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von Karman originally deduced his spectrum of wind speed fluctuation based on the Stokes-Navier equation. Taking into account,
the practical issues of measurement and/or computation errors, we suggest that the spectrum can be described from the point
of view of the golden ratio. We call it the golden ratio phenomenon of the von Karman spectrum. To depict that phenomenon,
we derive the von Karman spectrum based on fractional differential equations, which bridges the golden ratio to the von Karman
spectrum and consequently provides a new outlook of random data following the von Karman spectrum in turbulence. In addition,
we express the fractal dimension, which is a measure of local self-similarity, using the golden ratio, of random data governed by the
von Karman spectrum.

1. Instruction

The golden ratio, denoted by 𝜑, is an irrational number
given by 𝜑 = (1 + √5)/2 [1]. The paper by Ackermann [2]
may likely be the earliest literature on the golden ratio in a
mathematics journal in English in 1895, but it attracted and
has attracted the interest of scientists and engineers in various
fields of sciences and engineering, ranging from chemistry
to computer science; see, for example, [1], Benassi [3], Putz
[4], Orita et al. [5], Perez [6], Hassaballah et al. [7], Kellerhals
[8], Henein et al. [9], Hurtley [10], Coldea et al. [11], Affleck
[12], Jones et al. [13], Kaygn et al. [14], Cervantes et al. [15],
Chebotarev [16], Benavoli et al. [17], Manikantan et al. [18],
Assimakis et al. [19], Good [20], Davis and Jahnke [21],
Totland [22], Moufarrège [23], Boeyens [24], Iñiguez et al.
[25], Andrews and Zhang [26], Hofri and Rosberg [27], Itai
and Rosberg [28], Cassandras and Julka [29], and Tanackov
et al. [30], just to mention a few.

In the field of random functions, more precisely, turbu-
lence in fluid mechanics, a kind of power spectra density
(PSD) function introduced by von Karman [31], known as
the von Karman spectra (VKS), has been widely used in
the diverse fields, ranging from turbulence to acoustic wave
propagation in random media; see, for example, Goedecke

et al. [32] and the references therein. Among the von Karman
spectra, the spectrum (VKSW for short) expressed in (1) is
particularly useful in the field of wind engineering for the
modeling of wind speed fluctuation; see, for example, [33–41].
That PSD is in the form
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4𝑢
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𝑓
𝑏V𝑤
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where 𝑓 is frequency (Hz), 𝐿𝑥
𝑢
is turbulence integral scale, 𝑈

is mean speed, 𝑢
𝑓
is friction velocity (ms−1), and 𝑏V is friction

velocity coefficient such that the variance of wind speed 𝜎2
𝑢
=

𝑏V𝑢
2

𝑓
.
Note that (1) was conventionally deduced based on the

Stokes-Navier equation ([31], Bauer and Zeibig [42], Tropea
[43], Monin and Yaglom [44], Xiushu [45]). It does not
originally relate to the concept of either the golden ratio
or fractal dimension. As a matter of fact, reports regarding
turbulence’s fractal dimension derived directly based on the
Stokes-Navier equation are rarely seen as Gaoan stated in [46,
page 55], letting alone the golden ratio.
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This paper aims at contributing the following three
results. First, we will propose a rigorous but concise deriva-
tion of (1). Then, we will generalize (1) such that the gene-
ralization may be described from the point of view of the
golden ratio. Finally, we will explain the golden ratio pheno-
menon of the VKSW from the point of view of fractal dime-
nsion or local self-similarity. As a result, we achieve the goal
of bridging the golden ratio to the VKSW as well as self-
similarity of random data, establishing a new outlook of data
following the VKSW.

The rest of the paper is organized as follows. The pre-
liminaries are briefed in Section 2. The results are given in
Section 3, which is followed by conclusions.

2. Preliminaries

2.1. Golden Ratio. One of the conventional ways to deduce
the golden ratio 𝜑 is to solve the difference equation that
produces the Fibonacci sequences. The equation is given by
(see, e.g., [1], Jamieson [46], Ranum [47], and Eggar [48])

𝐹 (𝑛) = 𝐹 (𝑛 − 1) + 𝐹 (𝑛 − 2) ,

𝑛 ∈ N (the set of natural numbers) .
(2)

Denote by 𝑍
𝐹
(𝑧) the 𝑧-transform of 𝐹(𝑛). Then, doing the 𝑧-

transform on both sides of (2) yields

𝑍
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The above expression can be rewritten as

𝑧
2
− 𝑧 − 1 = 0. (4)

The solutions to (4) are expressed by
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(5)

The golden ratio equals 𝑧
1
; that is,

𝜑 = 𝑧
1
=
1 + √5

2
≈ 1.618. (6)

In addition,

𝑧
2
=
1 − √5

2
= −

1

𝜑
≈ −0.618. (7)

2.2. Fractional Oscillators. There are three types of fractional
oscillators. The conventional type, see, for example, Achar
et al. [49, 50], is given by

𝑑
2−𝜀
𝑥 (𝑡)

𝑑𝑡2−𝜀
+ 𝜔
2

0
𝑥 (𝑡) = 𝑒 (𝑡) , 0 < 𝜀 < 1. (8)

The second type was introduced by Lim and Muniandy [51].
It is in the form

(
𝑑
2

𝑑𝑡2
+ 𝜆)

𝛽

𝑥 (𝑡) = 𝑒 (𝑡) , 𝛽 > 0. (9)

The third type introduced by Lim and Teo [52] is expressed
by

(
𝑎𝐷
𝛼

𝑡
+ 𝜆)
𝛽

𝑥
𝛼,𝛽
(𝑡) = 𝑒 (𝑡) , 0 < 𝛼 < 1, 𝛽 > 0. (10)

The symbol
𝑎𝐷
𝛼

𝑡
is a fractional differential operator; see, for

example, Eab and Lim [53, 54], Lim et al. [55], Klafter et al.
[56], Machado et al. [57], and Cattani [58]. In what follows,
we use (10) in the general sense.

We now consider the fractional differential equation with
the coefficient 𝐴 in the form

𝐴(
𝑑

𝑑𝑡
+ 𝜆)

𝛽

𝑦fOU (𝑡) = 𝜂 (𝑡) , 𝛽 > 0, (11)

where 𝜂(𝑡) is a white noise. Then, the solution to (11) is the
fractional Ornstein-Uhlenbeck (OU) process [59], referring
to Coffey et al. [60] for the meaning of OU process.

3. Results

Denote that 𝑔fOU(𝑡) is the impulse response function of (11).
Then, it is the solution to the following equation with zero
initial conditions

𝐴(
𝑑

𝑑𝑡
+ 𝜆)

𝛽

𝑔fOU (𝑡) = 𝛿 (𝑡) , (12)

where 𝛿(𝑡) is the Dirac-𝛿 function. Doing the Fourier trans-
forms on both sides of the above equation yields

𝐺fOU (𝑓) =
𝐴

(𝜆 − 𝑗2𝜋𝑓)
𝛽
, (13)

where 𝐺fOU(𝑓) is the Fourier transform of 𝑔fOU(𝑡).
Let 𝑆
𝑦fOU

(𝑓) be the PSD of 𝑦fOU(𝑡). Then, 𝑆
𝑦fOU

(𝑓) is given
by
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Thus, we have the theorem below.

Theorem 1. Let 𝑋vk(𝑡) be the random function that obeys (1).
Then,𝑋vk(𝑡) is governed by the fractional differential equation
that is in the form

√𝐴vk(
𝑑

𝑑𝑡
+ 𝐵vk)

5/6

𝑋vk (𝑡) = 𝜂 (𝑡) . (15)

Its solution in frequency domain is given by

𝑆vk (𝑓) =
𝐴vk

[(𝐵vk)
2
+ (2𝜋𝑓)

2
]
5/6
. (16)

Proof. Replacing 𝐴, 𝜆, and 𝛽 in (11) with √𝐴vk, 𝐵vk, and
5/6, respectively, yields (15). Substituting A, 𝜆, and 𝛽 in (14)
with √𝐴vk, 𝐵vk, and 5/6, respectively, produces (16). Thus,
Theorem 1 results.

FromTheorem 1, we obtain the following corollary.
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Corollary 2 (modified VKSW). Let 𝑋vk𝜑(𝑡) be the random
function that is governed by the fractional differential equation
given by

√𝐴vk(
𝑑

𝑑𝑡
+ 𝐵vk)

𝜑/2

𝑋vk𝜑 (𝑡) = 𝜂 (𝑡) . (17)

Then, its solution in frequency domain is in the form

𝑆vk𝜑 (𝑓) =
𝐴vk

[(𝐵vk)
2
+ (2𝜋𝑓)

2
]
𝜑/2
. (18)

The proof is straightforward and omitted consequently.
From Theorem 1 and Corollary 2, we immediately have

the remark below.

Remark 3. The VKSW may be approximately expressed by
the golden ratio.

As a matter of fact,

𝜑

2
≈
5

6
. (19)

Thus, (16) approximately equals (18).Thismay not be a simple
approximation but substantially develops the implication of
the VKSW from the point of view of the golden ratio.

Note that there are errors in measuring real random data
[61–63] and computation errors [64–66]. Thus, from a view
of practice, the power of the VKSW may not exactly be the
value of 5/6 in most cases in engineering. Rather, it may be in
the form

(
5

6
) + 𝑒, (20)

where 𝑒 is error. Thus, by using the golden ratio, (18) is quite
reasonable to characterize random functions that obey the
VKSW.

For the purpose of exhibiting the results in time domain,
we denote by 𝐹 and 𝐹−1 the operator of the Fourier transform
and its inverse, respectively. Then, we get the theorem below.

Theorem4. The inverse Fourier transform of 1/[1+(2𝜋𝑓)2]𝜑/2
is given by
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(21)

where 𝐾V(𝑧) is the modified Bessel function of second kind or
the MacDonald function and 𝜏 is the time lag.

Proof. Because (𝜑−1)/2 > 1/2, according to the computation
formula in Gelfand and Vilenkin [67, page 188, in Section 2,
Chapter 2], (21) holds.

Recall that the Fourier transform of |𝑡|𝛼 is expressed by
[68]

𝐹 (|𝑡|
𝛼
) = −2 sin(𝛼𝜋

2
) Γ (𝛼 + 1) |𝜔|

−𝛼−1
, (22)

where 𝛼 ̸= 1, 3, . . ..
Note that

𝑆vk𝜑 (𝑓) ∼
1

𝑓𝜑/2
for𝑓 󳨀→ ∞. (23)

Then, denoting 𝑟vk𝜑(𝜏) is the inverse Fourier transform of
𝑆vk𝜑(𝑓), one has

𝑟vk𝜑 (𝜏) ∼ |𝜏|
(𝜑−1)/2 for 𝜏 󳨀→ 0. (24)

The fractal dimension of a process can be determined by its
autocorrelation function (ACF) for 𝜏 → 0 [69]. Thus,

𝑟vk (0) − 𝑟vk (𝜏) ∼ |𝜏|
(𝜑−1)/2 for 𝜏 󳨀→ 0. (25)

Therefore, with the probability one [69], the fractal dimen-
sion of themodified vonKarman process based on the golden
ratio is given by

𝐷vk𝜑 = (2 −
𝜑 − 1

4
) =

7 − 𝜑

4
. (26)

Approximately, it is expressed by

𝐷vk𝜑 ≈ 1.346. (27)

Note that fractal dimension is a measure of local self-
similarity, irregularity, or roughness [70]. High value of
fractal dimension of a sample path implies high irregularity
of that path.Thus, (26) means that the modified von Karman
process with the golden ratio has considerable local irregular-
ity.

We would like to call out the work described above as the
golden ratio phenomenon of the von Karman process. From
the point of view of our work in data science or big data, this
research may not be enough.The future work will investigate
possible golden ratio phenomena in other topics of data such
as those discussed in [71–82], exploring laws associating with
the golden ratio in the universe.

4. Conclusions

We have given the derivation of the von Karman spectrum
based on the fractional differential equation (10). The results
suggest that the process obeying VKSW is in the class of
fractional OU processes. Moreover, we have explained the
reasons why the VKSW may be described from the point of
view of the golden ratio. The fractal dimension of random
data obeying the VKSW by using the golden ratio has also
been discussed.
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