ding [6]). Given any parity vector αs = [αs,0 αs,1 · · · αs,s], with αs,i ∈ R1×m,
i = 0, 1, . . . , s and process model (2.1)-(2.2), then

Az =

⎡
⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0

⎤
⎥⎥⎥⎦ ∈ Rs×s, L = −

⎡
⎢⎢⎢⎣

αs,0

αs,1
...

αs,s−1

⎤
⎥⎥⎥⎦, T =

⎡
⎢⎢⎢⎣

αs,1 αs,2 · · · αs,s

αs,2 . . . αs,s 0
...

. . .
. . .

...
αs,s 0 · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦,

(2.11)

cz =
[
0 · · · 0 1

] ∈ R1×s, g = αs,s ∈ R1×m, (2.12)

solve the Luenberger equations (2.6).

2.2. Preliminaries of Data-Driven Residual Generator Design

It is assumed that system matrices A, B, and C and system order n are unknown a priori;
Ding et al. [19, 20] proposed an approach for data-driven design of observer-based residual
generator, which briefly consists of two algorithms, that is,

(i) Algorithm D2PS (from data to parity subspace),

(ii) Algorithm PS2DO (from parity vector to diagnostic observer (DO)).

Algorithm 2.2. D2PS (from data to parity subspace).

Step 1. Generate data sets Z and construct (1/N)ZZT .
Step 2. Compute the SVD of (1/N)ZZT

1
N

ZZT = Uz

[
Σz,1 0
0 Σz,2

]
UT

z ,

Uz =
[
Uz,11 Uz,12

Uz,21 Uz,22

]
, Σz,2 = 0 ∈ R((s−1)m−n)×((s−1)m−n),

Uz,11 ∈ R(s+1)m×((s+1)l+n), UT
z,12 ∈ R((s+1)m−n)×(s+1)m.

(2.13)

Step 3. Set Γ⊥s = UT
z,12, Γ

⊥
sHs,u = −UT

z,22.
Note that any row of matrix Γ⊥s is a parity vector. For a system with multiple output

(m > 1), (s+1)mmay be significantly larger than n. In order to reduce the online computation,
an order reduction algorithm is given by Ding et al. [19, 20] to achieve a reduced order s ≤ n.
For multiple output systems, smay be significantly smaller than n.

Algorithm 2.3. PS2DO (from parity vector to DO).

Step 1. Select αs ∈ Γ⊥s and corresponding row βs ∈ Γ⊥sHs,u and form them as

αs =
[
αs,0 αs,1 · · · αs,s

]
, αs,i ∈ R1×m,

βs =
[
βs,0 βs,1 · · · βs,s

]
, βs,i ∈ R1×l.

(2.14)
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Step 2. Set Az, cz, L, g according to (2.11)-(2.12) and BT
z = [βTs,0 · · · βTs,s−1].

Step 3. Construct the DO according to (2.9)-(2.10).

2.3. Problem Formulation

So far in our study, the data-driven fault detection scheme has been developed for LTI
systems. However, The wide existence of systems with uncertain or normal variation
parameters has not been considered enough in the literatures. In order to develop an efficient
data-driven fault diagnosis scheme for such systems, it is necessary to

(i) propose an efficient residual generator to deal with normal parameter variations in
the process,

(ii) determine proper threshold for fault detection purpose,

(iii) develop related fault isolation strategy to complete the diagnosis task.

Without loss of generality, in the remaining part of this paper, the parameter variation
rate is assumed bound in term of l2-norm. In addition, the persistent excitation condition for
identification methods is assumed to be satisfied.

3. Data-Driven Design of Fault Diagnosis Scheme

3.1. Adaptive Residual Generator-Based Fault Detection Scheme

According to Lemma 2.1, the system (2.1)-(2.2) can be represented in following form:

zk+1 = Azzk +Q
(
uk, yk

)
θ, (3.1)

where zk = Txk,Az = Az−L0cz, L0 is a design parameter vector to ensure that the eigenvalues
of Az lie in the unit circle and

Q
(
uk, yk

)
=
[
Q
(
uk, yk

)
L0y

T
k

]
∈ Rs×[s(m+l)+m],

Q
(
uk, yk

)
=
[Uk Yk

] ∈ Rs×s(m+l),

Uk =
[
u1,k × Is×s · · · ul,k × Is×s

]
, Yk =

[
y1,k × Is×s · · · ym,k × Is×s

]
,

θ =

[
θ
gT

]
∈ Rs(m+l)+m, θ =

[
col(Bz)
col(L)

]
∈ Rs(m+l),

(3.2)

with col(•) denotes a column-wise reordering of a matrix; that is,

P =
[
p1 · · · pα

] ∈ Rβ×α, col(P) =

⎡
⎢⎣
p1
...
pα

⎤
⎥⎦ ∈ Rβα×1. (3.3)

In the following study, set L0 = 0 for the purpose of simplicity.
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Note that in (3.1) the system matricesA, B, and C are integrated into vector θ, and the
input and output signals are included in Q(uk, yk). Any parameter variation in the original
system can be reflected through the parameter variation rate defined asΔk = θk+1 −θk, which
is bounded by

‖Δk‖ ≤ v, (3.4)

where ‖•‖ denotes l2-norm. Let us firstly consider the basic case, that is, a constant parameter
θ; the adaptive residual generator is stated in the following theorem.

Theorem 3.1. Given the following adaptive residual generator which consists of three subsystems.
(i) Residual generator:

ẑk+1 = Azẑk +Q
(
uk, yk

)
θ̂k + Vk+1

(
θ̂k+1 − θ̂k

)
, (3.5)

rk = ĝkyk − czẑk. (3.6)

(ii) Auxiliary filter

Vk+1 = AzVk +Q
(
uk, yk

) ∈ Rs×[s(m+l)+m], (3.7)

ϕk = czVk −
[
0 · · · 0 yT

k

] ∈ Rs(m+l)+m. (3.8)

(iii) Parameter estimator

θ̂k+1 = γkϕ
T
krk + θ̂k ∈ Rs(m+l)+m, (3.9)

γk =
μ

δ + ϕkϕ
T
k

, δ > 0, 0 < μ < 2, (3.10)

θ̂k =

[
θ̂k(
ĝk

)T
]
, θ̂k ∈ Rs(m+l), ĝk ∈ R1×m. (3.11)

it follows that the adaptive residual generator is stable and in the fault-free case the residual signal
satisfies

lim
k→∞

rk = 0. (3.12)

Moreover, if the persistent excitation condition is satisfied; that is, there exist positive constants β1, β2
and integer Π such that for all k

0 < β1I ≤
k+Π−1∑
i=k

ϕT
i ϕi ≤ β2I < ∞, (3.13)



Mathematical Problems in Engineering 7

the adaptive residual generator is exponentially stable, and the parameter estimation θ̂k converges to
the true value θ with an exponential convergence rate:

lim
k→∞

θ̂k = θ. (3.14)

Proof. The proof can be found in the earlier study by Ding et al. [19, 20].

Until now, the unknown parameter θ has been assumed constant. We would like to
further consider the behavior of the adaptive residual generator (3.5)–(3.10) in case θ is a
time-varying parameter and bounds by (3.4). To simplify the notations, define

ηk = z̃k − Vkθ̃k, z̃k = zk − ẑk, θ̃k = θk − θ̂k. (3.15)

After a straightforward calculation, it follows that

ηk+1 = Azηk + εk, (3.16)

θ̃k+1 =
(
I − γkϕ

T
kϕk

)
θ̃k + εk, (3.17)

rk = czηk + ϕkθ̃k, (3.18)

with Θk = −γkϕT
k
cz, Δk = θk+1 − θk, εk = Θkηk + Δk, and εk = −Vk+1Δk. According to (3.18),

the residual rk has a nonzero value since Δk /= 0. Assume that persistent excitation condition
(3.13) is satisfied, the properties of adaptive residual generator (3.5)–(3.10) can be generalized
in the following theorem.

Theorem 3.2. In case of Δk /= 0 and bounded by (3.4), the adaptive residual generator (3.5)–(3.10)
ensures the following:

(i) the estimation error θ̃k converges exponentially to the set

B =

{
θ̃k |

∥∥∥θ̃k
∥∥∥ ≤ αk−k0

1

∥∥∥θ̃k0
∥∥∥ +

1 − αk−k0
1

1 − α1
ε

}
, 0 < α1 < 1, (3.19)

where ε is a positive scalar such that ‖εk‖ < ε and k0 denotes the initial time sample;
(ii) the residual signal rk converges exponentially to the set

R =

{
rk | |rk| ≤ ε +

∥∥ϕk

∥∥αk−k0
1

∥∥∥θ̃k0
∥∥∥ +

∥∥ϕk

∥∥1 − αk−k0
1

1 − α1
ε

}
, (3.20)

where ε is a positive scalar such that ‖εk‖ < ε;
(iii) based on the assumption of the zero initial condition, that is, θ̃k0 = 0, the normalized

residual signal rk satisfies

|rk| ≤
√
sv +

1 +
√
s

1 − α1
v, (3.21)
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where rk = rk/
√
δ + ϕkϕ

T
k . Furthermore, if the process corrupted by noise/disturbance, the residual

signal can be formulated as

rk = czηk + ϕkθ̃k + pk, (3.22)

where pk represents the influence of noise/disturbance on the residual signal. It follows that

|rk| ≤
√
sv +

1 +
√
s

1 − α1
v + p, (3.23)

with p = sup∀k (pk/
√
δ + ϕkϕ

T
k ).

Proof. According to (3.17), for all k > k0, we have

θ̃k = Sk,k0 θ̃k0 +
k−1∑
i=k0

Sk,i+1εk, (3.24)

where Sk,k0 is the transition matrix of the linear time-varying system (3.17). Since (3.13)
is satisfied, the system (3.17) is exponentially stable; and Astrom and Wittenmark [27].
Therefore, there exists a positive constant 0 < α1 < 1 such that ‖Sk,k0‖ ≤ αk−k0

1 . Consequently,
from (3.17), we have

∥∥∥θ̃k
∥∥∥ ≤ αk−k0

1

∥∥∥θ̃k0
∥∥∥ +

∥∥∥∥∥
k−1∑
i=k0

Sk·i+1εk

∥∥∥∥∥ ≤ αk−k0
1

∥∥∥θ̃k0
∥∥∥ +

1 − αk−k0
1

1 − α1
ε. (3.25)

Since L0 = 0, Az = Az, and all the eigenvalues of Az are zero, it follows from (3.16) that

∥∥ηk∥∥ ≤ ε. (3.26)

The bound of residual signal can be straightforwardly obtained

|rk| ≤
∥∥czηk∥∥ +

∥∥∥ϕkθ̃k
∥∥∥ ≤ ε +

∥∥ϕk

∥∥αk−k0
1

∥∥∥θ̃k0
∥∥∥ +

∥∥ϕk

∥∥1 − αk−k0
1

1 − α1
ε. (3.27)

It is easier to prove that

‖εk‖√
δ + ϕkϕ

T
k

≤ √
s‖Δk‖ ≤ √

sv,

‖εk‖ ≤ (
1 +

√
s
)‖Δk‖ ≤ (

1 +
√
s
)
v.

(3.28)



Mathematical Problems in Engineering 9

Thus, set

ε√
δ + ϕkϕ

T
k

=
√
sv, ε =

(
1 +

√
s
)
v, (3.29)

the normalized residual becomes

|rk| ≤
√
sv +

1 +
√
s

1 − α1
v. (3.30)

Equations (3.22)-(3.23) can be easily proved, and thus they are omitted here.

According to Theorem 3.2, in case θ is a time-varying parameter and bounds by (3.4)
the residual rk is bounded and the threshold Jth can be set as the right-hand side presented
by (3.23); that is,

Jth =
√
sv +

1 +
√
s

1 − α1
v + p. (3.31)

The fault detection logic is given by

|rk| ≤ Jth, fault free,

|rk| > Jth, alarm for fault.
(3.32)

Remark 3.3. It is of great interest to detect the faults that cause abnormal changes on physical
parameters of the process. Although the identified parameter θ is physicallymeaningless, any
abnormal physical parameters variations can influence θ and should be finally discovered by
the residual signal. In practice, the bound of normal variation rate of θ given by (3.4) can be
determined through the offline test data. The related threshold of residual signal is designed
for the detection of abnormal parameter change, which is supposed to be faster than the
normal parameter variation.

Remark 3.4. The order of residual generator s could be significantly smaller than system order
n in multiple output systems (m > 1): s = (n + 1)/m − 1. An algorithm is proposed in Ding et
al. [19, 20] for constructing the reduced order residual generator. Thus, if persistent excitation
condition is satisfied, the estimation error θ̃k converges exponentially to a set determined by
Δk. For industrial process, the excitation mainly comes from the variation of process variables
and measurement noise.

Remark 3.5. Another efficient way to determine the threshold for residual signal is based on
statistical methods. Without special assumption on process data, the so-called kernel density
estimation (KDE) is widely used in practice for estimating the probability density function of
residual signals. Based on a large number of offline test data, a proper threshold can be chosen
under given confidence level. More detailed description on KDE can be found in Silverman
[28] and Martin and Morris [29].
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3.2. Fault Isolation Scheme Design

In this subsection, the fault isolation scheme will be further introduced in the framework of
adaptive residual generator.

Suppose that there exist S classes of faults in the process including all potential
abnormalities in sensors and actuators. Under the influence of ith class of fault, i = 1, . . . , S,
the unknown parameter becomes θi

f
, which is assumed to belong to a known compact and

convex set Θi
f
∈ Rs(m+l)+m. Note that, the set Θi

f
could be offline identified by using the faulty

data within the framework of adaptive scheme (3.5)–(3.10).
The proposed fault isolation strategy can be developed by integrating the fault

information, that is, Θi
f
. Based on it, S fault isolation observers are constructed, in which the

ith observer is only responsible for the ith set of fault. According to the fault detection scheme
discussed in the last subsection, after a fault is detected at time td, the fault isolation scheme is
activated, such that the ith isolator is insensitive to the ith type of fault, but sensitive to other
faults; see Zhang et al. [30]. In order to realize these requirements, the parameter projection
method is utilized and the ith fault isolation observer has the following form:

ẑik+1 = Azẑ
i
k +Q

(
uk, yk

)
θ̂i
k + V i

k+1

(
θ̂i
k+1 − θ̂i

k

)
, (3.33)

rik = ĝi
kyk − czẑ

i
k,

V i
k+1 = AzV

i
k +Q

(
uk, yk

) ∈ Rs×[s(m+l)+m],

ϕi
k = czV

i
k −

[
0 · · · 0 yT

k

] ∈ Rs(m+l)+m,

(3.34)

θ̂i∗
k+1 = θ̂i

k +

(
ϕi
k

)T
ri
k

δ + ϕi
k

(
ϕi
k

)T ∈ Rs(m+l)+m, (3.35)

θ̂i
k+1 = PΘi

f

[
θ̂i∗
k+1

]
, (3.36)

where

θ̂i
k =

[
θ
i

k(
ĝi
k

)T
]
, θ

i

k ∈ Rs(m+l), ĝi
k ∈ Rm, (3.37)

the δ > 0,PΘi
f
denotes a projection operator that ensures θ̂i

k+1 lies in a known bounded convex

subset Θi
f
∈ Rs(m+l)+m. Details on the projection operator can be founded in Tao [26]. The

following theorem states the properties of the ith isolation observer in case of the ith type of
fault occurred.

Theorem 3.6. Given the ith fault isolation observer in the form (3.33)–(3.36), suppose that there is a
positive constant di, such that for all θ1, θ2 ∈ Θi

f
, it follows that

di = sup
θ1,θ2∈Θi

f

‖θ1 − θ2‖. (3.38)
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In case of the ith type of fault occurs, one has the following:
(i) the ith fault isolation observer is stable and

∥∥∥θ̃i
k+1

∥∥∥ ≤ di,
∥∥∥θ̂i

k+1 − θ̂i
k

∥∥∥ ≤
∣∣∣rik

∣∣∣, (3.39)

where rik = ri
k
/
√
δ + ϕi

k
(ϕi

k
)T , θ̃i

k+1 = θi
k+1 − θ̂i

k+1,
(ii) based on the assumption of the zero initial condition, the normalized residual signal satisfies

(
rik

)2 ≤ d2
i +

(
2s + 2

√
s + 1

)
v2
i +

(
2 + 2

√
s
)
vidi, (3.40)

where vi is a positive scalar such that ‖Δi
k
‖ ≤ vi with Δi

k
= θi

k+1 − θi
k
.

Proof. According to the property of the projection operator, it follows that θ̂i
k+1 ∈ Θi

f
. From

(3.38), we have

∥∥∥θ̃i
k+1

∥∥∥ =
∥∥∥θi

k+1 − θ̂i
k+1

∥∥∥ ≤ di. (3.41)

It is evident that for all k,

∥∥∥θ̂i
k+1 − θi

k+1

∥∥∥ ≤
∥∥∥θ̂i∗

k+1 − θi
k+1

∥∥∥, (3.42)

and consequently,

∥∥∥θ̂i
k+1 − θ̂i

k

∥∥∥ ≤
∥∥∥θ̂i∗

k+1 − θ̂i
k

∥∥∥ ≤

∥∥∥(ϕi
k

)T∥∥∥∣∣∣rik
∣∣∣

δ + ϕi
k

(
ϕi
k

)T ≤
∣∣∣rik

∣∣∣. (3.43)

Now, define a new parameter

θ̃i∗
k+1 = θ̂i∗

k+1 − θi
k+1. (3.44)

Using (3.42), we get

∥∥∥θ̃i
k+1

∥∥∥2 −
∥∥∥θ̃i

k

∥∥∥2 ≤
∥∥∥θ̃i∗

k+1

∥∥∥2 −
∥∥∥θ̃i

k

∥∥∥2
. (3.45)

The right-hand side of (3.45) becomes

∥∥∥θ̃i∗
k+1

∥∥∥2 −
∥∥∥θ̃i

k

∥∥∥2
=
(
θi
k+1 − θ̂i∗

k+1 − θi
k + θ̂i

k

)T(
θi
k+1 − θ̂i∗

k+1 + θi
k − θ̂i

k

)
. (3.46)
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Note that, (3.35) can be reformulated as

θ̂i∗
k+1 = θ̂i

k +
(
ϕi
k

)T
rik, (3.47)

where

(
ϕi
k

)T
=

(
ϕi
k

)T
√
δ + ϕi

k

(
ϕi
k

)T . (3.48)

For the normalized residual signal rik, it is known that

rik = ϕi
kθ̃

i
k + ηi

k, (3.49)

with

ηi
k =

czη
i
k√

δ + ϕi
k

(
ϕi
k

)T ,

ηi
k = Azη

i
k−1 − V i

kΔ
i
k−1,

Δi
k−1 = θi

k − θi
k−1, 0 ≤ ϕkϕ

T
k ≤ 1.

(3.50)

Combining (3.46), (3.47), and (3.49), we have

∥∥∥θ̃i
k+1

∥∥∥2 −
∥∥∥θ̃i

k

∥∥∥2 ≤ −
(
rik

)2
+ 2rikη

i
k +

(
−2ϕi

kr
i
k + 2

(
θ̃i
k

)T
+
(
θi
k+1

)T −
(
θi
k

)T
)
Δi

k. (3.51)

Equation (3.51) can be reformulated as

(
rik

)2 ≤ −
∥∥∥θ̃i

k+1

∥∥∥2
+
∥∥∥θ̃i

k

∥∥∥2
+ 2

(
ηi
k

)2
+ 2

∣∣∣ηi
k

∣∣∣∥∥∥θ̃i
k

∥∥∥ (3.52)

+
∥∥∥θi

k+1 − θi
k

∥∥∥(2∥∥∥θ̃i
k

∥∥∥ + 2
∣∣∣ηi

k

∣∣∣ + ∥∥∥θi
k+1 − θi

k

∥∥∥). (3.53)

Since

∣∣∣ηi
k

∣∣∣ ≤
∥∥ηi

k

∥∥√
δ + ϕi

k

(
ϕi
k

)T ≤ √
svi, (3.54)

according to (3.52), the result represented by (3.40) can be easily proved.

For the ith isolation observer, define the fault isolation index

Jik = rik, (3.55)

and the related threshold Ji,isoth . Based on Theorem 3.6, we have the following corollary.
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Figure 1: Structure of TTS.

Corollary 3.7. For the ith isolation observer, the fault isolation threshold Ji,isoth can be determined by

Ji,iso
th

=
√
d2
i +

(
2s + 2

√
s + 1

)
v2
i +

(
2 + 2

√
s
)
vidi. (3.56)

Moreover, if the process corrupted by disturbance and/or noise, the normalized residual is

rik = ϕi
kθ̃

i
k + ηi

k + pik, (3.57)

where pik represents the influence of noise/disturbance on the normalized residual signal. In this case,
the threshold for fault isolation purpose is given by

Ji,isoth =
√
d2
i +

(
2s + 2

√
s + 1

)
v2
i + cvidi + cpivi, (3.58)

with

pi = sup
∀k

(
pik

)
, c = 2 + 2

√
s. (3.59)

Proof. The proof is straightforward based on Theorem 3.6 and omitted here.

The fault isolation logic can be described as the following:

(i) for the ith isolation observer, if ∃ta > td such that |Jita | > Ji,isoth , then the occurrence of
the ith type of fault is excluded;

(ii) otherwise, if |Jita | < Ji,isoth for ∀ta > td, the ith type of fault is occurred.

The sufficient condition of fault isolability is given by the following theorem.
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Figure 2: Residual signal.

Theorem 3.8. Based on the fault isolation observer (3.33)–(3.36), the ith type of fault, which detected
at time td, is isolable, if for the other S − 1 fault isolation observers, ∃ta > td such that the following
inequality is satisfied

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣ > √
svr +

√
sv2

r +
(
Jr,iso
th

)2
, (3.60)

where

Jr,isoth =
√
d2
r +

(
2s + 2

√
s + 1

)
v2
r +

(
2 + 2

√
s
)
vrdr, r = 1, . . . , S, r /= i. (3.61)

Furthermore, if s = 1, L0 = 0, it follows that

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣ > vr +
√
d2
r + 6v2

r + 4vrdr. (3.62)

Proof. For the rth fault isolation observer, we have

(
Jrta

)2
=
(
ϕr
ta
θ̃r
ta

)2
+
(
ηr
ta

)2
+ 2ϕr

ta
θ̃r
ta
ηr
ta

≥
(
ϕr
ta
θ̃r
ta

)2 − 2
√
svr

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣.
(3.63)

Straightforwardly, if for all r = 1, . . . , S, r /= i, ∃ta > td such that

(
ϕr
ta
θ̃r
ta

)2 − 2
√
svr

∣∣∣ϕr
ta
θ̃r
ta

∣∣∣ > (
Jr,isoth

)2
, (3.64)

the ith type of fault is isolable and directly (3.60) is proofed. In the case of s = 1 and L0 = 0,
(3.62) is straightforward.
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Figure 3: Continued.
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Figure 3: Fault diagnosis for fault 1.

4. Application to Three-Tank System

The three-tank system (TTS) considered in our study is a laboratory setup located in the
laboratory of Institute for Automatic Control and Complex Systems, University of Duisburg-
Essen. The sketch is shown in Figure 1, which has typical characteristics of tanks, pipelines,
and pumps used in the chemical industry and thus often serves as benchmark process for
many control and monitoring relevant studies.

The plant consists of three cylindrical tanks which are serially interconnected with
each other by cylindrical pipes with the cross-section of Sn. The outflowing water is collected
in a reservoir, which supplies pumps 1 and 2.Hmax denotes the maximal height of tanks. The
flow rates and water levels of tanks, represented by hi, i = 1, 2, 3, are measured throughout
the process. By integrating a nonlinear controller, water levels h1 and h2 can be controlled.
The detailed description of TTS can be found in Ding [6].

It is well known that the systemmatrices of TTS, which are achieved from linearization
at different operation points, are different. In our experiment, the operation point of water
level h1 is periodically changed in order to simulate the normal parameter variations in the
process. An experiment including the following steps has been performed.

(i) Place TTS at the operating point h1 = 35 + sin(0.002t) cm, h2 = 25 cm, in which sin
signal added to h1 leads to normal parameter variations.

(ii) Use the adaptive scheme (3.5)–(3.10) to identify θ through the data collected at the
operating point h1 = 35 cm, h2 = 25 cm with reduced order s = 1 and L0 = 0. Note
that the system order n = 3 can be determined by Algorithm D2PS, and based on
it the reduced order s is calculated according to the relationship s = (n + 1)/m − 1
with two system outputs; that is, m = 2.

(iii) Construct two residual generators: (a) an adaptive residual generator (3.5)–(3.10)
(b) a standard one without adaptive scheme.

(iv) Both the residual generators run for 2000 s (seconds). The threshold Jth = 0.78 is
determined according to (3.23) with the parameters μ = 0.01, α1 = 0.9997, v =
7.3668 × 10−5, and p = 0.55, which are chosen according to the offline test data.

Figure 2 shows the residual signals with and without the adaptive scheme. It is clear
that the standard process monitoring method is unsuitable to monitor TTS with normal
parameters variations that is apparent by the numerous false alarms.
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Figure 4: Fault diagnosis for fault 4.

Table 1: The faults existed in TTS.

Fault number Description Type
Faults 1–3 Leaking in tank 1, 2, 3 Process fault
Faults 4-5 Offset of actuator Q1, Q2 Actuator fault
Faults 6–8 Plugging in tank 1, 2, 3 Process fault
Fault 9 Offset of sensor h1 Sensor fault

The faults occurred in TTS can be classified as process fault, sensor fault, and actuator
fault, which are shown in Table 1. To verify the performance of the proposed fault diagnosis
scheme, the following experiment is carried out.

(i) Offline: apply adaptive scheme (3.5)–(3.10) to identify Θi
f
through the ith type of

faulty data with s = 1 and L0 = 0.

(ii) Online: use adaptive residual generator (3.5)–(3.10) for fault detection purpose. If
there exists time td such that |rk| > Jth, the alarm is released. Simultaneously, the S−1
fault isolation observers (3.33)–(3.36) are activated, and the threshold Jiiso = 0.8822
is determined according to (3.58) with the parameters vi = 1 × 10−2, di = 0.85, and
pi = 0.55.

The fault diagnosis results of faults 1, 4, and 9, which represent the process, actuator,
and sensor fault, are mainly presented in the following study. All these faults occur at the
500th second. The sensor fault 9 has 30% offset compared to the normal value and the actuator
fault 4 represents 100% offset to the desired value. Figures 3(a), 4(a), and 5(a) show the
residual signal from adaptive residual generator for fault detection purpose. It can be seen
that the faults are successfully detected at the 505 s, the 507 s, and the 501 s, respectively.

In the meanwhile, the fault isolation observers are activated, and the related fault
isolation indices are shown in Figures 3(b)–3(j), 4(b)–4(j), and 5(b)–5(j) for faults 1,
4, 9, respectively. It is evident that the fault isolation indices from the 1st isolation
observer (Figure 3(b)), the 4th isolation observer (Figure 4(e)), and the 9th isolation
observer (Figure 5(j)) are consistently maintained under respective thresholds which indicate
occurrence of these faults. On the other hand, the other subfigures show the isolation indices
associated to other isolation observers. It is obvious that all of them exceed the related
thresholds, which indicate the absence of these faults in the process.
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Figure 5: Fault diagnosis for fault 9.

5. Conclusion

In this paper, we have proposed an approach for data-driven design of fault diagnosis
system, which consists of an adaptive residual generator and a bank of observers for
fault detection and isolation purposes. Analytical results regarding the issues of adaptive
observers, threshold calculation, and fault isolation strategy are discussed. The proposed
design scheme is demonstrated on the simulation of laboratory-scale three-tank system,
which shows satisfactory fault diagnosis performance.
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