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This paper deals with the problem of stabilization for a class of networked control systems (NCSs)
with random time delay via the state feedback control. Both sensor-to-controller and controller-to-
actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled
as a Markovian jump linear system (MJLS). Based on Lyapunov stability theorem combined with
Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of
bilinear matrix inequalities (BMIs) for the system is derived. A state feedback controller that makes
the closed-loop system stochastically stable is designed, which can be solved by the proposed
algorithm. Simulations are included to demonstrate the theoretical result.

1. Introduction

Feedback control systems in which the control loops are closed through a real-time network
are called networked control systems (NCSs) [1]. Recently, much attention has been paid
to the study of stability analysis and controller design of NCSs [2, 3] due to their low
cost, reduced weight and power requirements, simple installation and maintenance, and
high reliability. Consequently, NCSs have been applied to various areas such as mobile
sensor networks [4], remote surgery [5], haptics collaboration over the Internet [6–8], and
automated highway systems and unmanned aerial vehicles [9, 10]. However, the sampling
data and controller signals are transmitted through a network, so network-induced delays in
NCSs are always inevitable [11, 12].

One of the main issues in NCSs is network-induced delays, which are usually the
major causes for the deterioration of system performance and potential system instability
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[13]. For different scheduling protocols, the network-induced delay may be constant, or
time-varying, but in most cases, it is random [14]. Hence, systems with random time delay
attract considerable attention [15–18]. Based on stochastic control theory and a separation
property, the effect of random delay is treated as an LQG problem in [15]. However, the
network-induced random delay has to be less than one sampling interval. The results in
[15] have recently been extended to the case with longer delays in [16]. It is noted that
the given controller depends only on sensor-to-controller delay. In [17], a control problem
for Bernoulli binary random delay is considered, and a linear matrix inequalities (LMIs)
problem for the analysis of stochastic exponential mean square stability is established. The
model-based NCSs with random transmission delay is studied in [18]. Sufficient conditions
for almost sure stability and stochastic exponential mean square stability are presented.

On the other hand, the study of stochastic systems has attracted a great deal of
attention [19–38]. Some of these results are applied to networked control systems with
random time delays [39–43]. In [39, 40], the network-induced random delays are modeled
as Markov chains such that the closed-loop systems are jump linear systems with one mode.
It is noticed that in [39], the state feedback gain is mode independent, and in [40], the state
feedback gain only depends on the delay from sensor to controller. Recently, stabilization of
networked control systems with the sensor-to-controller and controller-to-actuator delays are
considered in [41]. In [42, 43], a class of Markovian jump linear systems with time delays both
in the system state and in the mode signal is considered. Based on Lyapunov method, a time-
delayed, mode-dependent, and state feedback controller such that the closed-loop system is
stochastically stable is designed. It is noticed that the time delay in the mode signal is constant
in [42, 43], and the time delay in the mode signal is random. It is worth pointing out that in
all of the aforementioned papers, the plant is in the discrete-time domain. To the best of the
authors’ knowledge, the stability and stabilization problems for NCSs with the plant being
in the continuous-time domain have not been fully investigated to date. Especially for the
case where both sensor-to-controller and controller-to-actuator network-induced delays are
random and longer than one sampling interval, very few results related to NCSs have been
available in the literature so far, which motivates the present study.

The aim of this paper is to consider a class of networked control systems with
sensors and actuators connected to a controller via two communication networks in the
continuous-time domain. Two Markov processes are introduced to describe sensor-to-
controller transmission delay and the controller-to-actuator transmission delay. Based on
Lyapunov stability theorem, a method for designing a mode-dependent state feedback
controller that stabilizes this class of networked control systems is proposed. The existence of
such a controller is given in terms of BMIs, which can be solved by the proposed algorithm.

This paper is organized as follows. In Section 2, the problem is stated and some useful
definitions and lemmas are given, and then the main results of this paper are given in
Section 3. Simulation results are presented in Section 4. Finally, the conclusions are provided
in Section 5.

Notation. R
n denotes the n-dimensional Euclidean space, and I is identity matrix. AT stands

for the transpose of the corresponding matrix A. The notation A ≥ 0 (A > 0) means that
the matrix A is a positive semidefinite (positive definite) matrix. For an arbitrary matrix Y
and two symmetric matrices X and Z,

[
X Y
∗ Z

]
denotes a symmetric matrix, where ∗ denotes

a block matrix entry implied by symmetry, and ‖ · ‖ refers to the Euclidean norm for vectors
and induced 2-norm for matrices. E(·) stands for the mathematical expectation operator, and
P(·) for probability operator.
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Figure 1: Illustration of NCSs over communication network.

2. Problem Formulation

Consider linear systems described by the differential equation

ẋ = Ax(t) + Bu(t), (2.1)

where x(t) ∈ R
n is the state vector, and u(t) ∈ R

m is the control input. Matrices A and B are
known matrices of appropriate dimensions.

The plant is interconnected by a controller over a communication network, see
Figure 1. The sensor and controller are periodically sampled with the sampling interval T . We
describe the sensor-to-controller transmission delay as τsc(rt) and the controller-to-actuator
transmission delay as τca(ηt). The mode switching of τsc(rt) is governed by the continuous-
time discrete-state Markov process rt taking the values in the finite set ςr := {1, . . . ,Nr} with
generator Λ = (λij), i, j ∈ ςr given by

P
[
rt+h = j | rt = i

]
=

⎧
⎪⎨

⎪⎩

λijh + o(h), i /= j,

1 + λiih + o(h), i = j,
(2.2)

where λij is the transition rate from mode i to j with λij ≥ 0 when i /= j and λii = −∑Nr

j=1,j /= i λij ,
and o(h) is such that limh→ 0o(h)/h = 0. The mode switching of τca(ηt) is governed by
the continuous-time discrete-state Markov process ηt taking the values in the finite set
ςη := {1, . . . ,Nη} with generator Π = (πkl), k, l ∈ ςη given by

P
[
ηt+h = l | ηt = k

]
=

⎧
⎪⎨

⎪⎩

πklh + o(h), k /= l,

1 + πkkh + o(h), k = l,
(2.3)

with πkl ≥ 0 and πkk = −∑Nη

l=1,l /= k
πkl.

Throughout the paper, the following assumption is needed for the considered
networked control systems.
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Figure 2: Illustration of the time delay.

Assumption 2.1. The switching difference of consecutive delays is less than one sampling
interval, that is,

P(|τsc(rtk+1) − τsc(rtk)| ≥ T) = 0,

P
(∣∣τca

(
ηtk+1

) − τca
(
ηtk

)∣∣ ≥ T) = 0,
(2.4)

where tk = kT is the kth sampling instant.

Remark 2.2. Although Assumption 2.1 restricts that the switching difference of consecutive
delays is less than one sampling interval T , this does not imply that the network delay τsc(rtk)
and τca(ηtk) are less than T .

According to Figure 1, for tk ≤ t < tk+1, the control law has the form:

u(t) = K
(
rt, ηt

)
x
(
tk − τsc(rt) − τca

(
ηt
))
. (2.5)

Define the time delay τ(rt, ηt) as follows:

τ
(
rt, ηt

)
= t − tk + τsc(rt) + τca

(
ηt
)
, (2.6)

which can be illustrated by Figure 2.
Then, we have

u(t) = K
(
rt, ηt

)
x
(
t − τ(rt, ηt

))
. (2.7)

The associated upper bounds of τ(rt, ηt) are defined as

τ = T + max
i∈ςr

τsc(i) + max
k∈ςη

τca(k). (2.8)
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Applying controller (2.7) to the open-loop system (2.1) results in the closed-loop
networked control system

ẋ(t) = Ax(t) + BK
(
rt, ηt

)
x
(
t − τ(rt, ηt

))
,

x(θ) = φ(θ), θ ∈ [−τ, 0],
(2.9)

where φ(θ), θ ∈ [−τ, 0] is the initial function.
We have the following stochastic stability concept for system (2.9).

Definition 2.3. The system (2.9) is said to be stochastically stable if there exists a constant
T(r0, η0, φ(·)) such that

E

[∫∞

0
‖x(s)‖2ds | (r0, η0, φ(·)

)] ≤ T
(
r0, η0, φ(·)

)
, (2.10)

for any initial condition x(r0, η0, φ(·)).

The following lemmas will be essential for the proofs in Section 3.

Lemma 2.4 (see [44]). Given any real matrices Σ1,Σ2,Σ3 of appropriate dimensions and a scalar
ε > 0 such that Σ3 = ΣT

3 > 0, Then the following inequality holds:

T∑

1

∑

2

+
T∑

2

∑

1

≤ ε
T∑

1

∑

3

∑

1

+ ε−1
T∑

2

−1∑

3

∑

2

. (2.11)

For the delay functional differential equation,

ẋ(t) = f(t, xt), (2.12)

where

f : [0,+∞) × C([−τ, 0],Rn) −→ R
n, (2.13)

is completely continuous, f(t, 0) = 0, and xt(θ) is defined as

xt(θ) = x(t + θ), θ ∈ [−τ, 0]. (2.14)

Then we have the following Razumikhin lemma.

Lemma 2.5 (see [45]). Suppose that u, v,w : R
+ → R

+ are continuous, strictly monotonous
increasing functions, then u(s), v(s), and w(s) are positive for s > 0, and u(0) = v(0) = 0. If
there is a continuous function V : [−τ,+∞) × R

n → R
+ such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), t ∈ [−τ,+∞), x ∈ R, (2.15)
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and there is a continuous nondecreasing function p(s) > s for s > 0, and for any t0 ∈ R
+,

V̇ (t, x) ≤ −w(‖x‖) (2.16)

if

V (x(t + θ, t + θ)) < p(V (t, x)), θ ∈ [−τ, 0], t ≥ t0, (2.17)

then the zero solution of (2.12) is uniformly asymptotically stable.

3. Main Results

The following theorem provides sufficient conditions for existence of a mode-dependent state
feedback controller for the system (2.9).

Theorem 3.1. Consider the closed-loop system (2.9) satisfying Assumption 2.1. If there exist
symmetric matrixQ(i, k) > 0, matrix Y (i, k), and positive scalar ε1, ε2 such that the following matrix
inequalities hold for all i ∈ ςr and k ∈ ςη,

⎡

⎣
J(i, k) ϕ1(i, k) ϕ2(i, k)
∗ −ψ1 0
∗ ∗ −ψ2

⎤

⎦ < 0, (3.1)

[−ε1Q(i, k) AQ(i, k)
∗ −Q(i, k)

]
< 0, (3.2)

[−ε2Q(i, k) BY (i, k)
∗ −Q(i, k)

]
< 0, (3.3)

where

J(i, k) = Q(i, k)AT+AQ(i, k)+YT (i, k)BT+BY (i, k)+τ(ε1+3ε2)Q(i, k)+λiiQ(i, k)+πkkQ(i, k),

ϕ1(i, k) =
[√

λi,1Q(i, k), . . . ,
√
λi,i−1Q(i, k),

√
λi,i+1Q(i, k), . . . ,

√
λi,NrQ(i, k)

]
,

ϕ2(i, k) =
[√

πk,1Q(i, k), . . . ,
√
πk,k−1Q(i, k),

√
πk,k+1Q(i, k), . . . ,

√
πk,NηQ(i, k)

]
,

ψ1 = diag[Q(1, k), . . . , Q(i − 1, k), Q(i + 1, k), . . . , Q(Nr, k)],

ψ2 = diag
[
Q(i, 1), . . . , Q(i, k − 1), Q(i, k + 1), . . . , Q

(
i,Nη

)]
,

(3.4)

with P(i, k) = Q−1(i, k), then the system is stochastically stable with the state feedback gain:

K(i, k) = Y (i, k)Q−1(i, k). (3.5)
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Proof. Consider the following Lyapunov candidate:

V
(
x(t), rt, ηt

)
= xT (t)P

(
rt, ηt

)
x(t), (3.6)

where P(rt, ηt) is the positive symmetric matrix. From (3.6), it follows that

β1‖x(t)‖2 ≤ V (
x(t), rt, ηt

) ≤ β2‖x(t)‖2, (3.7)

where

β1 = min
rt∈ςr ,ηt∈ςη

λmin
(
P
(
rt, ηt

))
,

β2 = max
rt∈ςr ,ηt∈ςη

λmax
(
P
(
rt, ηt

))
.

(3.8)

Note that

x
(
t − τ(rr , ηt

))
= x(t) −

∫0

−τ(rr ,ηt)
ẋ(t + θ)dθ

= x(t) −
∫0

−τ(rr ,ηt)

[
Ax(t + θ),+BK

(
rt, ηt

)
x
(
t − τ(rr , ηt

)
+ θ

)]
dθ.

(3.9)

Thus, the closed-loop system (2.9) can be rewritten as

ẋ(t)=
[
A+BK

(
rt, ηt

)]
x(t)−BK(

rt, ηt
)
∫0

−τ(rr ,ηt)

[
Ax(t + θ) + BK

(
rt, ηt

)
x
(
t − τ(rr , ηt

)
+ θ

)]
dθ.

(3.10)

Let L(·) be the weak infinitesimal generator of {x(t), rt, ηt, t ≥ 0}, then for rt = i ∈ ςr, ηt = k ∈
ςη, we have

LV (x(t), i, k)

= ẋT (t)P(i, k)x(t) + xT (t)P(i, k)ẋ(t) +
Nr∑

j=1

λijx
T (t)P

(
j, k

)
x(t) +

Nη∑

l=1

πklx
T (t)P(i, l)x(t)

+ xT (t)

⎡

⎣ATP(i, k)+ P(i, k)A +KT (i, k)BTP(i, k)+ P(i, k)BK(i, k)+
Nr∑

j=1

λijP
(
j, k

)
+
Nη∑

l=1

πklP(i, l)

⎤

⎦x(t)

− 2
∫0

−τ(i,k)

{
xT (t)P(i, k)BK(i, k) × [Ax(t + θ) + BK(i, k)x(t − τ(i, k) + θ)]}dθ.

(3.11)
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According to Lemma 2.4, we have

− 2
∫0

−τ(i,k)

{
xT (t)P(i, k)BK(i, k) × [Ax(t + θ) + BK(i, k)x(t − τ(i, k) + θ)]

}
dθ

≤ τ(i, k)[ε−1
1 xT (t)P(i, k)BK(i, k)AP−1(i, k) ×ATKT (i, k)BTP(i, k)x(t) + ε−1

2 xT (t)

× P(i, k)BK(i, k)BK(i, k)P−1(i, k)KT (i, k) × BTKT (i, k)BTP(i, k)x(t)]

+ ε1

∫0

−τ(i,k)
xT (t + θ)P(i, k)x(t+θ)dθ+ε2

∫0

−τ(i,k)
xT (t− τ(i, k)+θ)P(i, k)x(t−τ(i, k)+θ)dθ.

(3.12)

From (3.2), (3.3), and Lemma 2.5, we can obtain

AP−1(i, k)AT < ε1P
−1(i, k),

BK(i, k)P−1(i, k)KT (i, k)BT < ε2P
−1(i, k),

(3.13)

which yields

− 2
∫0

−τ(i,k)

{
xT (t)P(i, k)BK(i, k) × [Ax(t + θ) + BK(i, k)x(t − τ(i, k) + θ)]

}
dθ

≤ 2τ(i, k)ε2x
T (t)P(i, k)x(t) + ε1

∫0

−τ(i,k)
xT (t + θ)P(i, k)x(t + θ)dθ

+ ε2

∫0

−τ(i,k)
xT (t − τ(i, k) + θ)P(i, k) × x(t − τ(i, k) + θ)dθ.

(3.14)

Following Lemma 2.5, for −2τ ≤ θ ≤ 0, we assume that for any δ > 1, the following inequality
holds:

V
(
x(t + θ), rt+θ, ηt+θ

)
< δV

(
x(t), rt, ηt

)
, (3.15)

then we have

LV (x(t), i, k) ≤ xT (t)H(τ(i, k), δ)x(t), (3.16)

where H(τ(i, k), δ) is given by

H(τ(i, k), δ)

= ATP(i, k) + P(i, k)A +KT (i, k)BTP(i, k) + P(i, k)BK(i, k) +
Nr∑

j=1

λijP
(
j, k

)

+
Nη∑

l=1

πklP(i, l) + 2τ(i, k)ε2P(i, k) + τ(i, k)ε1δP(i, k) + τ(i, k)ε2δP(i, k),

(3.17)



Mathematical Problems in Engineering 9

for some positive scalars ε1 and ε2. before and after multiplying H(τ(i, k), δ) by Q(i, k) =
P−1(i, k) and its transpose, it gives

H̃(τ(i, k), δ)

= Q(i, k)AT +AQ(i, k) +Q(i, k)KT (i, k)BT + BK(i, k)Q(i, k) +Q(i, k)
Nr∑

j=1

λijP
(
j, k

)
Q(i, k)

+Q(i, k)
Nη∑

l=1

πklP(i, l)Q(i, k) + 2τ(i, k)ε2Q(i, k) + τ(i, k)ε1δQ(i, k) + τ(i, k)ε2δQ(i, k).

(3.18)

Since

0 ≤ τ(i, k) ≤ τ, (3.19)

we have from (3.16) that

LV (x(t), i, k) ≤ xT (t)H(τ, δ)x(t). (3.20)

From (3.1) and Lemma 2.5, it follows that

H̃(τ, δ = 1) < 0, (3.21)

which is equivalent to

H(τ, δ = 1) < 0. (3.22)

Using the continuity properties of the eigenvalues of H with respect to δ, then there exists a
δ > 1 sufficiently small such that (3.21) still holds. Thus, for such a δ, we have

H(τ, δ) < 0, (3.23)

which yields

LV (
x(t), rt, ηt

) ≤ −β‖x(t)‖2, (3.24)

where

β = min
i∈ςr , k∈ςη

[λmin(−H(τ, δ))] > 0. (3.25)
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Applying Dynkin’s formula, we have

E[V (x(t), i, k)] − E
[
V
(
x0, r0, η0

)]
= E

{∫ t

0

[LV (
x(s), rs, ηs

)
ds | x0, r0, η0

]
}

≤ −βE

{∫ t

0

[
‖x(s)‖2ds | x0, r0, η0

]}

.

(3.26)

Note that

E[V (x(t), i, k)] ≥ 0, (3.27)

Then we can obtain

βE

{∫ t

0

[
‖x(s)‖2ds | x0, r0, η0

]}

≤ E[V (x(t), i, k)] + βE

{∫ t

0

[
‖x(s)‖2ds | x0, r0, η0

]}

≤ E
[
V
(
x0, r0, η0

)]
.

(3.28)

This completes the proof.

Remark 3.2. In case of constant transmission delay, that is, τsc(rt) = τsc, τca(ηt) = τca, λij = 0,
and πkl = 0, Theorem 3.1 can be directly applied to systems with constant delay.

It should be noted that the terms ε1Q(i, k) and ε2Q(i, k) in (3.1)–(3.3) are bilinear.
Therefore, we propose the following algorithm to solve these bilinear matrix inequality
problems.

Step 1. Set Q0(i, k) > 0, and Y0(i, k) such that the following LMI holds:

⎡

⎢⎢⎢
⎣

J̃(i, k) ϕ1(i, k) ϕ2(i, k)

∗ −ψ1 0

∗ ∗ −ψ2

⎤

⎥⎥⎥
⎦
< 0, (3.29)

where

J̃(i, k) = Q(i, k)AT +AQ(i, k) + YT (i, k)BT + BY (i, k) + λiiQ(i, k) + πkkQ(i, k). (3.30)

Step 2. For Q(i, k) > 0 given in the previous step, find ε1s, ε2s, and Ys(i, k) by solving the
following convex optimization problem:

max
Y (i,k),ε1,ε2

τ(Y (i, k), ε1, ε2),

s.t. (3.1)–(3.3) hold for Q(i, k) > 0 fixed.

(3.31)
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Step 3. For Y (i, k), ε2, and ε1 given in the previous step, find Qs(i, k) > 0 by solving the
following quasiconvex optimization problem

max
Q(i,k)>0

τ(Q(i, k)),

s.t. (3.1)–(3.3) hold for Y (i, k), ε2, and ε1 fixed.
(3.32)

Step 4. Return to step 2 until the convergence of τ is attained with a desired precision.

Remark 3.3. For a given Q(i, k), the considered optimization problem consists of minimizing
an eigenvalue problem which is a convex one. On the other hand, for given Y (i, k), ε1 and
ε2, the considered optimization problem consists of minimizing a generalized eigenvalue
problem which is a quasiconvex optimization problem. Therefore, the proposed algorithm
gives a suboptimal solution.

4. Simulations

In this section, simulations of the position control for robotic manipulator ViSHaRD3 [46]
are included to illustrate the effectiveness of the proposed method. Combining computed
torque feedback approach [47] with friction compensation, the system is decoupled into three
systems. The first and second joints of the ViSHaRD3 are

d

dt

[
q
q̇

]
=
[

0 1
1 −50

][
q
q̇

]
+
[

0
1

]
u(t), (4.1)

and the third is

d

dt

[
q
q̇

]
=
[

0 1
1 −40

][
q
q̇

]
+
[

0
1

]
u(t). (4.2)

For simplicity, we only discuss the third joint of ViSHaRD3. Suppose that the sampling
interval is T = 0.01 s, and the Markov process rt that governs the mode switching of the SC
delay takes values in ςr = {1, 2} and has the generator

Λ =
[−3 3

2 −2

]
, (4.3)

and the Markov process ηt that governs the mode switching of the CA delay takes values in
ηr = {1, 2} and has the generator

Π =
[−1 1

2 −2

]
. (4.4)

Associated with modes 1 and 2, let the system have time delay τsc(1) = 0.03 s,
τca(1) = 0.02 s and τsc(2) = 0.025 s, τca(2) = 0.015 s, respectively. From (2.8), we have τ = 0.06 s,
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Figure 3: State response of closed-loop system.

and the initial condition is φ(θ) = [−1, 0]T , θ ∈ [−0.06, 0]. By the proposed algorithm and
Theorem 3.1, we can obtain the controllers as follows:

K(1, 1) =
[−645.0596 −15.9109

]
,

K(1, 2) =
[−623.3689 −15.4999

]
,

K(2, 1) =
[−575.1361 −14.2296

]
,

K(2, 2) =
[−616.8428 −15.3049

]
.

(4.5)

The simulations of the state response and the control input for the closed-loop system
are depicted in Figures 3 and 4, respectively, which shows that the system is stochastically
stable.

5. Conclusions

In this paper, a technique of designing a mode-dependent state feedback controller for
networked control systems with random time delays has been proposed. The main
contribution of this paper is that both the sensor-to-controller and controller-to-actuator
delays have been taken into account. Two Markov processes have been used to model these
two time delays. Based on Lyapunov stability theorem combined with Razumikhin-based
technique, some new delay-dependent stability criteria in terms of BMIs for the system are
derived. A state feedback controller that makes the closed-loop system stochastically stable is
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Figure 4: Control input of closed-loop system.

designed, which can be solved by the proposed algorithm. Simulations results are presented
to illustrate the validity of the design methodology.
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