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This paper deals with the offline parameters identification for a class of wastewater treatment bioprocesses using particle swarm
optimization (PSO) techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising
results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter
estimation of an anaerobic wastewater treatment process that is a complex biotechnological system. The identification scheme
is based on a multimodal numerical optimization problem with high dimension. The performances of the method are analyzed by
numerical simulations.

1. Introduction

It is well known that the biotechnology is one of the fields
that over the last decades have a high development.Therefore,
due to its advantages, the control of industrial bioprocesses
has been an important practical problem attracting wide
attention. Biotechnology applications can be found especially
in agriculture, in food industry, in medicine and pharma-
ceutical processes, in waste treatment processes, and so
forth. A frequent and important challenge in control of
such living processes is finding an accurate model of the
system. The bioprocesses are highly nonlinear, and their
kinetic parameters are usually badly or inadequately known
[1]. This problem becomes of great importance in complex
systems where critical instability of the process must be
avoided. Parameters characterizing the internal behavior of
biotechnological systems are usually not directly accessible
to measurement. Their measurement is usually approached
indirectly as a parameter estimation problem [2]. In this
paper a dynamic model describing the internal structure of
the system is formulated, and an algorithm based on PSO for
parameter estimation is designed.

In recent years, a progress has been made in the area
of continuous-time system identification [3]. Even if the
most physical systems are naturally continuous, a muchmore

attention has been paid to parameter estimation of discrete-
time systems, mainly because they are better suited for
numerical implementations. Continuous-time identification
makes possible a more direct link to the physical properties
and operation of the underlying systems and the direct
estimation of physical parameters which have a clear signifi-
cance.Themost common approach for parameter estimation
of linear or nonlinear systems is the use of prediction-
error identification methods (PEM) [4]. In this category
falls the well-known least squares methods or the maximum
likelihood methods. In this approach, identification consists
in minimization of a scalar-valued function of the model
parameter. In general, this function cannot be minimized by
analytical methods so the solution has to be found by itera-
tive, numerical techniques.There is an extensive literature on
such numerical problems. In classical approach themost used
procedures are the quasi-Newtonmethods and interior point
algorithms.Themain drawback of these nonlinear parameter
optimization techniques is that they are often unreliable; for
example, they give no guarantee of converging to a true
minimum. The increasing computational power of personal
computers andmicrocontrollers allowed the implementation
of several optimization algorithms inspired fromnatural phe-
nomena. Examples of these algorithms include the Simulated
Annealing [5], Genetics Algorithms (GA) [6], or Ant Colony
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Optimization [7] algorithms. Particle Swarm Optimization
(PSO) [8] is among these nature inspired algorithms. It is
inspired by the ability of birds flocking to find food that they
have no previous knowledge of its location. Every member of
the swarm is affected by its own experience and its neighbors’
experiences. Although the idea behind PSO is simple and
can be implemented by two lines of programming code,
the emergent behavior is complex and hard to completely
understand [9, 10].

The most important approaches for the yield and kinetic
coefficients estimation of biotechnological systems make use
of the state transformations based on the general structure
[11]. In this paper we propose an identification method based
on particle swarm optimization techniques for these classes
of biotechnological systems considering that the unknown
parameters can appear in rational relations with measured
variables. The paper is organized in the following way.
The nonlinear dynamical model of an anaerobic wastew-
ater treatment bioprocess is given in Section 2. Section 3
presents the identification algorithmusing the particle swarm
optimization techniques. Some numerical simulations are
presented in Section 4 and conclusions in Section 5.

2. Nonlinear Dynamical Model of Anaerobic
Wastewater Treatment Bioprocesses

A process that takes place in a bioreactor can be described
as a set of 𝑚 biochemical reactions involving 𝑛 components
(with 𝑛 ≥ 𝑚). The global dynamics can be represented by the
following dynamical state-space model [1]:

𝑑𝜉

𝑑𝑡

= 𝐾 ⋅ 𝜑 (𝜉, 𝑡) − 𝐷𝜉 + 𝐹 − 𝑄, (1)

where 𝜉 ∈ R𝑛×1.
This model describes the behavior of an entire class of

biotechnological processes and is referred to as the general
dynamical state-space model of this class of bioprocesses
[9]. In (1), the term 𝐾 ⋅ 𝜑(𝜉, 𝑡) is the rate of consumption
and/or production of the components in the reactor; that is,
the reaction kinetics and the term −𝐷𝜉 + 𝐹 − 𝑄 represents
the exchange with the environment. The strongly nonlinear
character of the model (1) is given by the reaction kinetics.
In many situations, the yield coefficients, the structure, and
the parameters of the reaction rates are partially known or
unknown. Many of the evolved control methods for these
kinds of systems—like model predictive control and robust
or adaptive control—are based on good initial estimates of
the yield and kinetic parameters.

Anaerobic digestion is a multistage biological wastewater
treatment process whereby bacteria, in the absence of oxygen,
decompose organic matter to carbon dioxide CO

2
, methane

CH
4
, and water [12]. Four metabolic paths can be identified

in this process: two for acidogenesis and two for methanation
(see Figure 1). In the first acidogenic path, glucose (or another
complex substrate) from the wastewater is decomposed into
volatile fatty acids (acetates, propionic acid), hydrogen H

2
,

and inorganic carbon by acidogenic bacteria.
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Methane
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Figure 1: A schematic view of a typical anaerobic digestion process.

In the second acidogenic path, Obligate Hydrogen
Producing Acetogens (OHPA) decompose propionate into
acetate, H

2
, and inorganic carbon. In the first methanation

path, acetate is transformed intoCH
4
andCO

2
by acetoclastic

methanogenic bacteria, while, in the second methanation
path, H

2
combines inorganic carbon to produce CH

4
under

the action of hydrogenophilic methanogenic bacteria. The
reaction scheme of this complex bioprocess involves 4 reac-
tions and 10 components.

Since the anaerobic digestion is a complex bioprocess,
this dynamical model being described by ten differential
equations, for control purpose an appropriately reduced
order model can be used. Using the singular perturbation
method, the following reduced order dynamical model can
be obtained:

𝑋̇
1
= 𝜑
1
− 𝐷𝑋

1
, (2)

̇𝑆
1
= −𝑘
1
𝜑
1
− 𝐷𝑆
1
+ 𝐷𝑆in, (3)

𝑋̇
2
= 𝜑
2
− 𝐷𝑋

2
, (4)

̇𝑆
2
= 𝑘
3
𝜑
1
− 𝑘
2
𝜑
2
− 𝐷𝑆
2
, (5)

̇𝑆
5
= 𝑘
4
𝜑
1
+ 𝑘
5
𝜑
2
− 𝐷𝑆
5
− 𝑄CO

2

, (6)

𝑃̇ = 𝑘
6
𝜑
2
+ 𝑘
7
𝜑
1
− 𝐷𝑃 − 𝑄

𝑃
, (7)

where 𝑋
1
, 𝑋
2
are acidogenic and acetoclastic methanogenic

bacteria, respectively, and 𝑆
1
, 𝑆
2
, 𝑆
5
are glucose, acetate and

inorganic carbon, respectively, and 𝑃 is methane; 𝜑
1
, 𝜑
2

are the rates of first acidogenic reaction and methanation
reaction respectively, 𝑄

𝑃
= 𝑐
𝑝
𝑃 with 𝑐

𝑝
> 0 and 𝑄CO

2

represent gaseous outflow rates of CH
4
andCO

2
, respectively,

𝑆in is the influent substrate concentration,𝐷 the dilution rate,
and 𝑘

𝑖
(𝑖 = 0, . . . , 7) are yield coefficients. Each reaction rate

is a growth rate and may be written as 𝜑
𝑖
= 𝜇
𝑖
𝑋
𝑖
, 𝑖 = 1, 2,

where 𝜇
𝑖
, 𝑖 = 1, 2, is the specific growth rate of reaction 𝑖.
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Defining the state vector as 𝜉 = [𝑋
1
𝑆
1
𝑋
2
𝑆
2
𝑆
5
𝑃]

𝑇, the
model (2)–(7) can be written in matrix form as
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(8)

or in compact form as

̇
𝜉 = 𝐾𝜑 (𝜉) − 𝐷𝜉 + 𝐹 − 𝑄, (9)

where 𝐹 = [0 𝐷𝑆in 0 0 0 0]

𝑇 is the vector of inflow
rates, 𝑄 = [0 0 0 0 𝑄CO

2

𝑄
𝑃
]

𝑇 is the vector of gaseous
outflow rates, 𝜑 = [𝜑

1
𝜑
2
]

𝑇 is the vector of reaction rates,
which can be written as 𝜑(𝜉) = 𝐺(𝜉)𝛼(𝜉), with 𝐺(𝜉) being a
diagonalmatrix whose entries are products of the component
concentrations involved in each reaction and 𝛼 = [𝛼

1
𝛼
2
]

𝑇

the vector of specific reaction rates, and 𝐾 is the yield
coefficient’s matrix. The matrices𝐾 and 𝐺 have the following
structure:

𝐾 = [

1 −𝑘
1
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2
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4
𝑘
6
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3
𝑘
5
𝑘
7

]

𝑇

,
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𝑋
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1

0

0 𝑋
2
𝑆
2

] .

(10)

Themost difficult task for the construction of the dynam-
ical model is the modeling of the reaction kinetics [13]. The
form of kinetics is complex, nonlinear, and in many cases
unknown. In our study one considers that reaction rates are
given by the Monod law

𝜑
1
(𝜉) = 𝜇

∗

1

𝑆
1
⋅ 𝑋
1

𝐾
𝑀
1

+ 𝑆
1

, (11)

and the Haldane kinetic model

𝜑
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2
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2

𝐾
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, (12)

where 𝐾
𝑀
1

, 𝐾
𝑀
2

are Michaelis-Menten constants, 𝜇∗
1
, 𝜇
∗

2

represent specific growth rate coefficients, and 𝐾
𝑖
is the

inhibition constant.
For simplicity, we will denote the unknown plant param-

eters by the vector

𝜃 = [𝜃
1
𝜃
2
⋅ ⋅ ⋅ 𝜃
12
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(14)

3. Parameter Estimation Using PSO

At the beginning of parameter estimation, the input and
output data are known and the real system parameters are
assumed as unknown. The identification problem is for-
mulated in terms of an optimization problem in which the
error between an actual physical measured response of the
system and the simulated response of a parameterized model
is minimized. The estimation of the system parameters is
achieved as a result of minimizing the error function by the
PSO algorithm.

3.1. Problem Statement. Consider the following n-dimen-
sional nonlinear system:

𝑑𝜉 (𝑡)

𝑑𝑡

= 𝑓 (𝜉, 𝑡; 𝜃) , (15)

where 𝜉 ∈ 𝑅
𝑛 is the state vector, 𝜃 ∈ 𝑅

𝑚 is the unknown
parameters vector, and𝑓 is a given nonlinear vector function.

To estimate the unknown parameters in (15), a parameter
identification system is defined as follows:

𝑑
̂
𝜉 (𝑡)

𝑑𝑡

= 𝑓 (
̂
𝜉, 𝑡;

̂
𝜃) , (16)

where ̂𝜉 ∈ 𝑅
𝑛 is the estimated state vector and ̂

𝜃 ∈ 𝑅
𝑚 is the

estimated parameters vector.
Theobjective function defined as themean squared errors

between real and estimated responses for a number 𝑁 of
given samples is considered as fitness of estimated model
parameters:

𝑉 =

1

𝑁 + 𝐷

𝐷

∑

𝑗=1

𝑁

∑

𝑘=1

(𝜉
𝑘

𝑗
−
̂
𝜉
𝑘

𝑗
)

2

, (17)

where 𝐷 is the number of measurable states, 𝑁 is the data
length used for parameter identification, whereas 𝜉

𝑘

𝑗
and

̂
𝜉
𝑘

𝑗
are the real and estimated values of state 𝑗 at time 𝑘,

respectively.
This objective function is a difficult function to minimize

because there are many local minima, and the global min-
imum has a very narrow domain of attraction. Our goal is
to determine the system parameters, using particle swarm
optimization algorithms in such a way that the value of 𝑉 is
minimized, approaching zero as much as possible.

3.2. Overview of Basic PSO Algorithms. During the last
decade, PSOalgorithmshave gainedmuch attention andwide
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applications in different fields due to their effectiveness in
performing difficult optimization issues, as well as simplicity
of implementation and ability to fast converge to a reasonably
good solution [14–16]. PSO is a population-based heuristic
global optimization technique, first introduced by Kennedy
and Eberhart [8] and referred to as a swarm-intelligence
technique. It is motivated from the simulation of social
behavior of animals such as bird flocking, fish schooling, and
swarm. In this algorithm, the population is called a swarm,
and the trajectory of each particle in the search space is
controlled through the medium of a term called “velocity,”
according to its own flying experience and swarm experience
in the search space. Mathematical description of basic PSO
and some important variants is presented in the following.

Candidate solutions of a population called particles coex-
ist and evolve simultaneously based on knowledge sharing
with neighboring particles. Each particle represents a poten-
tial solution to the optimization problem, and it has a fitness
value decided by optimal function. Supposing that search
space is𝐷-dimensional, each individual is treated as a particle
in the 𝐷-dimensional search space. The position and rate
of position change for 𝑖th particle can be represented by
𝐷-dimensional vector, 𝑥

𝑖
= (𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
) and V

𝑖
=

(V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝐷
), respectively. The best position previously

visited by the 𝑖th particle is recorded and represented as
𝑝
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝐷
), called pbest. The swarm best position

previously visited by all the particles in the population
is represented as 𝑝

𝑔
= (𝑝

𝑔1
, 𝑝
𝑔2
, . . . , 𝑝

𝑔𝐷
), called gbest.

Then particles search their best position, which are guided
by swarm information 𝑝

𝑔
and their own information 𝑝

𝑖
.

Each particle modifies its velocity to find a better solution
(position) by applying its own flying experience (i.e., memory
of the best position found in earlier flights) and the expe-
rience of neighboring particles (i.e., the best solution found
by the population). Each particle position is evaluated by
using fitness function and updates its position and velocity
according to the following equations:

V𝑘+1
𝑖

= 𝜔 ⋅ V𝑘
𝑖
+ 𝑐
1
𝑟
1
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥
𝑡

𝑖
) + 𝑐
2
𝑟
2
(𝑔𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥
𝑘

𝑖
) ,

𝑥
𝑘+1

𝑖
= 𝑥
𝑘

𝑖
+ V𝑘+1
𝑖

,

(18)

where 𝑘 is iteration number, 𝜔 is inertia weight, 𝑐
1
and 𝑐
2
are

two acceleration coefficients regulating the relative velocity
toward local and global best positions, and 𝑟

1
and 𝑟
2
are two

random numbers from interval [0, 1]. Many effects have been
made over the last decade to determinate the inertia weight.
Various studies has shown that under certain conditions
convergence is guaranteed to a stable equilibrium point.
These conditions include𝜔 > (𝑐

1
+𝑐
2
)/2−1 and 0 < 𝜔 < 1.The

technique originally proposed was to bound velocities so that
each component of V

𝑖
is kept within the range [−𝑉max, +𝑉max].

Unfortunately, this simple form of PSO suffers from
the premature convergence problem, which is particularly
true in complex problems since the interacted information
among particles in PSO is too simple to encourage a global
search. Many efforts have been made to avoid the premature
convergence. One solution is the use of a constriction factor

to insure convergence of the PSO, introduced in [17]. Thus,
the expression for velocity has been modified as

V𝑘+1
𝑖

= ℎ ⋅ [V𝑘
𝑖
+ 𝑐
1
𝑟
1
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥
𝑡

𝑖
) + 𝑐
2
𝑟
2
(𝑔𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥
𝑘

𝑖
)] ,

𝑥
𝑘+1

𝑖
= 𝑥
𝑘

𝑖
+ V𝑘+1
𝑖

,

(19)

where ℎ represents the constriction factor and is defined as

ℎ =

2

󵄨
󵄨
󵄨
󵄨
󵄨
2 − 𝛼 − √𝛼

2
− 4𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

, (20)

𝛼 = 𝑐
1
+ 𝑐
2
> 4. (21)

In this variant of the PSO algorithm, ℎ controls the mag-
nitude of the particle velocity and can be seen as a dampening
factor. It provides the algorithm with two important features.
First, it usually leads to faster convergence than standard
PSO. Second, the swarm maintains the ability to perform
wide movements in the search space, even if convergence is
already advanced, but a new optimum is found. Therefore,
the constriction PSO has the potential to avoid being trapped
in local optima while possessing a fast convergence. It was
shown to have superior performance compared to a standard
PSO.

It is shown that a larger inertia weight tends to facilitate
the global exploration and a smaller inertia weight achieves
the local exploration to fine-tune the current search area [18].
The best performance could be obtained by initially setting 𝜔
to some relatively high value (e.g., 0.9), which corresponds to
a system where particles perform extensive exploration, and
gradually reducing 𝜔 to a much lower value (e.g., 0.4), where
the system would be more dissipative and exploitative and
would be better at homing into local optima. In [19], a linearly
decreased inertia weight 𝜔 over time is proposed, where 𝜔 is
given by the following equation:

𝜔 = (𝜔
𝑖
− 𝜔
𝑓
) ⋅

𝑘max − 𝑘

𝑘max
+ 𝜔
𝑓
, (22)

where 𝜔
𝑖
, 𝜔
𝑓
are starting and final values of inertia weight,

respectively; 𝑘max is the maximum number of the iteration,
and 𝑘 is the current iteration number. It is generally taken that
starting value 𝜔

𝑖
= 0.9 and final value 𝜔

𝑓
= 0.4 [20].

On the other hand, in [21] was introduced PSOwith time-
varying acceleration coefficients. The improvement has the
samemotivation and the similar techniques as the adaptation
of inertia weight. In this case, the cognitive coefficient 𝑐

1
is

decreased linearly and the social coefficient 𝑐
2
is increased

linearly over time as follows:

𝑐
1
= (𝑐
1𝑓

− 𝑐
1𝑖
) ⋅

𝑘max − 𝑘

𝑘max
+ 𝑐
1𝑖
,

𝑐
2
= (𝑐
2𝑓

− 𝑐
2𝑖
) ⋅

𝑘max − 𝑘

𝑘max
+ 𝑐
2𝑖
,

(23)

where 𝑐
1𝑖

and 𝑐
2𝑖

are the initial values of the acceleration
coefficients 𝑐

1
and 𝑐
2
; 𝑐
1𝑓

and 𝑐
2𝑓

are the final values of the
acceleration coefficients 𝑐

1
and 𝑐
2
, respectively. Usually, 𝑐

1𝑖
=

2.5, 𝑐
2𝑖
= 0.5, 𝑐

1𝑓
= 0.5, and 𝑐

2𝑓
= 2.5.
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3.3. Identification Algorithm. Considering all the states of the
nonlinear system (8) at the sampling moments 𝑘 ∗ 𝑇𝑠 (𝑇𝑠 =
sampling period) known, the identification algorithm has the
following steps.

Step 1. Initialize a population of particles with random
positions and velocities on𝐷 dimensions in search space.

Step 2. For each particle, evaluate the desired optimization
fitness function (17) in𝐷 variables.

Step 3. Compare particle’s fitness evaluation with its pbest. If
current value is better than pbest, then set pbest equal to the
current value 𝑥

𝑖
in𝐷-dimensional space.

Step 4. Identify the particle in swarmwith the best success so
far, and assign its index to the variable gbest.

Step 5. Change the velocity and position of the particle
according to (19).

Step 6. if a criterion is met (usually a sufficiently good fitness
or a maximum number of iterations)

then Stop;
else
go to Step 2.

3.4. “Classical” Identification Procedure. The “classical” ap-
proach for identification of yield coefficients is a two-step pro-
cedure under the assumption that full statemeasurements are
available [1]. This method is based on a state transformation
that allows reformulating the dynamical model into separate
submodels. The first submodel depends only on the reaction
structure and is independent of the kinetics. It can be linearly
reparametrized and used for the identification of the yield
coefficients by means of linear regressions, provided suitable
identifiability conditions are satisfied. We present briefly this
method for estimating the yield coefficients, and we use it for
comparison in the next section.

The general dynamical model given in (2) represents a
particular class of nonlinear state-space models. The non-
linearity lies in the reaction rates 𝜑

𝑖
(𝜉) that are (nonlinear)

functions of the state variables. These functions enter the
model in the form 𝐾𝜑

𝑖
(𝜉) (where 𝐾 is a constant matrix),

which is a set of linear combinations of the same nonlinear
functions 𝜑

𝑖
(𝜉). This particular feature can be exploited to

separate the nonlinear part from the linear part of the model
by an adequate linear state transformation. More precisely,
one chooses a nonsingular partition

(

𝐾
𝑎

𝐾
𝑏

) = 𝑇𝐾, (24)

with 𝐾
𝑎
∈ 𝑅
𝑝×𝑚 of full row rank matrix (i.e., 𝑝 = rank(𝐾)),

𝐾
𝑏
∈ 𝑅
(𝑛−𝑝)×𝑚, and 𝑇 a permutation matrix. The induced

partitions of the vectors 𝜉 and 𝑢 are

(

𝜉
𝑎

𝜉
𝑏

) = 𝑇𝜉, (

𝑢
𝑎

𝑢
𝑏

) = 𝑇𝑢. (25)

Model (2) is then partitioned into two submodels

𝑑𝜉
𝑎

𝑑𝑡

= 𝐾 ⋅ 𝜑 (𝜉
𝑎
, 𝑡) − 𝐷𝜉

𝑎
+ 𝑢
𝑎
,

𝑑𝜉
𝑏

𝑑𝑡

= 𝐾 ⋅ 𝜑 (𝜉
𝑏
, 𝑡) − 𝐷𝜉

𝑏
+ 𝑢
𝑏
.

(26)

Then with the state transformation

𝜉
𝑎
= 𝜉
𝑎
,

𝑧 = 𝐶𝜉
𝑎
+ 𝜉
𝑏
,

(27)

one transforms the initial model into
̇
𝜉
𝑎
= 𝐾
𝑎
𝜑 (𝜉
𝑎
, 𝑧 − 𝐶𝜉

𝑎
) − 𝐷𝜉

𝑎
+ 𝑢
𝑎
,

𝑧̇ = −𝐷𝑧 + 𝐶𝑢
𝑎
+ 𝑢
𝑏
,

(28)

where the (𝑛 − 𝑝) × 𝑝matrix 𝐶 is the unique solution of

𝐶𝐾
𝑎
+ 𝐾
𝑏
= 0. (29)

That is,

𝐶 = −𝐾
𝑏
𝐾
∗

𝑎
, (30)

where𝐾∗
𝑎
is a generalized inverse or pseudoinverse of𝐾

𝑎
.The

subsystem (29) can be augmented with an equation derived
from (8) as follows:

𝑧̇ = −𝐷𝑧 + 𝐶𝑢
𝑎
+ 𝑢
𝑏
,

𝜉
𝑏
= 𝑧 − 𝐶𝜉

𝑎
.

(31)

It can be considered as a linear time-varying (if 𝑑 varies
in the course of time) model with state 𝑧, input (𝜉

𝑎
, 𝑢
𝑎
,

and 𝑢
𝑏
), and output 𝜉

𝑏
. It is nonlinearly parametrized by the

yield coefficients but linearly reparametrized by the nonzero
entries of 𝐶. When data of the signals 𝜉

𝑎
, 𝑢
𝑎
, 𝑢
𝑏
, and 𝜉

𝑏
are

available, the auxiliary model (31) can be used to identify
the yield coefficients independently of the knowledge of
the reaction rates. The model (31) can be used to perform
the identification of the nonzero entries of 𝐶 by a linear
regression technique, with the yield coefficients 𝑘

𝑖
recovered

afterwards from (29).
For the estimation of kinetic parameters the main ap-

proach is the use of a parameter observers (high gain observ-
ers, regressive parameter estimator, sliding mode observers,
etc.). All these techniques have numerous tuning parameters
and are difficult to implement.

4. Simulation Results and Discussion

The efficacy of our approach is shown by numerical sim-
ulations on an interval of 30 hours. The model given by
relation (9) was integrated using a fourth-order Runge-Kutta
routine with a sampling period of 1 minute and with initial
conditions: IC = [2.5 6 0.2 10 0.5 0].

The influence of sampling period and type of the opti-
mization algorithm and of noisy measurements are ana-
lyzed. To compare statistical performances of the different
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Table 1: Influence of the sampling period.

Estimated
parameter “Real” value Sampling period

1min 10min 30min
𝜃
1

5.5 5.5009 5.4811 5.4798
𝜃
2

1 0.9982 1.0111 1.0637
𝜃
3

16 15.9110 15.9328 14.5629
𝜃
4

10 10.0016 9.9707 9.9571
𝜃
5

1.5 1.4938 1.4626 1.3078
𝜃
6

0.2 0.2003 0.2011 0.1873
𝜃
7

3 2.9823 2.9581 2.6947
𝜃
8

0.2 0.2002 0.1974 0.1949
𝜃
9

0.6 0.5994 0.6010 0.6188
𝜃
10

0.75 0.7539 0.6754 0.6483
𝜃
11

4 3.9731 3.9007 3.0265
𝜃
12

20 20.3973 19.4738 20.3947
NMSE 0 3.0717e − 05 5.6623e − 04 1.2143e− 01

Table 2: Influence of the algorithm type.

Estimated
parameter “Real” value Type of optimization algorithm

PSO-1 PSO-2 PSO-3
𝜃
1

5.5 5.5613 5.5849 5.4338
𝜃
2

1 1.0405 1.0083 0.8406
𝜃
3

16 15.2050 14.9971 15.6475
𝜃
4

10 10.0848 10.1252 9.9468
𝜃
5

1.5 1.5721 1.6422 1.1698
𝜃
6

0.2 0.2022 0.2040 0.3005
𝜃
7

3 2.8006 2.7916 2.7569
𝜃
8

0.2 0.1990 0.1975 0.2286
𝜃
9

0.6 0.5993 0.6311 0.6594
𝜃
10

0.75 0.9991 1.1153 0.4728
𝜃
11

4 3.5221 3.3470 4.0707
𝜃
12

20 20.9257 20.5048 20.0971
NMSE 0 3.0717e − 04 0.0283 0.3845

approaches the empirical normalized mean square error
(NMSE) was used, that is defined as

NMSE =

1

𝑁

𝑁

∑

𝑗=1

NMSE (̂𝜃
𝑗
) , (32)

with NMSE(̂𝜃
𝑗
) = ((

̂
𝜃
𝑗
− 𝜃
∗

𝑗
)/𝜃
∗

𝑗
)

2

, where𝑁 is the number of
estimated parameters, ̂𝜃

𝑗
is the jth element of the estimated

parameter vector while the “∗” superscript denotes the true
value of the parameter.

In order to study the sensitivity of the estimation method
to the sampling period and to the type of PSO algorithm, and
to the noise, the following parameters were used.

Sampling period: 𝑇
𝑠
∈ {1 min, 10 min, 30 min}.

Types of the optimization algorithm are as follows:

PSO 1: algorithm based on relation (19) with ℎ defined by
relation (20), and 𝑐

1
= 𝑐
2
= 2.1;

Table 3: Influence of the noise level.

Estimated
parameter “Real” value Noise level

50 dB 40 dB 30 dB
𝜃
1

5.5 5.4001 5.3697 5.3362
𝜃
2

1 1.0066 0.6628 0.4180
𝜃
3

16 15.5721 16.6508 16.3867
𝜃
4

10 9.8502 9.8463 9.7771
𝜃
5

1.5 1.1817 1.1428 0.9150
𝜃
6

0.2 0.1867 0.2769 0.2711
𝜃
7

3 2.9626 2.9178 3.1112
𝜃
8

0.2 0.2042 0.2350 0.3020
𝜃
9

0.6 0.6030 0.6254 0.5744
𝜃
10

0.75 0.3306 0.2379 0.0058
𝜃
11

4 3.7860 4.7660 4.5629
𝜃
12

20 20.8802 20.9267 19.7113
NMSE 0 3.6827e − 3 0.0827 0.1625

0 20 40 60 80 100
0

10

20

30

40

50

60

Number of iterations

Fi
tn

es
s f

un
ct

io
n

Figure 2: Convergence rate for PSO 1 algorithm.

PSO 2: algorithm based on relation (18) with 𝜔, 𝑐
1
, and 𝑐

2

defined by relations (22) and (23) and 𝜔
𝑖
= 0.9, 𝜔

𝑓
=

0.4, 𝑐
1𝑖
= 2.5; 𝑐

2𝑖
= 0.5; 𝑐

1𝑓
= 0.5, 𝑐

2𝑓
= 2.5;

PSO 3: algorithm based on relation (18) with 𝜔, 𝑐
1
, and𝑐

2

constants: 𝜔 = 0.75, 𝑐
1
= 1.8, 𝑐

2
= 2.2, and 𝑉max = 10.

Noise: {zero-mean white: SNR = 50 dB, 40 dB, 30 dB}.

The results of these simulations are presented in Tables
1, 2, and 3. The simulations were performed with a number
of particles between 50 and 120. All the presented results
are obtained for a number of 80 particles. For a greater
number of particles the accuracy of the estimates was not
better. In Figure 2 is presented the convergence rate for PSO 1
algorithm with a sampling period of 1min.

The results presented in Tables 1–3 suggest that our
proposed parameter estimation technique yields consistent
results. The method is very simple, easily completed and
needs fewer parameters, which made it fully developed.
However, the research on the PSO is still at the beginning,
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and a lot of problems are to be resolved. Research on the
topology of the new pattern particle swarmwhich has a better
function can be carried out. The neighbouring topology of
the different particle swarms is based on the imitation of the
different societies. It ismeaningful to the use and spread of the
algorithm to select the proper topology to enable PSO have
the best property and do the research on the suitable ranges of
different topologies. Blending PSO with the other intelligent
optimization algorithms means combining the advantages
of the PSO with the advantages of the other intelligent
optimization algorithms to create the compound algorithm
that has practical value. For example, the particle swarm
optimization algorithm can be improved by the Simulated
Annealing approach. Rapid swarm convergence is one of the
main advantages of PSO, but this can also be problematic
since, if an early solution is suboptimal, the swarm can
easily stagnate around it without any pressure to continue
exploration. Overall the results indicate that PSO algorithms
can be used in the optimization of parameters during model
identification.

5. Conclusions

The paper presents a particle swarm optimization based
identification procedure for offline estimation of yield and
kinetic coefficients in an anaerobic wastewater treatment bio-
process. The identification scheme is formulated in terms
of an optimization problem where the error between an
actual physical measured response of the system and the
simulated response of a parameterized model is minimized.
This function is multimodal, and classical iterative methods
fail to find the global optimum.The estimation of the system
parameters is achieved as a result of minimizing the error
function by the PSO algorithm.

The simulations evaluated the effects of sampling period
and some basic variants of PSO algorithm and of the noisy
measurements. The proposed strategy can still converge to
accurate results even in the presence of measurement noise,
as illustrated by the numerical study.ThePSO algorithmhas a
simpler procedure and higher computational efficiency than
other optimization techniques.

Nomenclature

𝑐
1
, 𝑐
2
: Acceleration coefficients

𝐷: Dilution rate (h−1)
𝐹: Vector of feeding rates
𝐹in: Input feed rate (Lh−1)
𝐾: Matrix of yield coefficients
𝑘
𝑖
, 𝑖 = 1, 7: Yield coefficients

𝑄: Vector of rates of removal of the components
in gaseous form

𝑆
1
: Glucose concentration (g/L)

𝑆
2
: Acetate concentration (g/L)

𝑆
5
: Inorganic carbon concentration (g/L)

𝑋
1
: Acidogenic concentration (g/L)

𝑋
2
: Acetoclastic methanogenic concentration

(g/L)

𝑃: Methane concentration (g/L)
𝑆in: Glucose concentration on the feed (g/L)
Φ: Vector of reaction rates (reaction kinetics)
𝜇
∗

1
, 𝜇
∗

2
: Maximal specific growth rates (h−1)

𝜉: State vector
R: The set of real numbers
Ω: Inertia weight
𝜃: The vector of unknown parameters
𝜃
𝑖
, 𝑖 = 1, 9: The unknown parameters.
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