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We extend the application of Legendre-Galerkin algorithms for sixth-order elliptic problems with
constant coefficients to sixth-order elliptic equations with variable polynomial coefficients. The
complexities of the algorithm are O(N) operations for a one-dimensional domain with (N − 5)
unknowns. An efficient and accurate direct solution for algorithms based on the Legendre-
Galerkin approximations developed for the two-dimensional sixth-order elliptic equations with
variable coefficients relies upon a tensor product process. The proposed Legendre-Galerkin
method for solving variable coefficients problem is more efficient than pseudospectral method.
Numerical examples are considered aiming to demonstrate the validity and applicability of the
proposed techniques.

1. Introduction

Spectral methods are preferable in numerical solutions of ordinary and partial differential
equations due to its high-order accuracy whenever it works [1, 2]. Recently, renewed interest
in the Galerkin technique has been prompted by the decisive work of Shen [3], where new
Legendre polynomial bases for which the matrices systems are sparse are introduced. We
introduce a generalization of Shen’s basis to numerically solve the sixth-order differential
equations with variable polynomial coefficients.

Sixth-order boundary-value problems arise in astrophysics; the narrow convecting
layers bounded by stable layers, which are believed to surround A-type stars, may be
modeled by sixth-order boundary-value problems [4, 5]. Further discussion of the sixth-order
boundary-value problems is given in [6]. The literature of numerical analysis contains little
work on the solution of the sixth-order boundary-value problems [4, 5, 7, 8]. Theorems that
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list conditions for the existence and uniqueness of solutions of such problems are thoroughly
discussed in [9], but no numerical methods are contained therein.

From the numerical point of view, Shen [3], Doha and Bhrawy [10–12], and Doha et al.
[13] have constructed efficient spectral-Galerkin algorithms using compact combinations of
orthogonal polynomials for solving elliptic equations of the second and fourth order with
constant coefficients in various situations. Recently, the authors in [14, 15] and [16] have
developed efficient Jacobi dual-Petrov-Galerkin and Jacobi-Gauss collocation methods for
solving some odd-order differential equations. Moreover, the Bernstein polynomials have
been applied for the numerical solution of high even-order differential equations (see, [17,
18]).

For sixth-order differential equations, Twizell and Boutayeb [5] developed finite-
difference methods of order two, four, six, and eight for solving such problems. Siddiqi
and Twizell [7] used sixth-degree splines, where spline values at the mid knots of the
interpolation interval and the corresponding values of the even order derivatives were
related through consistency relations. A sixth-degree B-spline functions is used to construct
an approximate solution for sixth-order boundary-value problems (see [19]). Moreover,
Septic spline solutions of sixth-order boundary value problems are introduced in [20]. El-
Gamel et al. [8] proposed Sinc-Galerkin method for the solutions of sixth-order boundary-
value problems. In fact, the decomposition and modified domain decomposition methods
to investigate solution of the sixth-order boundary-value problems are introduced in [21].
Recently, Bhrawy [22] developed a spectral Legendre-Galerkin method for solving sixth-
order boundary-value problems with constant coefficients. In this work, we introduce an
efficient direct solution algorithm to generalize the work in [3, 22].

The main aim of this paper is to extend the application of Legendre-Galerkin method
(LGM) to solve sixth-order elliptic differential equations with variable coefficients by using
the expansion coefficients of the moments of the Legendre polynomials and their high-
order derivatives. We present appropriate basis functions for the Legendre-Galerkin method
applied to these equations. This leads to discrete systems with sparse matrices that can
be efficiently inverted. The complexities of the algorithm is O(N) operations for a one-
dimensional domainwith (N−5) unknowns. The direct solution algorithms developed for the
homogeneous problem in two-dimensions with constant and variable coefficients rely upon
a tensor product process. Numerical results indicating the high accuracy and effectiveness of
these algorithms are presented.

This paper is organized as follows. In the next section, we discuss an algorithm for
solving the one-dimensional sixth-order elliptic equations with variable polynomial coeffi-
cients. In Section 3, we extend our results of Sections 2 to the two-dimensional sixth-order
equations with variable polynomial coefficients. In Section 4, we present two numerical
examples to exhibit the accuracy and efficiency of the proposed numerical algorithms. Also a
conclusion is given in Section 5.

2. One-Dimensional Sixth-Order Equations with
Polynomial Coefficients

We first introduce some basic notation which will be used in the sequel. We denote by Ln(x)
the nth degree Legendre polynomial, and we set

SN = span{L0(x), L1(x), . . . , LN(x)}, WN =
{
v ∈ SN : v(j)(±1) = 0, j = 0, 1, 2

}
, (2.1)

where v(j)(x) denotes jth-order differentiation of v(x)with respect to x.
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We recall that the {Ln(x)} satisfy the orthogonality relation

∫1

−1
Lm(x)Ln(x)dx =

⎧
⎨
⎩
0, m/=n,

hn, m = n,
hn =

2
2n + 1

, ∀m,n ≥ 0. (2.2)

We recall also that Ln(x) is a polynomial of degree n and therefore L
(q)
n (x) ∈ Sn−q. The

following relation (the qth derivative of Lk(x))will be needed for our main results (see Doha
[23])

DqLk(x) =
k−q∑
i=0

(k+i) even

Cq(k, i)Li(x), (2.3)

where

Cq(k, i) =
2q−1(2i + 1)Γ

(
(1/2)

(
q + k − i

))
Γ
(
(1/2)

(
q + k + i + 1

))

Γ
(
q
)
Γ
(
(1/2)

(
2 − q + k − i

))
Γ
(
(1/2)

(
3 − q + k + i

)) . (2.4)

Some other useful relations are

Ln(±1) = (±1)n, L
(q)
n (±1) = (±1)n+q

(
n + q

)
!

2q
(
n − q

)
!q!

. (2.5)

In this section, we are interested in using the Legendre-Galerkin method to solve the
variable polynomial coefficients sixth-order differential equation in the form:

−χ3(x)u(6)(x) +
2∑
i=0

(−1)iαiχi(x)u(2i)(x) = f(x), x ∈ [−1, 1], (2.6)

subject to

u(j)(±1) = 0, j = 0, 1, 2, (2.7)

where αi, i = 0, 1, 2 are constants and χi(x), i = 0, 1, 2, 3 are given polynomials. Moreover, f(x)
is a given source function. Without loss of generality, we suppose that χ3(x) = xμ, χi(x) = xν,
and χ0(x) = xσ where μ, ν , and σ are positive integers.

2.1. Basis of Functions

The problem of approximating solutions of ordinary or partial differential equations by
Galerkin approximation involves the projection onto the span of some appropriate set of
basis functions, typically arising as the eigenfunctions of a singular Sturm-Liouville problem.
The members of the basis may satisfy automatically the boundary conditions imposed on the
problem. As suggested in [3, 10–12], one should choose compact combinations of orthogonal
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polynomials as basis functions to minimize the bandwidth and condition number of the
resulting system. As a general rule, for one-dimensional sixth-order differential equations
with six boundary conditions, one can choose the basis functions of expansion φk(x) of the
form

φk(x) =
3∑

j=0

η j(k)Lk+2j(x); η 0(k) = 1, k = 0, 1, . . . ,N − 6. (2.8)

Wewill choose the coefficients {ηj(k)} such that φk(x) verifies the boundary conditions (2.7).
Making use of (2.5) and (2.8), hence {ηj(k)} can be uniquely determined to obtain

ηj(k) = (−1)j 3
(
2k + 4j + 1

)
(k + 3/2)3(

3 − j
)
!j!
(
k + j + 1/2

)
4

, j = 1, 2, 3, (2.9)

where (a)b = Γ(a + b)/Γ(a). Now, substitution of (2.9) into (2.8) yields

φk(x) = Lk(x) +
3∑

j=1

(−1)j 3
(
2k + 4j + 1

)
(k + 3/2)3(

3 − j
)
!j!
(
k + j + 1/2

)
4

Lk+2j(x), k = 0, 1, 2, . . . ,N − 6. (2.10)

It is obvious that {φk(x)} are linearly independent. Therefore by dimension argument we
have

WN = span
{
φk(x) : k = 0, 1, 2, . . . ,N − 6

}
. (2.11)

2.2. Treatment of Variable Polynomial Coefficients

Amore general situation which often arises in the numerical solution of differential equations
with polynomial coefficients by using the Legendre Galerkin method is the evaluation of the
expansion coefficients of the moments of high-order derivatives of infinitely differentiable
functions. The formula of Legendre coefficients of the moments of one single Legendre
polynomials of any degree is

xmLj(x) =
2m∑
n=0

Θm,n

(
j
)
Lj+m−n(x), ∀m, j ≥ 0, (2.12)

with L−r(x) = 0, r ≥ 1, where

Θm,n

(
j
)
=

(−1)n2j+m−nm!
(
2j + 2m − 2n + 1

)
Γ
(
j + 1

)

Γ
(
j +m − n + 1

)

×
min(j+m−n,j)∑

k=max(0,j−n)

(
j +m − n

k

)
Γ
(
j + k + 1

)

2k
(
n + k − j

)
!Γ
(
3j + 2m − 2n − k + 2

)
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×
j−k∑
�=0

(−1)�Γ(2j +m − n − k − � + 1
)
Γ
(
j +m + � − n + 1

)

�!
(
j − k − �

)
!Γ
(
j − � + 1

)
Γ(k + � + 1)

×2 F1
(
j − k − n, j +m + � − n + 1; 3j + 2m − 2n − k + 2; 2

)
.

(2.13)

For more details about the above formula, the reader is referred to Doha [23]. This formula
can be used to facilitate greatly the setting up of the algebraic systems to be obtained by
applying the LGM for solving differential equations with polynomial coefficients of any
order. The following lemma is very important and needed in what follows.

Lemma 2.1. We have, for arbitrary constants �, j ≥ 0,

x�φ
(q)
j (x) =

3∑
i=0

[
2�∑
n=0

Θ�,n

(
j + 2i

)
Lj+2i+�−n(x)

]
ηi
(
j
)
,

x�φ
(q)
j (x) =

3∑
i=0

[
j+2i−q∑
s=0

[
2�∑
n=0

Θ�,n(s)Ls+�−n(x)

]
Cq

(
j + 2i, s

)]
ηi
(
j
)
,

(2.14)

where φj(x), ηi(j), and Θ�,n(j) are as defined in (2.8), (2.9), and (2.13), respectively.

Proof. Immediately obtained from relations (2.3), (2.8), and (2.12), the Legendre-Galerkin
approximation to (2.6)-(2.7) is, to find uN ∈ WN such that

(
−xμ u

(6)
N (x), v(x)

)
+

2∑
i=1

αi

(
(−1)ixν u

(2i)
N (x), v(x)

)
+ α0(xσuN(x), v(x)) =

(
f(x), v(x)

)
N,

∀v ∈ WN,

(2.15)

where (u, v) =
∫1
−1 uvdx is the scalar product in L2(−1, 1) and (·, ·)N is the inner product

associated with the Legendre-Gauss-Lobatto quadrature. It is clear that if we take φk(x) as
defined in (2.8) and v(x) = φk(x), then we find that (2.15) is equivalent to

(
−xμu

(6)
N (x), φk(x)

)
+

2∑
i=1

αi

(
(−1)ixνu

(2i)
N (x), φk(x)

)
+α0
(
xσuN(x), φk(x)

)
=
(
f(x), φk(x)

)
N,

k = 0, 1, . . . ,N − 6.
(2.16)

Hence, by setting

fk =
(
f, φk(x)

)
N, f =

(
f0, f1, . . . , fN−6

)T
,

uN(x) =
N−6∑
n=0

anφn(x), a = (a0, a1, . . . , aN−6)T ,

Z�
i =
(
zi,�
kj

)
0≤k,j≤N−6

; 0 ≤ i ≤ 3, � is a positive integer,

(2.17)
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where

zr,�
kj

=
(
(−1)rx�φ

(2r)
j (x), φk(x)

)
, r = 0, 1, 2, 3, (2.18)

then the matrix system associated with (2.16) becomes

(
Z

μ

3 +
2∑
i=1

αiZ
ν
i + α0Z

σ
0

)
a = f, (2.19)

where the nonzero elements of the matrices Z
μ

3 , Z
ν
2 , Z

ν
1 , and Zσ

0 are given explicitly in the
following theorem.

Theorem 2.2. If we take φk(x) as defined in (2.8), and if we denote z3,μ
kj

= (−xμφ
(6)
j (x), φk(x)),

zr,νkj = ((−1)rxνφ
(2r)
j (x), φk(x)), r = 1, 2 and z0,σkj = (xσφj(x), φk(x)) then the nonzero elements

(z3,μkj ), (z
r,ν
kj ), (z

0,σ
kj ) for 0 ≤ k, j ≤ N − 6 are given by

z
3,μ
kj = −

3∑
�=0

[
3∑
i=0

( 2μ∑
s=0

(
C6
(
j + 2i, k + 2� − μ + s

)
Θμ,s

(
k + 2� − μ + s

))
ηi
(
j
))

η�(k)hk+2�

]
,

j = k + 2p − μ, p = 0, 1, . . . , μ,

zr,v
kj

=(−1)r
3∑

�=0

[
3∑
i=0

(
2v∑
s=0

(
C2r
(
j + 2i, k + 2� − v + s

)
Θv,s(k + 2� − v + s)

)
ηi
(
j
))

η�(k)hk+2�

]
,

j = k + 2p − v + 2r − 6, p = 0, 1, . . . , v + 6 − 2r, r = 1, 2,

z0,σkj =
3∑

�=0

[
3∑
i=0

(
Θσ,j+2i+σ−(k+2�)

(
j + 2i

)
ηi
(
j
))
η�(k)hk+2�

]
, j = k + 2p − σ − 6,

p = 0, 1, . . . , σ + 6.

(2.20)

Proof. The proof of this theorem is rather lengthy, but it is not difficult once Lemma 2.1 is
applied.

From Theorem 2.2, we see that Zμ

3 is a band matrix with an upper bandwidth of μ,
lower bandwidth of μ, and an overall bandwidth 2μ + 1. The sparse matrices Zv

2 , Z
v
1 , and Zσ

0
have bandwidths of 2v + 5, 2v + 9, and 2σ + 13, respectively.

In general, the expense of calculating an LU factorization of an N × N dense matrix
A is O(N3) operations, and the expense of solving Ax = b, provided that the factorization
is known, is O(N2). However, in the case that a banded A has bandwidth of r, we need
just O(r2N) operations to factorize and O(rN) operations to solve a linear system. In the
case of αi = 0, i = 0, 1, 2, the square matrix Z

μ

3 has bandwidth of 2μ + 1. We need just O((2μ +
1)2N) operations to factorize andO((2μ+1)N) operations to solve the linear system (2.19). If
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μ � N this represents a very substantial saving. Notice also that the system (2.19) reduces
to a diagonal system for μ = 0 and αi = 0, i = 0, 1, 2.

2.3. Constant Coefficients

In the special case, (μ = ν = σ = 0, i.e., the sixth-order differential equation with constant
coefficients), the corresponding matrix system becomes (Z0

3 +
∑3

i=1 αiZ
0
i )a = f, where Z0

i =
(zi,0kj )0≤k,j≤N−6; i = 0, 1, 2, 3.

Corollary 2.3. If μ = ν = σ = 0 then the nonzero elements (z3,0
kj
), (z2,0

kj
), (z1,0

kj
), (z0,0

kj
) for 0 ≤ k,

j ≤ N − 6 are given as follows:

z3,0
kk

= 26
(
k +

3
2

)

2

(
k +

3
2

)

3
, (2.21)

z2,0
kj

=
3∑

�=0

[
3∑
i=0

ηi
(
j
)
C4
(
j + 2i, k + 2�

)]
η�(k)hk+2�, j = k + 2p − 2, p = 0, 1, 2,

z1,0kj = −
3∑

�=0

[
3∑
i=0

ηi
(
j
)
C2
(
j + 2i, k + 2�

)]
η�(k)hk+2�, j = k + 2p − 4, p = 0, 1, 2, 3, 4,

z0,0
k+2p,k = z0,0

k,k+2p =
3−p∑
i=0

(−1)2i+p
(
3

i

)(
3

i + p

)(
2k + 4p + 4i + 1

)
(k + 3/2)3

(
k + 2p + 3/2

)
3

2
(
k + p + i + 1/2

)
4

(
k + 2p + i + 1/2

)
4

,

p = 0, 1, 2, 3.
(2.22)

Note that the results of Corollary 2.3 can be obtained immediately as a special case
from Theorem 2.2. For more details see [22].

It is worthy to note here that if αi = 0, i = 0, 1, 2, then the nonzero elements of the
matrix Z0

3 are given by (2.21) and the solution of the linear system is given explicitly by
ak = (f, φk)N/z3,0

kk
.

Obviously Z0
2, Z

0
1, and Z0

0 are symmetric positive definite matrices. Furthermore, Z0
3 is

a diagonal matrix, Z0
2 can be split into two tridiagonal submatrices, Z0

1 can be split into two
pentadiagonal submatrices, and A0 can be split into two sparse submatrices with bandwidth
of 7. Therefore, the system can be efficiently solved. More precisely for k + j odd, zr,0

kj
= 0,

r = 0, 1, 2, 3. Hence system (Z0
3 +
∑3

i=1 αiZ
0
i )a = f of order N − 5 can be decoupled into two

separate systems of order (N/2 − 2) and (N/2 − 3), respectively. In this way one needs to
solve two systems of order n instead of one of order 2n, which leads to substantial savings.
Moreover, in the case of αi /= 0, i = 0, 1, 2, we can form explicitly the LU factorization, that is,
Z0

3 +
∑3

i=1 αiZ
0
i = LU. The special structure of L and U allows us to obtain the solution in

O(N) operations.

Remark 2.4. If the boundary conditions are nonhomogeneous, one can split the solution u(x)
into the sum of a low-degree polynomial which satisfies the nonhomogeneous boundary
conditions plus a sum over the basis functions φ(x) that satisfy the equivalent homogeneous
boundary conditions.
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3. Two-Dimensional Sixth-Order Equations with
Polynomial Coefficients

In this section, we extend the results of Section 2 to deal with the two-dimensional sixth-order
differential equations with variable polynomial coefficients:

−X3(x)Y3
(
y
)
(Δ)3u

(
x, y
)
+

2∑
r=1

αrXr(x)Yr

(
y
)
(−Δ)ru

(
x, y
)
+ α0X0(x)Y0

(
y
)
u
(
x, y
)
= f
(
x, y
)
,

in Ω,

(3.1)

subject to the boundary conditions

∂i

∂xi
u
(±1, y) = 0, i = 0, 1, 2,

∂i

∂yi
u(x,±1) = 0, i = 0, 1, 2,

(3.2)

whereΩ = (−1, 1)×(−1, 1), the differential operatorΔ is the well-known Laplacian defined by
Δ = (∂2/∂x2)+(∂2/∂y2), (∂0/∂x0)u(±1, y) = u(±1, y), (∂0/∂x0)u(x,±1) = u(x,±1) and f(x, y)
is a given source function. Moreover, Xi(x) and Yi(y), i = 0, 1, 2, 3 are given polynomials.
Without loss of generality, we suppose that X3(x) = xμ, Y3(y) = yν, Xi(x) = xρ, Yi(y) = yσ ,
i = 1, 2, X0(x) = xδ, and Y0(y) = yε where μ, ν, ρ, σ, δ, and ε are positive integers.

The Legendre-Galerkin approximation to (3.1)-(3.2) is, to find uN ∈ W2
N such that

(
xμyν(−Δ)3uN, v

)
+

2∑
r=1

αr

(
xρyσ(−Δ)ruN, v

)
+ α0

(
xδyεuN, v

)
=
(
f, v
)
N ∀v ∈ W2

N.

(3.3)

It is clear that if we take φk(x) as defined in (2.8), then

W2
N = span

{
φi(x)φj

(
y
)
, i, j = 0, 1, . . . ,N − 6

}
. (3.4)

We denote

uN =
N−6∑
k=0

N−6∑
j=0

ukjφk(x)φj

(
y
)
, fkj =

(
f, φk(x)φj(y)

)
N
,

U =
(
ukj

)
, F =

(
fkj
)
, k, j = 0, 1, . . . ,N − 6.

(3.5)

Taking v(x, y) = φ�(x)φm(y) in (3.3) for �,m = 0, 1, . . . ,N − 6, then one can observe that (3.3)
is equivalent to the following equation:

N−6∑
�,m=0

{{
z
3,μ
i�
u�mz

0,ν
jm + 3z2,μ

i�
u�mz

1,ν
jm + 3z1,μ

i�
u�mz

2,ν
jm + z

0,μ
i�
u�mz

3,ν
jm

}

+ α2

{
z
2,ρ
i� u�mz

0,σ
jm + 2z1,ρi� u�mz

1,σ
jm + z

0,ρ
i� u�mz

2,σ
jm

}
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+ α1

{
z
1,ρ
i� u�mz

0,σ
jm + z

0,ρ
i� u�mz

1,σ
jm

}

+α0

{
z0,δi� u�mz

0,ε
jm

}}
= fij , i, j = 0, 1, . . . ,N − 6,

(3.6)

which may be written in the matrix form

Z
μ

3UZν
0 + 3Zμ

2UZν
1 + 3Zμ

1UZν
2 + Z

μ

0UZν
3 + α2

(
Z

ρ

2UZσ
0 + 2Zρ

1UZσ
1 + Z

ρ

0UZσ
2

)

+ α1

(
Z

ρ

1UZσ
0 + Z

ρ

0UZσ
1

)
+ α0Z

δ
0UZε

0 = F,

(3.7)

where {Z

i for i = 0, 1, 2, 3 and  is apositive integer} are the matrices defined in
Theorem 2.2.

The direct solution algorithm here developed for the sixth-order elliptic differential
equation in two dimensions relies upon a tensor product process, which is defined as follows.
Let P and R be two matrices of size n × n and m ×m, respectively. Their tensor product

P ⊗ R =

⎛
⎜⎜⎜⎝

P11R · · · P1nR

...
. . .

...

Pn1R · · · PnnR

⎞
⎟⎟⎟⎠, (3.8)

is a matrix of size mn ×mn.
We can also rewrite (3.7) in the following form using the Kronecker matrix algebra

(See, Graham [24]):

Lv ≡
[
Z

μ

3 ⊗ Zν
0 + 3Zμ

2 ⊗ Zν
1 + 3Zμ

1 ⊗ Zν
2 + Z

μ

0 ⊗ Zν
3 + α2

(
Z

ρ

2 ⊗ Zσ
0 + 2Zρ

1 ⊗ Zσ
1 + Z

ρ

0 ⊗ Zσ
2

)

+α1

(
Z

ρ

1 ⊗ Zσ
0 + Z

ρ

0 ⊗ Zσ
1

)
+ α0Z

δ
0 ⊗ Zε

0

]
v = f,

(3.9)

where f and v are F and U written in a column vector, that is,

f =
(
f00, f10, . . . , fN−6,0; f01, f11, . . . , fN−6,1; . . . ; f0,N−6, . . . , fN−6,N−6

)T
,

v = (u00, u10, . . . , uN−6,0;u01, u11, . . . , uN−6,1; . . . ;u0,N−6, . . . , uN−6,N−6)T ,
(3.10)

and ⊗ denotes the tensor product of matrices, that is, Zμ

3 ⊗ Zν
0 = (Zμ

3z
0,ν
ij )i,j=0,1,...,N−6. In brief,

the solution of (3.1) subject to (3.2) can be summarized in Algorithm 1.

4. Numerical Results

We report on two numerical examples by using the algorithms presented in the previous
sections. It is worthy to mention that the pure spectral-Galerkin technique is rarely used in
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Compute the matrices {Zμ

j , Z
ν
j for = 0, 1, 2, 3}, {Zρ

j , Z
σ
j for j = 0, 1, 2} and {Zδ

0 , Z
ε
0}

from Theorem 2.2.
Find the tensor product of the matrices in the previous step.
Compute F and write it in a column vector f.
Obtain a column vector v by solving (3.9).

Algorithm 1

practice, since for a general right-hand side function f we are not able to compute exactly
its representation by Legendre polynomials. In fact, the so-called pseudospectral method is
used to treat the right-hand side; that is, we replace f by INf (polynomial interpolation over
the set of Gauss-Lobatto points); see for instance; Funaro [25].

Example 4.1. Here we present some numerical results for a one-dimensional sixth-order
equation with polynomial coefficients. We only consider the case χ3(x) = (x4 + x + 1),
χ2(x) = x2 + 2x + 3, χ1(x) = x2 + 1 and χ0(x) = 1; that is, we consider the

−
(
x4 + 1

)
u(6)(x) + γ2

(
x2 + 2x + 3

)
u(4)(x) − γ1

(
x2 + 1

)
u′′(x) + γ0u(x) = f(x), (4.1)

subject to

u(±1) = u′(±1) = u′′(±1) = 0, x ∈ I, (4.2)

where f(x) is chosen such that the exact solution of (4.1) is u(x) = (1 − x2)sin2(2πx).

For LGM, we have uN(x) =
∑N−6

k=0 akφk(x), the vectors of unknowns a is the solution
of the following system

((
Z4

3 + Z0
3

)
+ γ2
(
Z2

2 + 2Z1
2 + 3Z0

2

)
+ γ1
(
Z2

1 + Z0
1

)
+ γ0Z

0
0

)
a = f, (4.3)

where the nonzero elements of the matricesZ4
3,Z

0
3,Z

2
2,Z

1
2,Z

0
2,Z

2
1,Z

0
1 andZ0

0 can be evaluated
explicitly from Theorem 2.2. Table 1 lists the maximum pointwise error of u − uN , using the
LGM with various choices of γ0, γ1, γ2 and N. Numerical results of this problem show that
the Legendre Galerkin method converge exponentially.

In order to examine the algorithm proposed in Section 3, we will consider a problem
for a two-dimensional sixth-order elliptic differential equation with constant coefficients.

Example 4.2. Consider the two-dimensional sixth-order equation

−Δ3u + γ2Δ2u − γ1Δu + γ0u = f
(
x, y
)
, (4.4)
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Table 1: Maximum pointwise error of u − uN for N = 20, 30, 40.

N γ0 γ1 γ2 LGM γ0 γ1 γ2 LGM
20

30 1 1
8.66 · 10−4

1 3 5
9.22 · 10−4

30 1.67 · 10−9 1.67 · 10−9
40 6.10 · 10−16 6.10 · 10−16

Table 2: Maximum pointwise error of u − uN forN = 20, 30, 40.

N γ0 γ1 γ2 LGM γ0 γ1 γ2 LGM
20

3 1 1
1.18 · 10−3

0 0 0
1.18 · 10−3

30 2.39 · 10−9 1.18 · 10−9
40 2.11 · 10−14 2.08 · 10−14

subject to the boundary conditions

u
(±1, y) = u(x,±1) = 0,

∂u

∂x

(±1, y) = ∂u

∂y
(x,±1) = 0,

∂2u

∂x2

(±1, y) = ∂2u

∂y2 (x,±1) = 0,

(4.5)

where f(x, y) is chosen such that the exact solution of (4.4)-(4.5) is

u
(
x, y
)
=
(
1 − x2

)(
1 − y2

)
sin2(2πx)sin2(2πy). (4.6)

In Table 2, we list the maximum pointwise error of u−uN by the LGMwith two choices
of γ0, γ1, γ2 and various choices ofN. The results indicate that the spectral accuracy is achieved
and that the effect of roundoff errors is very limited.

5. Concluding Remarks

We have presented stable and efficient spectral Galerkin method using Legendre polynomials
as basis functions for sixth-order elliptic differential equations in one and two dimensions.
We concentrated on applying our algorithms to solve variable polynomials coefficients
differential equations by using the expansion coefficients of the moments of the Legendre
polynomials and their high-order derivatives. Numerical results are presented which exhibit
the high accuracy of the proposed algorithms.
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