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The influences of Hall currents and heat transfer on peristaltic transport of a Newtonian fluid
in a vertical asymmetric channel through a porous medium are investigated theoretically and
graphically under assumptions of low Reynolds number and long wavelength. The flow is
investigated in a wave frame of reference moving with the velocity of the wave. Analytical
solutions have been obtained for temperature, axial velocity, stream function, pressure gradient,
and shear stresses. The trapping phenomenon is discussed. Graphical results are sketched for
various embedded parameters and interpreted.

1. Introduction

Peristalsis is a phenomenon found in several physiological and industrial processes. The
word peristalsis stems from the Greek word “Peristalikos” which means clasping and
compressing.

Peristalsis is an important mechanism for mixing and transporting fluids that occurs
when a progressive wave of area contraction or expansion propagates along the wall of the
tube. Peristaltic flows occur widely in chemical processes such as in distillation towers and
fixed-bed reactors, urine transport from kidney to bladder through the ureter, transport of
lymph in the lymphatic vessels, swallowing food through the esophagus, the movement of
chyme in the gastrointestinal tract, ovum movement in the fallopian tube, transportation
of spermatozoa in the ductus efferentes of the male reproductive tracts, in the vasomotion
of small blood vessels, transport of corrosive fluids, in sanitary fluid transport, and blood
pumps in heart lung machine. In addition, peristaltic pumping occurs in many practical
applications involving biomechanical systems. Several attempts had been made to know
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and understand peristaltic action in different situations. Since the first attempt of Latham
[1] some interesting investigations in this direction have been given in [2–17]. Flow through
a porous medium attracted the attention of many researchers in the last few decades because
of its very important practical applications. It occurs in filtration of fluids and seepage of
water in river beds, sandstone, limestone, bile duct, wood, the human lung, gall bladder with
stones, and in small blood vessels. El Shehawey andHusseny [18] formulated amathematical
model for the peristaltic transport of a viscous incompressible fluid through a porousmedium
bounded by two porous plates. El Shehawey et al. [19] studied the peristaltic transport in an
asymmetric channel through a porous medium. Vajravelu et al. [20] have examined flow
through vertical porous tube with peristalsis and heat transfer. Srinvas and Kothandapani
[21] have studied the influence of heat and mass transfer on MHD peristaltic flow through a
porous space with compliant walls. Srinvas and Gayathri [22] have discussed the peristaltic
transport of Newtonian fluid in a vertical asymmetric channel with heat transfer and porous
medium. The Hall effect is important when the Hall parameter which is the ratio between the
electron-cyclotron frequency and the electron-atom-collision frequency is high; this can occur
if the collision frequency is low or when the magnetic field is high. This is a current trend
in magnetohydrodynamics because of its important influence of the electromagnetic force.
Hence, it is important to study Hall effects and heat transfer effects on the flow to be able
to determine the efficiency of some devices such as power generators and heat exchangers.
Attia [23] had examined unsteady Hartmann flow with heat transfer of a viscoelastic fluid
taking the Hall effect into account. Asghar et al. [24] studied the effects of Hall current and
heat transfer on flow due to a pull of eccentric rotating disk. Hayat et al. [25] studied the Hall
effects on peristaltic flow of a Maxwell fluid in a porous medium. Abo-Eldahab et al. [26, 27]
investigated the effects of Hall and ion-slip currents on magnetohydrodynamic peristaltic
transport and couple stress fluid. For the benefit of the readers in this direction you can take
these additional papers [28–35] into account. This paper may be considered as an extension
of the paper [22] by Srinvas and Gayathri, if we neglected the effect of Hall current.

The aim of this paper is to investigate the effects of Hall current and heat transfer on
peristaltic transport of a Newtonian fluid in a vertical asymmetric channel through a porous
medium. We introduce the governing equations and boundary conditions in Section 2.
Section 3 represents the volume flow rate. The exact solution of the problem is derived in
Section 4. Section 5 deals with numerical results and discussion. The trapping phenomenon
is discussed in Section 6. The conclusions are summarized in Section 7.

2. Problem Formulation

Consider the peristaltic flow of an incompressible viscous fluid in a two-dimensional vertical
infinite asymmetric channel of width d1 + d2 through a porous medium. Asymmetry in the
channel is produced by choosing the peristaltic wave trains propagating with constant speed
c along the walls (H1 is the right hand side wall and H2 is the left hand side wall) to have
different amplitudes and phases as shown in Figure 1.

The shapes of the channel walls are represented as

Y = H1(X, t) = d1 + a1 cos
(
2π
λ

[X − ct]
)
, rightwall,

Y = H2(X, t) = −d2 − b1 cos
(
2π
λ

[X − ct] + φ
)
, leftwall,

(2.1)
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Figure 1: The geometry of the problem.

where a1, b1 are the amplitudes of the right and left waves, λ is the wave length, the phase
difference φ varies in the range 0 ≤ φ ≤ π , φ = 0 corresponds to symmetric channel with
waves out of phase, and φ = π describes the case where waves are in phase. Further, d1, d2,
a1, b1, and φ satisfy the following inequality:

a21 + b
2
1 + 2a1b1 cosφ ≤ (d1 + d2)

2, (2.2)

so that the walls will not intersect with each other. The heat transfer in the channel is taken
into account by maintaining the right and left walls at temperatures T0 and T1, respectively.
A uniform magnetic field with magnetic flux density vector B = (0, 0, B0) is applied, and
the induced magnetic field is neglected by taking a very small magnetic Reynolds number.
The fundamental equations governing this model together with the generalized Ohm’s law
taking the effects of Hall currents and Maxwell’s equations into account are

∇.V = 0,

−∇P + μ∇2V + ρgα(T − T0) −
μ

k1
V + J ∧ B = ρ

dV
dt

,

J = σ
[
V ∧ B − 1

ene
J ∧ B

]
,

ρζ
dT
dt

= κ∇2T +Q0,

(2.3)

whereV is the velocity vector, P is the pressure, μ is the dynamic viscosity,∇2 is the Laplacian
operator, ρ is the density of the fluid, d/dt is the material derivative, t is the time, J is
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the current density, B is the total magnetic field, σ is the electric conductivity, e is the electric
charge, ne is the number density of electrons, ζ is the specific heat at constant pressure, α is
the coefficient of linear thermal expansion of the fluid, κ is the thermal conductivity of the
fluid, Q0 is the constant heat addition/absorption, and T is the temperature of the fluid. The
equations governing the two-dimensional motion of this model are

∂U

∂X
+
∂V

∂Y
= 0,

ρ

(
∂U

∂t
+U

∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ μ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
− μ

k1
U + ρgα(T − T0)

+
σB2

0

1 +m2 (mV −U),

ρ

(
∂V

∂t
+U

∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ μ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
− μ

k1
V − σB2

0

1 +m2 (mU + V ),

ρζ

(
∂T

∂t
+U

∂T

∂X
+ V

∂T

∂Y

)
= κ

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+Q0,

(2.4)

whereU and V are the velocity components in the laboratory frame (X,Y ) and

m =
σB0

ene
is the Hall parameter. (2.5)

Following Shapiro et al. [3] we introduce a wave frame of reference (x, y) moving
with velocity c in which the motion becomes independent of time when the channel is an
integral multiple of the wavelength and the pressure difference at the ends of the channel is a
constant. The transformation from the laboratory frame of reference (X,Y ) to the wave frame
of reference (x, y) is given by

x = X − ct, y = Y, u = U − c, v = V, p(x) = P(x, t), (2.6)

where (u, v), p and (U,V ), P are the velocity components and pressure in the wave and
laboratory frames of reference, respectively.

We introduce the following nondimensional variables:

x∗=
x

λ
, y∗=

y

d1
, u∗=

u

c
, v∗=

v

cδ
, δ=

d1
λ
, p∗ =

pd2
1

cλμ
, t∗ =

ct

λ
,

h1=
H1

d1
, h2=

H2

d1
, d=

d2
d1
, a=

a1
d1
, b=

b1
d1
, R =

ρd1c

μ
, k =

k1

d2
1

,

θ =
T − T0
T1 − T0 , Pr =

μζ

κ
, β =

Q0d
2
1

κ(T1 − T0) , Gr =
αg(T1 − T0)d3

1

ν2
,

M =
σB2

0d
2
1

μ
,

(2.7)
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where R is the Reynolds number, δ is the dimensionless wave number, k is the porosity
parameter, Pr is the Prandtl number, Gr is the Grashof number, ν is the kinematic viscosity
of the fluid, M is the magnetic parameter, and β is the nondimensional heat source/sink
parameter. Using (2.6) and (2.7) in (2.4), we can get the following nondimensional form in a
wave frame of reference after dropping the stars:

∂u

∂x
+
∂v

∂y
= 0, (2.8)

δR

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ δ2

∂2u

∂x2
+
∂2u

∂y2
− (u + 1)

k
+
Grθ

R
+ δ

mMv

(m2 + 1)
− M(u + 1)

m2 + 1
, (2.9)

δ3R

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ δ4

∂2v

∂x2
+ δ2

∂2v

∂y2
− δ2v

k
− δmM(u + 1)

(m2 + 1)
− δ2 Mv

(m2 + 1)
, (2.10)

δRPr
(
u
∂θ

∂x
+ v

∂θ

∂y

)
= δ2

∂2θ

∂x2
+
∂2θ

∂y2
+ β. (2.11)

Assuming that the wave length is long and since the Reynolds number is low, then
under this assumption (2.9)–(2.11) will take the following forms after dropping terms of
order δ and higher:

0 = −∂p
∂x

+
∂2u

∂y2
− (u + 1)

k
+Grθ − M(u + 1)

m2 + 1
,

0 = −∂p
∂y

,

0 =
∂2θ

∂y2
+ β.

(2.12)

The corresponding boundary conditions are

u = −1, θ = 0 at y = h1, (2.13)

u = −1, θ = 1 at y = h2, (2.14)

where

h1 = 1 + a cos 2πx, (2.15)

h2 = −d − b cos(2πx + φ
)
, (2.16)

and a, b, d, and φ satisfy the relation

a2 + b2 + 2ab cosφ ≤ (1 + d)2. (2.17)
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3. Rate of Volume Flow

The volume flow rate in wave frame of reference is given by

q =
∫h1(x)

h2(x)
u
(
x, y

)
dy, (3.1)

where h1, h2 are functions of x alone.
The instantaneous volume flow rate in the fixed frame is given by

Q =
∫H1(x,t)

H2(x,t)

[
U
(
x, y, t

)]
dy =

∫h1(x)

h2(x)

[
u
(
x, y

)
+ c

]
dy = q + ch1 − ch2. (3.2)

The time-mean flow over time period T at a fixed position x is given by

Q(x, t) =
1
T

∫T

0
Q
(
x, y

)
dt. (3.3)

Using (3.2) and (3.3) we get

Q(x, t) = q + c1d1 + c2d2. (3.4)

On defining the dimensionless mean flow Θ in laboratory frame and F in the wave frame,

Θ =
Q

cd1
, F =

q

cd1
. (3.5)

Using (3.4) and (3.5) we obtain

Θ = F + 1 + d, (3.6)

in which

F =
∫h1(x)

h2(x)
u
(
x, y

)
dy. (3.7)

4. Solution of the Problem

The exact solutions of the set of (2.12) subject to the boundary conditions (2.13) and (2.14)
are

θ =
1

2(h2 − h1)
{
−β(h2 − h1)y2 +

[
2 + β

(
h22 − h21

)]
y + βh1h2(h1 − h2) − 2h1

}
, (4.1)

u = A cosh Γy + B sinh Γy + S1y
2 + S2y + S3 − 1

Γ2
dp

dx
, (4.2)
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where

Γ =

√(
1 +m2) + kM
k(1 +m2)

, S1 =
−βGr
2Γ2

, S2 =
Gr
Γ2

(
2 + β

(
h22 − h21

)
2(h2 − h1)

)
, (4.3)

S3 =
−1
Γ2

{
Gr

[
βh1h2(h2 − h1) + 2h1

]
2(h2 − h1) +

βGr
Γ2

+ Γ2
}
, (4.4)

S4 = cosh Γh1 sinh Γh2 − cosh Γh2 sinh Γh1, (4.5)

S5 = S1

(
h22 sinh Γh1 − h21 sinh Γh2

)
, (4.6)

S6 = S2(h2 sinh Γh1 − h1 sinh Γh2), (4.7)

S7 = sinh Γh1 − sinh Γh2, (4.8)

S8 = S1

(
h21 cosh Γh2 − h22 cosh Γh1

)
, (4.9)

S9 = S2(h1 cosh Γh2 − h2 cosh Γh1), (4.10)

S10 = cosh Γh2 − cosh Γh1, (4.11)

A = A1 +A2
dp

dx
, B = B1 + B2

dp

dx
, (4.12)

A1 =
S5 + S6 + S7 + S3S7

S4
, A2 =

−S7

S4Γ2
, (4.13)

B1 =
S8 + S9 + S10 + S3S10

S4
, B2 =

−S10

S4Γ2
, (4.14)

From (3.7), (4.2), and (4.12) we have

F =
1
Γ
(A1S7 − B1S10) + S11 + S12

dp

dx
, (4.15)

and therefore we can say that

dp

dx
=
F − (1/Γ)(A1S7 − B1S10) − S11

S12
, (4.16)
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Figure 2: The variation of the velocity distribution u with y for various values of Hall parameter m (a),
porosity parameter k (b), Grashof number Gr (c), and width of the channel d (d). The other parameters
chosen are: Θ = 4, x = 0, d = 1,M = 1.2, a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4, Gr = 10 (a); Θ = 4, x = 0,
d = 1,M = 1.2, a = 0.4, b = 0.2, β = 2, m = 0.5, φ = π/4, Gr = 10 (b); Θ = 4, x = 0, d = 1,M = 1.2, a = 0.4,
b = 0.2, β = 2, m = 0.5, φ = π/4, k = 1 (c); Θ = 4, x = 0, β = 2,M = 1.2, a = 0.4, b = 0.2, Gr = 10, m = 0.5,
φ = π/4, k = 1 (d).

where

S11 = (h1 − h2)
{
S1

3

(
h21 + h1h2 + h

2
2

)
+
S2

2
(h1 + h2) + S3

}
, (4.17)

S12 =
A2S7

Γ
− B2S10

Γ
− (h1 − h2)

Γ2
. (4.18)

The stream function ψ can be obtained as follows:

ψ =
∫
udy. (4.19)
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Figure 3: Variation of velocity distribution u with y for various values of phase angle φ (a), amplitude of
the right wave a (b), amplitude of the left wave b (c), and nondimensional heat source/sink parameter β
(d). The other parameters chosen are Θ = 4, x = 0, d = 1, M = 1.2, a = 0.4, b = 0.2, β = 2,k = 1, m = 0.5,
Gr = 10 (a); Θ = 4, x = 0, d = 1,M = 1.2, k = 1, b = 0.2, β = 2,m = 0.5, φ = π/4, Gr = 310 (b); Θ = 4, x = 0,
d = 1, M = 1.2, a = 0.4, Gr = 10, β = 2, m = 0.5, φ = π/4, k = 1 (c); Θ = 4, x = 0, d = 1, M = 1.2, a = 0.4,
b = 0.2, Gr = 10,m = 0.5, φ = π/4, k = 1 (d).

Using (4.2) and (4.12)we can easily get

ψ =
1
Γ
(
A1 sinh Γy + B1 cosh Γy

)
+
1
3
S1y

3 +
1
2
S2y

2 + S3y

+
[−1
Γ2
y +

A2

Γ
sinh Γy +

B2

Γ
cosh Γy

]
dp

dx
.

(4.20)

The nondimensional expression for the pressure rise per wavelength is given by

Δpλ =
∫1

0

∂p

∂x
dx. (4.21)
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Figure 4: Distribution of pressure gradient dp/dx with x for different values of Hall parameter m (a),
amplitudes of right wave a (b), left wave b (c), and the nondimensional heat source/sink parameter β (d).
The other parameters chosen are F = −5, y = 1, d = 1, M = 1.2, a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4,
Gr = 3 (a); F = −5, y = 1, d = 1,M = 1.2, m = 0.5, b = 0.2, β = 2, k = 1, φ = π/4, Gr = 3 (b); F = −5, y = 1,
d = 1,M = 1.2, m = 0.5, a = 0.4, β = 2, k = 1, φ = π/4, Gr = 3 (c); F = −5, y = 1, d = 1,M = 1.2, m = 0.5,
a = 0.4, b = 0.2, k = 1, φ = π/4, Gr = 3 (d).

The coefficient of heat transfer at the wall is given by

Z = h2xθy. (4.22)

Using (2.16) and (4.1)we get

Z = 2πb sin
(
2πx + φ

)[−βy +
2 + β

(
h22 − h21

)
2(h2 − h1)

]
. (4.23)

The nondimensional shear stress can be calculated as

τ =
τ∗(

μc/d1
) =

∂2ψ

∂y2
. (4.24)
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Figure 5: The distribution of the pressure gradient dp/dxwith x for different values of porosity parameter
k (a), phase angle φ (b), width of the channel d (c), and Grashof number Gr (d). The other parameters
chosen are F = −5, y = 1, d = 1,M = 1.2, a = 0.4, b = 0.2, β = 2,m = 0.5, φ = π/4, Gr = 3 (a); F = −5, y = 1,
d = 1, M = 1.2, a = 0.4, b = 0.2, β = 2, m = 0.5, k = 1, Gr = 3 (b); F = −5, y = 1, k = 1, M = 1.2, a = 0.4,
b = 0.2, β = 2, m = 0.5, φ = π/4, Gr = 3 (c); F = −5, y = 1, d = 1,M = 1.2, a = 0.4, b = 0.2, β = 2, m = 0.5,
φ = π/4, k = 1 (d).

Substituting from (4.20) and (4.12) into (4.24) we get

τ = Γ
(
A sinh Γy + B cosh Γy

)
+ 2S1y + S2. (4.25)

The friction forces Fλi at the walls of the channel are given by

Fλi =
∫1

0
hi

(
−∂p
∂x

)
dx, i = 1, 2. (4.26)

5. Results and Discussion

This section represents the graphical results in order to be able to discuss the quantitative
effects of the sundry parameters involved in the analysis. The variation of velocity
distribution with y for various values of m, k, Gr, and β is studied in Figure 2. Figure 2(a)
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Figure 6: The shear stress distribution at the right wall with x for different values of Hall parameter m
(a), porosity parameter k (b), nondimensional heat source/sink parameter β (c), Grashof number Gr (d),
phase angle φ (e), and width of the channel d (f). The other parameters chosen are Θ = 3, d = 0.5,M = 1.2,
a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4, Gr = 3 (a); Θ = 3, d = 0.5,M = 1.2, a = 0.4, b = 0.2, β = 2, m = 0.5,
φ = π/4, Gr = 3 (b); Θ = 3, d = 0.5, M = 1.2, a = 0.4, b = 0.2, m = 0.5, k = 1, φ = π/4, Gr = (c); Θ = 3,
d = 0.5,M = 1.2, a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4,m = 0.5 (d); Θ = 3, d = 0.5,M = 1.2, a = 0.4, b = 0.2,
β = 2, k = 1,m = 0.5, Gr = 3 (e); Θ = 3,m = 0.5,M = 1.2, a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4, Gr = 3 (f).
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Figure 7: The shear stress distribution at the left wall with x for different values of Hall parameter m
(a), porosity parameter k (b), nondimensional heat source/sink parameter β (c), Grashof number Gr (d),
phase angle φ (e), and width of the channel d (f). The other parameters chosen are Θ = 3, d = 0.5,M = 1.2,
a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4, Gr = 3 (a); Θ = 3, d = 0.5,M = 1.2, a = 0.4, b = 0.2, β = 2, m = 0.5,
φ = π/4, Gr = 3 (b); Θ = 3, d = 0.5, M = 1.2, a = 0.4, b = 0.2, m = 0.5, k = 1, φ = π/4, Gr = 3 (c); Θ = 3,
d = 0.5,M = 1.2, a = 0.4, b = 0.2, β = 2, k = 1,φ = π/4,m = 0.5 (d); Θ = 3, d = 0.5,M = 1.2, a = 0.4, b = 0.2,
β = 2, k = 1,m = 0.5, Gr = 3 (e); Θ = 3,m = 0.5,M = 1.2, a = 0.4, b = 0.2, β = 2, k = 1, φ = π/4, Gr = 3 (f).
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Figure 8: The variation of pressure rise Δpλ with Θ for different values of Hall parameter m (a), porosity
parameter k (b), Grashof number Gr (c), and nondimensional heat source/sink parameter β (d). The other
parameters chosen are d = 1, M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1, β = 2, Gr = 3 (a); d = 1, M = 1.2,
a = 0.1, b = 0.2, φ = π/2,m = 0.5, β = 2, Gr = 3 (b); d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1,m = 0.5,
Gr = 3 (c); d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1, β = 2,m = 0.5 (d).

studies the effect of Hall parameter m on the velocity u and it is noticed that the velocity
increases by increasing m. Also, it is noticed that increasing each of the porosity parameter
k and Grashof number Gr led to an increase in the velocity as shown in Figures 2(b) to 2(c),
but the velocity decreases by increasing the width of the channel d as shown in Figure 2(d).

Figure 3 illustrates the effects of phase angle φ, amplitudes of the right and left waves
a, b, respectively, and nondimensional heat source/sink parameter β on velocity distribution.
It reveals that the velocity increases by increasing each of phase angle φ, amplitude of the
right wave a, and nondimensional heat source/sink parameter β. On the other hand the
velocity decreases by increasing the amplitude of the left wave b.

In Figures 4 and 5 we considered variation of the pressure gradient with x for different
values ofm, a, b, and β (Figure 4) and k, φ, d, and Gr (Figure 5). It is clear from Figure 4 that
the pressure gradient decreases by increasing the Hall parameter m while it increases by
increasing each of a, b, and β. Further it is observed from Figure 5 that the pressure gradient
decreases by increasing each of k, φ, and d, while increasing the Grashof number Gr led to
increasing the pressure gradient. Figures 6 and 7 show the stress distribution at the right
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Figure 9: The variation of friction force at the right wall Fλ1 with Θ for different values of Hall parameter
m (a), porosity parameter k (b), Grashof number Gr (c), and nondimensional heat source/sink parameter
β (d). The other parameters chosen are d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1, β = 2, Gr = 3 (a);
d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2,m = 0.5, β = 2, Gr = 3 (b); d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2,
k = 1,m = 0.5, Gr = 3 (c); d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1, β = 2,m = 0.5 (d).

and left walls, respectively. It is obvious from Figure 6 that the amplitude of the shear stress
decreases by increasing each of m, k, β, and Gr. Figure 6(e) indicates that the amplitude
of the shear stress increases by increasing the phase angle φ and after a certain value of x
the situation is reversed. Figure 6(f) shows that increasing the width of the channel led to
an increase in the shear stress at the right wall. Situation is in sharp contrast in Figure 7 we
note that the shear stress at the left wall increases by increasing each of m, k, β, and Gr, also
increasing φ led to a decrease in the shear stress, and after a certain value of x the situation is
reversed. Figure 7(f) reveals that the shear stress at the left wall decreases by increasing the
width of the channel. Variation of the pressure rise per wavelength Δpλ with the mean flow
Θ for different values m, k, Gr, and β is studied in Figure 8. From Figure 8(a) it is observed
that, whenΔpλ > 5.12, the pumping rate decreases by increasingm, further, it coincides each
other between 2.1 < Δpλ < 5.12, and it increases by increasing m when Δpλ < 2.1 (the free
pumpingΔpλ = 0 and copumpingΔpλ < 0 occur in this region). Figure 8(b) shows that when
Δpλ > 4.61 the pumping rate decreases with an increase in k, when 1.97 < Δpλ < 4.61 the
curves coincide with each other, and when Δpλ < 1.97 the pumping increases by increasing
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Figure 10: The variation of friction force at the left wall Fλ2 with Θ for different values of Hall parameter
m (a), porosity parameter k (b), Grashof number Gr (c), and nondimensional heat source/sink parameter
β (d). The other parameters chosen are d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1, β = 2, Gr = 3 (a);
d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2,m = 0.5, β = 2, Gr = 3 (b); d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2,
k = 1,m = 0.5, Gr = 3 (c); d = 1,M = 1.2, a = 0.1, b = 0.2, φ = π/2, k = 1, β = 2,m = 0.5 (d).

k. The pumping rate increases by increasing each of Gr and β as shown in Figures 8(c) and
8(d).

Figures 9 and 10 study the variation of friction forces Fλ1 and Fλ2 with Θ for different
values of m, k, Gr, and β. In Figure 9(a) we notice that when Fλ1 > −1.66 the pumping rate
decreases by increasing m, also when −5.74 < Fλ1 < −1.66 the curves coincide with each
other, and when Fλ1 < −5.74 the pumping rate increases by increasing m. Nearly the same
situation occurs in Figure 9(b); when Fλ1 > −1.85 the pumping rate decreases by increasing
k, when −4.29 < Fλ1 < −1.85 the curves coincide with each other; and when Fλ1 < −4.29
the pumping rate increases by increasing k. Figures 9(c) and 9(d) shows that pumping rate
decreases by increasing each of Gr and β for all values of Fλ1. Figure 10(a) shows that when
Fλ2 > 5.25 the pumping rate decreases by increasing m and curves coincide with each other
for 1.97 < Fλ2 < 5.25 and when Fλ2 < −1.97 the pumping rate increases by increasingm. From
Figure 10(b) we find that when Fλ2 > 4.73 the pumping rate decreases with an increase in k
while it coincides each other between 1.88 < Fλ2 < 4.73, also the pumping rate increases by
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Figure 11: The variation of heat transfer coefficient Z with x for different values of amplitude of the left
wave b (a), channel width d (b), phase angle φ (c), and nondimensional heat source/sink parameter β (d).
The other parameters chosen are d = 1, a = 0.4, β = −4, φ = π/4 (a); a = 0.4, b = 0.3, β = −4, φ = π/4 (b);
b = 0.3, a = 0.4, β = −4, d = 1 (c); d = 1, a = 0.4, φ = π/4, b = 0.2 (d).
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Figure 12: Streamlines for three different values ofm: (a)m = 1, (b)m = 2, (c)m = 3. The other parameters
chosen are Θ = 4, d = 1,M = 1.2, a = 0.4, b = 0.2, β = −2, k = 0.5, φ = π/4, Gr = 2.
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Figure 13: Streamlines for three different values ofΘ: (a) Θ = 2, (b) Θ = 2.5, (c) Θ = 5. The other parameters
chosen arem = 1.5, d = 1,M = 1.2, a = 0.4, b = 0.2, β = −2, k = 0.5, φ = π/4, Gr = 2.

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

(a)

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

(b)

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

(c)

Figure 14: Streamlines for three different values of Gr: (a) Gr = 0, (b) Gr = 2, (c) Gr = 5. The other
parameters chosen are Θ = 4, d = 1,M = 1.2, a = 0.4, b = 0.2, β = −2, k = 0.5, φ = π/4,m = 1.5.

increasing k when Fλ2 < 1.88. The pumping rate increases by increasing each of Gr and β as
shown in Figures 10(c) and 10(d).

The variation of heat transfer coefficient Z with x for different values b, a, d, and φ is
studied in Figure 11. It is obvious from Figure 11(a) that increasing the amplitude of the left
wave b led to increasing the heat transfer coefficient and after a certain value of x the situation
is reversed; also from Figure 11(b) we notice that increasing the channel width decreases
the heat transfer coefficient. The maximum value of heat transfer coefficient decreases by
increasing φ as shown in Figure 11(c). Figure 11(d) shows that increasing β produces an
increase in heat transfer coefficient parameter.

6. Trapping Phenomenon

The formation of an internally circulating bolus of fluid is called trapping. The trapped bolus
moves along with the wave. The effect of Hall parameter m on trapping can be observed
through Figure 12 where the size of bolus increases by increasing m. Figure 13 depicts that
increasingΘ led to an increase in trapped bolus size and also increases the number of trapped
bolus. In Figures 14 and 15 we notice that the size of trapped bolus increases by increasing
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Figure 15: Streamlines for three different values of k: (a) k = 0.2, (b) k = 0.5, (c) k = 0.8. The other
parameters chosen are Θ = 4, d = 1,M = 1.2, a = 0.4, b = 0.2, β = −2,m = 1.5, φ = π/4, Gr = 2.
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Figure 16: Streamlines for three different values of β: (a) β = −4, (b) β = 0, (c) β = 4. The other parameters
chosen are Θ = 4, d = 1,M = 1.2, a = 0.4, b = 0.2,m = 1.5, k = 0.5, φ = π/4, Gr = 2.

each of Gr and k. On the other hand the size of trapped bolus decreases by increasing β
as shown in Figure 16. The effects of a, b, and d on trapping are studied in Figures 17, 18,
and 19, respectively. It is clear that the number of trapped bolus increases by increasing a and
decreases by increasing b. Furthermore, increasing the channel width led to an increase in size
of trapped bolus. Figure 20 studies the case of symmetric channel (a = b, d = 1, and φ = 0).
It is observed that the size of trapped bolus increases by increasing each of m, k, and Θ and
decreases by increasing each of Gr and β.

7. Conclusions

In the present paper, the effects of Hall current and heat transfer on the peristaltic transport of
a Newtonian fluid in an asymmetric channel through a porous medium under assumptions
of a constant external magnetic field, low Reynolds number, and long wavelength are
investigated. The governing equations are first modeled and then solved analytically. The
effects of various emerging parameters on axial velocity, stream function, pressure gradient,
friction forces, and shear stresses are observed from the graphs. The results are summarized
as follows.
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Figure 17: Streamlines for three different values of a: (a) a = 0.2, (b) a = 0.4, (c) a = 0.6. The other
parameters chosen are Θ = 4, d = 1,M = 1.2,m = 1.5, b = 0.2, β = −2, k = 0.5, φ = π/4, Gr = 2.
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Figure 18: Streamlines for three different values of b: (a) b = 0.1, (b) b = 0.3, (c) b = 0.5. The other
parameters chosen are Θ = 4, d = 1,M = 1.2, a = 0.4,m = 1.5, β = −2, k = 0.5, φ = π/4,Gr = 2.

(i) The velocity increases by increasing each of m, k, Gr, φ, a, and β and decreases by
increasing d and b.

(ii) The pressure gradient decreases with the increase ofm, k, φ, and dwhile it increases
by increasing Gr, a, b, and β.

(iii) Increasing each ofm, k, β, and Gr led to decreasing the shear stress at the right wall
but it increases by increasing d.

(iv) The shear stress at the left wall increases by increasing each of m, k, β, and Gr and
decreases by increasing d.

(v) An increase in Gr and θ led to an increase in the pressure rise Δpλ.

(vi) The friction force at the right wall decreases by increasing Gr and β.

(vii) The friction force at the left wall increases by increasing Gr and β.

(viii) Increasing m and k increases the friction forces in some regions and decreases the
friction forces in some other regions.

(ix) The heat transfer coefficient decreases by increasing d and φ and increases by
increasing β.
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Figure 19: Streamlines for three different values of d: (a) d = 1, (b) d = 1.2, (c) d = 1.6. The other parameters
chosen are Θ = 4,m = 1.5,M = 1.2, a = 0.4, b = 0.2, β = −2, k = 0.5, φ = π/4, Gr = 2.
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Figure 20: Streamlines for symmetric channel (a = b = 0.4, d = 1, φ = 0). The other parameters chosen are
(a) Θ = 4, β = −2,m = 0.5, k = 0.5,M = 1.5, Gr = 2; (b) Θ = 4, β = −2, m = 0.5, k = 0.5,M = 1.5, Gr = 5; (c)
Θ = 4, β = −2, m = 1.5, k = 0.5, M = 1.5, Gr = 5; (d) Θ = 4, β = −2, m = 1.5, k = 0.8, M = 1.5, Gr = 5; (e)
Θ = 4, β = 2,m = 1.5, k = 0.8,M = 1.5, Gr = 5; (f) Θ = 5, β = 2,m = 1.5, k = 0.8,M = 1.5, Gr = 5.

(x) The size of trapped bolus increases by increasingm,Θ, Gr, k, a, and d and decreases
by increasing β and b.

(xi) In the case of symmetric channel the size of trapped bolus increases by increasing
each ofm, k, and Θ and decreases by increasing each of Gr and β.
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