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Canal systems are complex nonlinear, distributed parameter systems with changing parameters
according to the operating point. In this paper, a linear parameter-varying (LPV) state-space canal
control model is obtained by identification in a local way using a multimodel approach. This
LPV identification procedure is based on subspace methods for different operating points of an
irrigation canal covering the full operation range. Different subspace algorithms have been used
and compared. The model that best represents the canal behavior in a precise manner has been
chosen, and it has been validated by error functions and analysis correlation of residuals in a
laboratory multireach pilot canal providing satisfactory results.

1. Introduction

Water is one of the most used resources by industrial and agricultural sectors, and obviously
by population. One fundamental use of water is the irrigation activity, and one the main
challenges in this area is to prevent water losses and to permit an efficient use of this scarce
and vital resource. These aspects have led to the usage of automatic control systems and
the implementation of different advanced control algorithms for the regulation of open-
flow irrigation canals. Hence, those control techniques will allow fulfilling the desired
performance and the ecological flow in irrigation as well as saving water at the same time. To
design an effective controller, a good control model is needed. Therefore, advanced process
modeling techniques are required to make an accurate control model.

Modeling and control of nonlinear complex systems is a challenging task. Nonlinear
effects can no longer be neglected to meet the specifications imposed on today’s complex
control systems. Unfortunately, the higher the complexity, the lower our ability to deal with it
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and to understand it. Open-flow canals are complex systems, that is, they are large distributed
parameter systems that have the following main characteristics: nonlinear behavior and
dependence of the parameters with the operating point and coupling among pools [1]. This
type of systems can be fully described by Saint-Venant’s equations [2]. This representation is
the most used model to describe the physical dynamics of a real irrigation canal. However,
this complex model is based on a nonlinear hyperbolic partial differential equations system
that has analytical solution only in very special cases, requiring the use of numerical methods
to solve it properly [3]. This complex representation of the system is suitable for simulation
models, but it is not suitable to design controllers that fulfill the control design needs. Then,
linearization and simplification of Saint-Venant’s equations are currently studied by the
irrigation researchers’ community of control [4] to develop simpler control models.

Distributed parameter systems with a very large number of states, that is, systems
with coupling, have been approximated by decoupled low-order linear time invariant
(LTI) models in order to use classical linear control design tools, as a usual practice in
control engineering. In fact, control researchers’ community has usually used linear control
techniques (such as fuzzy control [5], robust control [6], etc.), and even nonlinear control
approaches (such as, sliding control [7–9], etc.) for this kind of systems. LTI control models
widely used are Hayami model [10], Muskingum model [3], IDZ model [4, 11], or black-box
models identified using parameter estimation by classical identification methods [1, 12, 13].
However, these systems are not completely amenable using conventional linear modeling
approaches due to the lack of precise, formal knowledge about the system; strongly nonlinear
behavior; high degree of uncertainty; time varying characteristics; dynamic parameters
changing over the operating point and coupling between pools. Then, simplified control
model structures are needed preserving their information. Taking into account these previous
properties, a linear parameter varying (LPV) model is required, which consists in a model
that regards both the parameter and delay variations with respect to the operating points.
In this way, the system information is preserved while it would be lost with a linear control
model. These LPV control models permit the design and computation of LPV controllers
that rigorously guarantee the system stability and performance [14] for smooth variations
of system parameters as well as abrupt ones [15]; this is the case of irrigation canals. The
preferred representation scheme for complex plants (multivariable systems involving large
system orders) is a state-space model. Then, subspace-based system identification methods
are a branch that has been recently developed in system identification attracting much
attention thanks to their computational simplicity and effectiveness in identifying dynamic
state-space linear multivariable systems. These algorithms are numerically robust and do not
involve nonlinear optimization techniques, being fast and accurate.

Due to applications of large dimensions commonly found in industrial processes,
subspace identification methods are very promising in this field. In the basis of the aspects
explained above, in our case (amultireach canal system) a state-spacemodel representation is
suitable instead of a transfer function system description. For this reason, an LPV state-space
control model has been developed through LPV identification techniques.

Besides, since system canals are nonlinear, a common engineering approach to deal
with this complexity is the divide-and-conquer strategy: decompose the complex problem
into several subproblems easier to solve. According to this previous strategy, a method to
model complex nonlinear systems has arisen. It is based on partitioning the whole operating
range of the nonlinear system into multiple, smaller operating regimes and modeling the
system for each and every of these regimes. The task of finding a complete global model for
the system is thus replaced by determining linear local models and subsequently combining
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these local models into a global description for the system obtaining the LPV model (local
LPV identification). This multiple model approach is often referred to as operating regime
decomposition [16] or multimodel identification. Interactions between the relevant system
phenomena are less complex locally than globally. From the divide-and-conquer point of
view, it is desirable to choose the local models such that they are less complex than the global
nonlinear model. It is expected that the simpler the local models are, the more models and
thus the more operating regimes are needed to describe the global system accurately enough.
A trade-off has to be made, because too simple local models lead to an explosion of the
number of operating regimes needed. Another manner to identify the nonlinear systems is by
the use of specific identification methods in a global way in one-shot through optimization
[17] (global LPV identification). Although it is possible to use nonlinear local models (see,
e.g., [18]) a common choice is to use local linear models. The main reasons for this choice are
a solid theory for linear systems has been developed over the years, linear models are easy to
understand, and they are widely used by engineers.

Specifically, the main contribution of the paper is the design of a low-order LPV
state-space multivariable control model describing the water flow dynamics in a multireach
irrigation canal. The model is estimated over the full operation point range using local LPV
identification. Several subspace identification methods are applied and their performances
are compared in order to select the subspace algorithm that yields the best control model.
This model will be suitable to design LPV controllers that will warranty the stability and
the desired performance around all operating points of the system with rigorous formality
[14, 15].

The structure of this paper is as follows: in the next section, the main issues related
to LPV identification and subspace identification methods used in this study are presented.
Section 3 briefly presents the two reach irrigation canal used in this research. Section 4
discusses the important steps (generation and pretreatment of the data set, order estimation,
performance quality criteria, and global model obtained by interpolation) in developing a
suitable LPV subspace model for the system and compares the performance of the used
subspace identification algorithms (N4SID, MOESP, and CVA) carrying out the model
validation. Finally, Section 5 provides conclusions.

2. LPV Subspace Identification Methods

Linear time-invariant (LTI) models are not suitable to control systems such as open-
flow canals with coupled pools and distributed parameters with nonlinear behaviour that
depend on the operating points. However, by an LPV model (with varying parameters
depending on the operating points), to preserve the aforementioned information of the
system (nonlinearity, coupling, etc.) is also possible, obtaining a more accurate and faithful
behaviour with the reality. As it has been emphasized in Section 1, there are two procedures
to carry out LPV identification: (i) multimodel identification (local LPV identification) and
(ii) one-shot LPV identification (global LPV identification). The former approach consists
in a two-step procedure where (1) LTI models at several different equilibrium (operating
condition) are identified by classical methods [13, 19]; (2) a global multi-model is obtained by
interpolation among the local LTI models, and different interpolation techniques can be used
such as membership fuzzy functions [20], polynomial interpolation [21], among others. The
latter approach consists in carrying out a one-shot identification in a global way as proposed
in [17]. The local approach has the important practical advantage that many engineers are
well experienced in LTI identification experiments and that the local LTI models can be



4 Mathematical Problems in Engineering

estimated using a wide variety of well-established and widely spread LTI identification
algorithms. To properly interpolate these local models, all local LPV identification techniques
require that the local models are represented in a consistent state-space form.

The discrete-time subspace identification methods refer to a kind of algorithms which
allow identifying a robust and reliable state-space model of MIMO linear systems estimating
state sequences directly from the input-output measurements. Based on orthogonal or
oblique projected subspaces generated by the rows or columns of Hankel matrices of the
input-output data, the process is followed by a singular value decomposition so as to
determine the order of the model and the observability matrices. Finally, the state-space
model is obtained through the solution of a least squares problem. Subspace-based methods
for state-space modeling have their origin in state-space realization, as developed by [22].
The term “subspace identification method” was introduced in the early 90s. The subspace
identification can use many different versions of subspace methods such as Canonical Variate
Analysis (CVA), Multivariable Output-Error State-Space model identification (MOESP),
State-Space System Identification (N4SID), Canonical Correlation Analysis (CCA), and
Deterministic and Stochastic Subspace System Identification and Realization (DSR) [10].
These algorithms attract much attention because they present many advantages: their
computational simplicity and effectiveness to determinate dynamic linear multivariable
systems. Nevertheless, a drawback which can be noticed is that these algorithms require a
large amount of data to build accurate models. So the experiments to collect data can be large
and time consuming. For this reason in control problems usually an off-line identification is
used.

LPV models obtained using subspace identification methods are mathematically
described by the following form:

xk+1 = A(θk)xk + B(θk)uk,

yk = C(θk)xk +D(θk)uk,
(2.1)

where the vectors uk ∈ Rm and yk ∈ Rl are the observations at the discrete time k ofm inputs
and l outputs of the process, respectively. The vector xk ∈ Rn represents the state vector of the
process at discrete time instant k and contains the numerical values of n states, and θk is the
parameter vector.

LPV system can be viewed as a nonlinear system that is linearized along a time-
varying trajectory determined by the time-varying parameter vector pk. Hence, the time-
varying parameter vector of an LPV system corresponds to the operating point of the
nonlinear system. In the LPV framework, it is assumed that this parameter is measurable
for control. In many industrial applications, such as process control, the operating point can
indeed be determined from measurements, making the LPV approach viable. Control design
for LPV systems is an active research area. Within the LPV framework, systematic techniques
for designing gain-scheduled controllers can be developed. Such techniques allow tighter
performance bounds and can deal with fast variations of the operating point. Furthermore,
control design for LPV systems has a close connection with modern robust control techniques
based on linear fractional transformations [23]. The important role of LPV systems in control
system design motivates the development of identification techniques that can determine
such systems from measured data, the LPV identification [23, 24].

Local linear modeling is one of the many possibilities to approximate a nonlinear
dynamic system. It is based on partitioning the full operating range of the nonlinear system
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into multiple, smaller operating regimes and modeling the system for each of these regimes
by a linear model. By making a weighted combination of these linear models, it is expected to
describe the complete nonlinear behaviour accurate enough. The local lineal model structure
is

xk+1 =
s∑

i=1

pi(θk)(Aixk + Biuk),

yk =
s∑

i=1

pi(θk)(Cixk +Diuk),

(2.2)

where s is the number of local models and pi(θk) and the other variables have the same
meaning that in (2.1). The weighting vectors pi are unknown functions of the scheduling
vector θk. This scheduling vector corresponds to the operating point of the system. This
system is closely related to the LPV system in (2.1). The weighting functions can be
interpreted as model validity functions: they indicate which model or combination of models
is active for a certain operating regime of the system. A weighted combination of local linear
models can be used to approximate a smooth nonlinear system up to an arbitrary accuracy
by increasing the number of local models. As it is stated, the local linear state-space system
is closely related to the LPV system: consider that time-varying parameters are known, while
for the local linear model structure the weighting functions have to be determined from input
and output data [24].

In this work, the plant is identified by several local LPV subspace identification
methods (cited above) to estimate the space-state representation that describes the system
dynamics suitably. The LPV identification method used for the experimental modeling of
our pilot two-pool canal (presented in the next section) is a two-step procedure where (1)
linear state-space models are identified at several different operating points by subspace
identification methods over the full range of operation; (2) a global state-space multi-model
is obtained at the end interpolating the local state-space models using polynomials [21].
In this paper, the following identification methods have been used: N4SID, the standard
method (i.e., N4SID1 from now on) and the robust method (i.e., N4SID2 from now on), CVA
algorithm, and MOESP procedure [10]. These methods are used to estimate the model in
each operating point. The local identification method forces the local models to fit the system
separately and locally. The steps of the identification procedure are explained in Section 4.

3. Description of the Process

An experimental canal prototype is used in this research. This canal consists in two tanks TT
and TD with cross section A. The full structure of the canal prototype is presented in Figure 1
(up) and Figure 2. The two tanks are serially connected with pipes, and they are slightly tilted
to allow the flow of the water. There is a reservoir at the bottom of the plant to supply water
to the tanks. A first pump (with a flow of 3,800 liters/h), named u1 in Figure 1 (up), permits
to collect water from the reservoir to fill the upper tank TT. An ultrasound sensor attached
to the metallic structure at the end of the first tank, named y1, measures the water level. A
second pump, named u2, (with a flow of 1,300 liters/h) allows to drain the upper tank and to
fill the lower tank TD.

A second ultrasound sensor positioned also at the end of the tank, named y2, enables
to measure the water level. Finally, a third pump, called u3, gives the possibility to drain
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Figure 1: (Up) Full structure of the canal and (down) details of the zenital internal structure of the canal.

away the last tank to the reservoir. The sensors and the pumps are directly connected to
an electronic board, which allows to power them and to exchange data between a Matlab
program (executed on a PC shown in Figure 2) and the canal. The program uses the Real Time
Windows Target (Matlab toolbox) to communicate with the electronic board and the canal.
Finally, it is important to emphasize that the prototype canal constitutes a closed system.
The water leaves from the bottom reservoir to the tank TT and arrives to the tank TD via the
pump u2. Then, the water returns to the reservoir via the pump u3. That constitutes a coupled
system where the first tank has a big influence on the second one.

There are many methacrylate plates along the two tanks TT and TD shown in Figure 1
(down). These plates are 2 centimeters apart creating a zigzag path in each tank. That
provides a delay in the water to reach the other extremity of the tank where the sensor is
located. This delay has to be taken into account for the identification. The delay changes
depending on the water level in the canal. The more the water in the canal, the smaller
the delay. This fact justifies the use of LPV identification to deal with this problem. Each
sensor measures the canal level at the end of its path with a precision of 1mm. The maximum
allowed level is 15 cm to avoid the overflow.

4. Identification of an LPV Subspace Model for Two-Reach Pilot Canal

In this section, the different subspace estimation methods in an LPV local way (see Section 2)
are applied to the multivariable pilot canal plant. The identification process is carried out
following the steps: (1) design of the experiment, collection of input-output data in each
operating point (taking into account a suitable selection of the excitation input of the system),
and pretreatment of these data; due to the system delays, those delays are estimated and
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Figure 2: Laboratory pilot canal.

removed from the identification data; (2) selection of the model order via different criteria,
singular value decomposition (SVD), and Akaike information criterion (AIC); (3) estimation
of the local space-state models for each operating point by the aforementioned subspace
identificationmethods and their interpolation to obtain a global model by Nearest Neighbour
interpolation [10, 25]; (4) validation of the model in all the operation range by error functions
(MRSE and MVAF) and correlation analysis of residuals. The identification results of each
estimation algorithm (N4SID1, N4SID2, CVA, andMOESP) are compared and studied. When
canal models are identified, two problems have to be considered: the problem of large and
variable delays and the nonlinearity of the dynamics and its variability with the operating
points [26, 27]. These problems are separately treated. The parameters models are estimated
using the state-space algorithms in each operating point without the delay effect, previously
calibrated by correlation method [13].

4.1. Generation and Pretreatment of the Data Set

It is not an easy task to select either the input or the output variables of a process. In
this experiment, two inputs (u1, u2) and two outputs (y1, y2) are considered. The input u1

corresponds to the voltage of the first canal pump; u2 corresponds to the voltage of the second
pump; the output y1 is the downstream level of pool 1, and y2 the downstream level of the
pool 2. Pseudorandom Binary Sequences (PBRS) are widely used in the identification process
[13]. These signals are persistent input signals that contain a large number of frequencies
representative of the dynamics of the plant. In order to choose the number of operation points
(OPs) of the canal plant in a rigorous manner, the optimized OP multipoint technique is
used [28]. In this paper, four equidistant operating points have been used. The local model
identification will be performed in every operating point because the system is not linear.

In our experiment, a pulse generator creates a train of PBRS as pump input voltage
signals which adequately excite the system at different operating points. For the first pump,
the PBRS signal, u1, changes the pump opening at intervals of 800 s and for a period of 10 s.
The identification procedure was carried out off-line using 3200 samples of the data set. In
Figure 3, the train of PBRS signals of each pump is shown.
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Figure 3: (a) Input signal for pump u1 and (b) input signal for pump u2 with (c) focus on the PBRS signal.

4.2. Calibration of the Delay and Order Model Selection

In this subsection, the delay in both pools will be estimated. It is known that open-flow canals
present large delays that change with the operating point (in this case, the pump operation,
i.e., the upstream level of each canal pool) [26]. In this work, the delay estimation has been
derived using correlation method [1, 13]. The delay estimation error is equal or less than 1%
in all cases. Next, the identification will be performed having removed the delays.

In subspace-based algorithms, the determination of the model order (n) can be
complex. This order can be determined calculating the number of singular values (SVD)
different from zero of the orthogonal (or oblique) projections of row spaces of data block-
Hankel matrices. However, it is difficult to calculate it when the system data are corrupted
by noise. It is also not straightforward to calculate this number, so that the decision is taken
by detecting a gap in the spectrum of the singular values. As it can be seen in Figure 4 for
N4SID2, the gap is difficult to determinate and hence the application of this strategy becomes
really subjective. Therefore, the decision of the model order will be taken with the following
criterion.
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Figure 4: Log of singular values in each operating point.

A reliable technique is Akaike’s final prediction error (FPE) criterion and his related
Akaike Information Criterion (AIC). AIC procedure allows determining the order n of a
system, and it is defined as

AIC = log
(
V

(
1 + 2

d

N

))
, (4.1)

where V is the loss function (quadratic fit) for the structure, N is the length of the data, and
d is the total number of estimated parameters. Using the AIC criterion, the best order model
is given by the minimum AIC(n) value. In Figure 4, the results of this criterion using N4SID2
algorithm on each operating point can be seen. A second-order model has been selected by
the AIC’s criterion for all the above subspace identification methods in the full operation
range of the canal. Note that in Figure 5 a substantial difference between first and second
order models can be seen, but choosing higher order models is irrelevant for the results using
N4SID2. Therefore, a second-order model is enough to achieve a suitable control model.

The above fact demonstrates why engineers widely accept a first-order model with
delay (IDZ model) or a second-order model with delay (Hayami model) for an irrigation
canal approximation. As it is stated in [11, 29], the chosen model structure depends on the
celerity coefficients, diffusion, and length of the canal. In our case, the canal is large enough
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Figure 5: AIC results for N4SID2 in each operating point.

to consider a second-order model, corroborating the model order selection by the chosen
statistical method.

4.3. Results and Performance Quality Criteria

After having chosen the best order n, the goal is to determine the best algorithm to obtain the
final model. In this study, various subspace algorithms have been tested in the full operation
range along the identification process. In order to select the best algorithm for identification,
these methodologies have been compared among them to see which one fits best with data.
The degree of adaptation of each one has been quantified by means of a cross-validation
method, using the following typical performance indicators: MRSE (mean relative square
error) and MVAF (mean variance-accounted for).

MRSE:

%MRSE =
1
l

l∑

i=1

√√√√√
∑N

j=1
(
yi

(
j
) − ŷi

(
j
))2

∑N
j=1 yi

(
j
)2 × 100 (in %). (4.2)
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Figure 6: (a) Comparison between measured and estimated downstream level for pool 1, (b) a detail, and
(c) a closer detail.

MVAF:

%MVAF =
1
l

l∑

i=1

(
1 − variance

(
yi − ŷi

)

variance
(
yi

)
)

× 100 (in %). (4.3)

With yi being the ith real output, ŷi the ith simulated output produced by the model, and
l is the number of repetitions of the experiment. The MRSE index given by (4.2) is used to
measure the mean relative square error between the real process outputs and the outputs
predicted by the model. As stated by (4.2), an MRSE index of 0 indicates a perfect model.
MVAF in (4.3) is a measure for evaluating the dynamic properties of the produced models.
If the ratio of variance (yi − ŷi)/variance (yi) is small, the MVAF is close to 1. This index
constitutes a quantitative measure of the model quality.

An experiment around the full the operating point range has been carried out and
the best method has been selected. In Table 1, the goodness of the each algorithm (N4SID1,
N4SID2, MOESP, and CVA) is shown. We can observe that all the methods provide a suitable
prediction to obtain a control model.
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Figure 7: (a) Comparison between measured and estimated downstream level for pool 2, (b) a detail, and
(c) a closer detail.

In average, N4SID2 is the most precise method in the full system operating range.
However, in the central operating points, MOESP and CVA have a 4% more of precision, and
in the highest operating point N4SID1 is 1% more precise. In Figures 6 and 7, the comparison
between the measured and predicted downstream level of both pools is shown for a specific
set-up around the full system operation range demonstrating the goodness and precision of
the selected subspace identification method.

Those results were already expected because MOESP algorithm has the inherent
drawback that it estimates the state sequence using a certain past window, possibly leading
to biased results. Similar approximations are made in the subspace LTI algorithm N4SID;
however, by making the past window larger, and larger this bias will tend to zero.

Apart from this error function used to validate the identified model, a correlation
analysis of residuals is required. One of the most basic tests [2] is to compute the correlation
between the regressors, the past inputs in this case, and the residuals:

r̂N(τ) =
1
N

∑
u(t − τ)ε(t). (4.4)
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Table 1: Selection of the best subspace-based algorithm in the full operation point range.

Algorithm
Percentage of accuracy with MRSE Percentage of accuracy with MVAF

in the full operation range in the full operation range

Output y1 Output y2 Output y1 Output y2

N4SID1 89.45 74.85 79.71 83.73
N4SID2 90.98 73.12 88.19 81.57
MOESP 85.00 72.31 87.67 78.74
CVA 81.16 71.09 88.09 79.25

It is usual to plot these estimates as a function of τ and compare with their standard
deviations to check if they are significantly different from zero. If not, there is no significant
influence of input in ε, so it is not possible to say the estimated model has not picked up all
the influence of u on y (the input on the output). It is supposed the assumption that ε is a
white noise with variance λ and zero mean. The result is typically presented as a plot of the
autocorrelation of the residuals and a plot of the cross-correlation between the inputs and
the residuals. In Figure 8, auto- and cross-correlation functions with uncertainty regions for
both pools are presented. It can be observed that the auto- and cross-correlation are within
the regressors standard deviations providing a model that reproduces pretty well the main
characteristics of dynamics of the pilot canal complex process.

Finally, the LPV canal global model is obtained by the use of N4SID2 method. The
local models obtained with this algorithm are combined by interpolation to create the global
model. Therefore, the parameters of the estimated model, that is, the matricesAi, Bi, Ci, and
Di are interpolated by Nearest Neighbor Interpolation algorithm obtaining the (2.2). This
algorithm is a numerical method widely extended by the scientific community [10, 25]. This
method sets the value of an interpolated point to the value of the nearest data point. The
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Figure 9: Interpolation of the parameters of the model: A(u1, u2), B(u1, u2), C(u1, u2), and D(u1, u2).

results of this interpolation can be seen in Figure 9. It can be observed that each parameter of
the system depends on the operating point, the gate openings (u1, u2).

5. Conclusions

This paper introduces an approach for approximate modeling of distributed parameter
processes using LPV identification. The use of LPV models allows the system to be
approximated by multiple local low-order models combined by interpolation. Here,
specifically an LPV MIMO state-space model for an irrigation canal is identified. The LPV
identification is carried out with several subspace-based algorithms (N4SID, robust N4SID,
MOESP, and CVA) in a local way. These methods have been compared and the most accurate
in the full operation range has been selected. The model has been validated in a laboratory
pilot multi-reach canal obtaining very good results.
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